Karlsruher Institut für Technologie

Feldtheorie der Kondensierten Materie, RG und Quantenkritikalität SS 2013

Prof. Dr. J. Schmalian	Blatt 04
Dr. P. Orth	Besprechung 25.06.2013

1. Matsubara summation

Show that for a > 0 it holds that

$$T\sum_{\omega_n} \frac{1}{\omega_n^2 + a^2} - \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{\omega^2 + a^2} = \frac{1}{a} \frac{1}{e^{a/T} - 1} \,,$$

where $\omega_n = 2\pi T n$ are bosonic Matsubara frequencies.

2. Statics at nonzero temperatures in ϕ^4 -theory

Consider the N-component ϕ^4 field theory in d spatial dimensions defined by the imaginary time path integral

$$Z = \int \mathcal{D}[\phi_{\alpha}(x,\tau)] \exp(-S)$$

with action

$$S = \int d^d x \int_0^{1/T} d\tau \left\{ \frac{1}{2} \left[(\partial_\tau \phi_\alpha)^2 + c^2 (\nabla_x \phi_\alpha)^2 + r \phi_\alpha^2(x,\tau) \right] + \frac{u}{4!} (\phi_\alpha^2(x,\tau))^2 \right\}.$$

(a) Set u = 0 and compute the susceptibility

$$\chi_{\alpha\beta}(k,\omega_n) = \int_0^{1/T} d\tau \int d^d x \left\langle \phi_\alpha(x,\tau)\phi_\beta(0,0) \right\rangle e^{-i(kx-\omega_n\tau)}$$

in the O(N) symmetric region of the phase diagram. Show that it holds that $\chi_{\alpha\beta} = \chi \delta_{\alpha\beta}$.

- (b) Calculate the lowest order corrections of $\chi(k, \omega_n)$ due to nonzero u. Identify the shift of the critical value of r, where the phase transition from the disordered to the ordered state occurs, from $r_c(u=0) = 0$ to $r_c(u>0) \neq 0$ due to nonzero u. The critical value $r_c(u)$ is defined as the value where $\chi(0,0)$ shows a divergence, since the correlation length is then infinite $\xi \to \infty$.
- (c) Write $\chi^{-1}(q, \omega_n)$ in terms of $s = r r_c(u)$ and perform the Matsubara summation and momentum integration. Distinguish between d < 3 and d > 3, *i.e.*, dimensions D = d + 1 below and above the upper critical dimension $D_c = 4$. Show that for d < 3 the correction diverges close to the phase transition $(s \to 0)$ and extract the universal (cutoff independent) scaling function $\Psi_D(x, y)$ by writing

$$\chi^{-1}(i\omega_n, k) = s\Psi_D\left(\frac{\sqrt{\omega_n^2 + k^2}}{\sqrt{s}}, \frac{u}{s^{(4-D)/2}}\right)$$

For d > 3 expand in small s and show that the correction remains finite, but depends on the momentum cutoff Λ . (d) To find the correlation length in different crossover regimes at finite temperature close to the quantum critical point, derive an effective action $S_{\rm eff}$ for the static $\omega_n = 0$ mode only. For this, integrate over all nonzero Matsubara modes up to one loop similarly to the RG procedure (fast modes are all modes with $\omega_n > 0$, slow mode is only $\omega_n = 0$) to arrive at

$$S_{\text{eff}} = \frac{1}{T} \int d^d x \left\{ \frac{1}{2} \left[(\nabla_x \phi_\alpha)^2 + R \phi_\alpha^2(x) \right] + \frac{U}{4!} (\phi_\alpha^2(x))^2 \right\}$$

with

$$R = r + u \frac{N+2}{6} T \sum_{\omega_n \neq 0} \int \frac{d^d k}{(2\pi)^d} \frac{1}{\omega_n^2 + k^2 + s} + r_c - r_c$$
$$U = u - u^2 \frac{N+8}{6} T \sum_{\omega_n \neq 0} \int \frac{d^d k}{(2\pi)^d} \frac{1}{(\omega_n^2 + k^2 + s)^2}.$$

where r_c was calculated in part (b) and $r - r_c = s$ and s = 0 marks the location of the quantum phase transition.

(e) Use the first-order result U = u in the following and calculate the shift of R_c due to nonzero U exactly as in part (b) and thus find the equivalent of s as $S = R - R_c(U)$ for the effective action. Evaluate the Matsubara sums [use the result from number (1)] in the expression of R to arrive at

$$\begin{split} \mathcal{S} &= s + u \frac{N+2}{6} \Big\{ \int \frac{d^d k}{(2\pi)^d} \Big(\frac{1}{\sqrt{k^2 + s}} \frac{1}{e^{\sqrt{k^2 + s}/T} - 1} - \frac{T}{k^2 + s} + \frac{T}{k^2} \Big) \\ &+ T \sum_{\omega_n} \int^{\Lambda} \frac{d^d k}{(2\pi)^d} \Big(\frac{1}{\omega_n^2 + k^2 + s} - \frac{1}{\omega_n^2 + k^2} + \frac{s}{(\omega_n^2 + k^2)^4} - \frac{s}{(\omega_n^2 + k^2)^4} \Big\} \,, \end{split}$$

where we have added and subtracted $\frac{s}{(\omega_n^2+k^2)^4}$ in the last integral to remove the ultraviolet divergence. Evaluate the remaining Matsubara summations, and write the result in the form

$$\mathcal{S} = s(1 + c_1 u \Lambda^{d-3}) + u T^{d-1} \frac{N+2}{6} G_d\left(\frac{s}{T^2}\right)$$

with non-universal constant c_1 and universal function $G_d(x)$ still containing a momentum integral $\int_0^\infty d^d k$. You have now separated cutoff Λ dependent terms and universal T dependence.

(f) We can then use the analogy between the effective action S_{eff} and S to conclude that

$$\chi^{-1}(k) = \mathcal{S}\Psi_d\left(\frac{\sqrt{\omega_n^2 + k^2}}{\sqrt{\mathcal{S}}}, \frac{TU}{\mathcal{S}^{(4-d)/2}}\right)$$

with known function $\Psi_d(x, y)$ from part (c) (evaluated in spatial dimension d here). Write $\chi^{-1}(k) = k^2 + \xi^{-2}$ and analyze the temperature behavior of the correlation length ξ in the three regimes (A): $s > 0, T \ll \sqrt{s}$, (B): $s > 0, \sqrt{s} \ll T \ll (s/u)^{1/(d-1)}$ and (C): $s > 0, (s/u)^{1/(d-1)} \ll T$ close to the quantum critical point on the disordered O(N) symmetric side of the phase diagram.

(g) Find the finite temperature transition temperature T_c from the condition s < 0 and $\xi^{-2} = 0$.