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1. Electron-electron collisions in and dephasing time (20 Punkte)

In the lectures weak localization correction to conductivity of disordered metals was
discussed. In 1D and 2D this correction diverges in infrared. The divergence can be
cut off by system size or external frequency. On the other hand, for non-interacting
electrons, finite temperature can not cut the weak localization correction. The situation
changes, if the electron-electron interaction is switched on. Finite phase breaking time
τφ(T ) provides mass to Cooperon and cuts the divergence making the weak localization
correction indeed weak at high enough temperatures. In this exercise we estimate τφ(T ).

Electron-electron collision rate at T = 0.
Let us consider electrons living in short-range correlated random potential with single-
particle eigenstates ψm(x). In the absence of interaction electrons fill those eigenstates
independently. The many-particle ground state is obtained by filling all single-particle
eigenstates with energies εm < 0 (energies are counted from chemical potential). The
simplest excited state is obtained by adding an electron into eigenstate ψα(x) with
εα > 0. We denote such a state by |eα〉. We are interested in average decay rate of such
states caused by some interaction U(q, ω). For states with εm < 0 we denote by |hm〉
the many-particle state with electron removed from the single-particle level ψm.

(a) Consider the simplest decay process |eα〉 → |eβhγeδ〉. Use Fermi Golden Rule to
show that the contribution of these processes to the life-time of the state |eα〉 is
given by

1

τee(α)
= 2π

∑
βγδ

|Mαβγδ|2δ(εα + εγ − εβ − εδ) (1)

Mαβγδ =

∫
drdr′U(r − r′, εα − εβ)ψα(r)ψ∗β(r)ψγ(r

′)ψ∗δ (r
′) (2)

The summation goes over states with εγ < 0 and εβ , εδ > 0. What is the diagram
corresponding to this process?

(b) We define the decay rate averaged over all possible initial states |eα〉 at energy E
and the realizations of the disorder

1

τee(E)
=

〈
1

νV

∑
α

1

τee(α)
δ(E − εα)

〉
. (3)

Show that

1

τee(E)
=

2π

νV

∫ E

0

dω

∫ 0

−ω
dε

〈∑
αβγδ

|Mαβγδ|2δ(E − εα)δ(E − ω − εβ)δ(ε− εγ)δ(ε+ ω − εδ)

〉
(4)



(c) Consider the impurity average in the equation above. Assume that the interaction
range in real space is much larger than Fermi wavelength. Show that

〈. . .〉 =

∫
dq

(2π)d
|U(q, ω)|2S2(ω, q) (5)

S(ω, q) =
1

2π2

∫
d(r1 − r2)e−iq(r1−r2)Re

〈
GR
E(r1, r2)G

A
E−ω(r2, r1)

〉
=
ν

π
Re

1

Dq2 − iω
(6)

Here GR(A) are exact Green functions in the disorder potential and d is dimensio-
nality of the space.
Suggestion: Use that∑

α

ψα(r)ψ∗α(r′)δ(E − εα) =
1

−2πi

[
GR
E(r, r′)−GA

E(r, r′)
]

(7)

(d) Assume now that U(ω, q) is the screened Coulomb interaction. Using (4), (5) and
(6) estimate the relaxation rate 1/τee(E) for for dimensions 1, 2 and 3. Compare
the result to the case of clean Fermi liquid.
Suggestion: The integral over q in (5) is determined by the region Dq2 ∼ ω where
the dynamical screening is of minor importance.

Electron-electron collision rate at finite T and phase breaking time.

(e) Consider the decay rate for a state |eα〉 at finite temperature T . How should one
modify equation (1) in this case?
Suggestion: Think about the factors describing the occupation of states β, γ and δ.

(f) Show that at finite T the scattering rate for a particle at energy E ∼ T can be
estimated as

1

τee(T )
∼ 1

νDd/2
T

∫ T

0

dωωd/2−2 (8)

Discuss the divergence of decay rate for d ≤ 2. Can this divergence show up show
up in physical quantities?

(g) Show that the processes with energy transfer ω < 1/τφ can not contribute to pha-
se breaking. How should one modify equation (8) to estimate τφ? Estimate τφ in
dimensions 1, 2 and 3.

2. Kubo formula for conductivity (10 Punkte)

Let us consider non-interacting Fermions in random potential.

(a) Derive the Kubo formula for the (averaged over disorder realizations) current re-
sponse jα(ω, q) (with α = x, y, z) to the externally applied vector potential Aα(ω, q).
Write the answer in terms of retarded and advanced Green functions.
Suggestion: the correct answer reads

jα(ω, q) = Kαβ(ω, q)Aα(ω, q) (9)

Kαβ(ω, q) =
ie2

c

∫
dε

2π
d(r − r′)e−iq(r−r′)

[
Fε−ω

〈
v̂αrG

R
ε (r, r′)v̂βr′

(
GR
ε−ω(r′, r)−GA

ε−ω(r′, r)
)〉

+Fε

〈
v̂αr
(
GR
ε (r, r′)−GA

ε (r, r′)
)
v̂βr′G

A
ε−ω(r′, r)

〉]
− e2

2mc
nδαβ (10)

Here Fε = tanh ε/2T , n is the density of the fermions and v̂αr = − i
m
∂rα .



(b) Use the relation derived in (a) to show that the real part of the conductivity can
be expressed as

Reσ(ω) = − 1

4πω

∫
dε(n(ε)− n(ε− ω))

∫
d(r − r′)〈

v̂αr
(
GR
ε (r, r′)−GA

ε (r, r′)
)
v̂αr′
(
GR
ε−ω(r′, r)−GA

ε−ω(r′, r)
)〉

(11)


