Zusatzaufgabe zu Blatt 1 (Besprechung 26.04.16): T. Fließbach, *Mechanik*, Kapitel 8: *Anwendungen I*

Atwoodsche Fallmaschine

(2+6+2=10 Bonuspunkte)

Wir betrachten eine massenlose Rolle (Radius R), über die zwei Massen miteinander verbunden sind (siehe Abb. 1). Die Länge des verbindenden Seiles ist L. Auf die Massen wirkt das Schwerefeld \vec{g} . Wir betrachten (erlauben) nur die Bewegung der Massen in z Richtung.

- (a) Bestimmen Sie die Zwangsbedingung für die Koordinaten $z_1(t)$ und $z_2(t)$ der beiden Massen.
- (b) Finden Sie die Lagrange-Gleichungen 1. Art. Lösen Sie die Gleichungen und bestimmen Sie die Bahnkurve $z_1(t)$ und $z_2(t)$. Zum Zeitpunkt t=0 sollen sich dabei beide Massen auf gleicher Höhe in Ruhe befinden.
- (c) Finden Sie die Zwangskräfte auf die beiden Massen und dann die Kraft, die die Achse der Welle aufnehmen muss. Warum ist diese Kraft im Falle $m_1 \neq m_2$ kleiner als $(m_1 + m_2)g$?

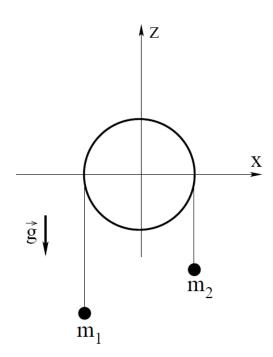


Abbildung 1: Die Atwoodsche Fallmaschine.

Lösung:

- (a) Die Zwangsbedingung lautet $A(z_1, z_2) = z_1 + z_2 + (L \pi R) = 0$. Beachten Sie, dass z_1 und z_2 negativ sind und die Aufgabe nur sinnvoll ist, wenn $L > \pi R$.
- (b) Die Lagrange-Gleichungen 1. Art lauten:

$$m_1 \ddot{z}_1 = -m_1 g + \lambda \frac{\partial \mathbf{A}(z_1, z_2)}{\partial z_1} = -m_1 g + \lambda \tag{1}$$

$$m_2 \ddot{z}_2 = -m_2 g + \lambda \frac{\partial \mathbf{A}(z_1, z_2)}{\partial z_2} = -m_2 g + \lambda \tag{2}$$

$$A(z_1, z_2) = 0 (3)$$

Von Gl. (3) folgt $\ddot{z}_1 + \ddot{z}_2 = 0$. Wir finden \ddot{z}_1 und \ddot{z}_2 aus Gl. (1) und (2). Dann

$$\ddot{z}_1 + \ddot{z}_2 = -g + \frac{\lambda}{m_1} - g + \frac{\lambda}{m_2} = 0$$

Das ergibt

$$\lambda = \frac{2gm_1m_2}{m_1 + m_2}$$

Wir setzen dies in die Gl. (1) ein und bekommen

$$(m_1 + m_2)\ddot{z}_1 = -(m_1 - m_2)g$$

Durch Intergieren bekommen wir die Lösung:

$$z_1(t) = -\frac{1}{2} \left(\frac{m_1 - m_2}{m_1 + m_2} \right) g t^2 + c_1 t + c_0$$
$$z_2(t) = -(L - \pi R) - z_1(t) ,$$

und die Konstanten c_1 und c_0 werden durch die Randbedingungen bestimmt, d.h.

$$c_1 = 0$$
 und $c_0 = -\frac{1}{2}(L - \pi R)$

(c) Die Zwangskräfte auf die beiden Massen sind gleich, $\vec{Z}_1 = \vec{Z}_2 = \lambda \vec{e}_z = \frac{2gm_1m_2}{m_1+m_2} \vec{e}_z$. Die Achse der Welle muß dann die Kraft $\vec{Z}_1 + \vec{Z}_2$ aufnehmen. Für $m_1 = m_2 = m$ ist $\vec{Z}_1 + \vec{Z}_2 = 2m\vec{g}$ gleich dem Gewicht der beiden Massen. Für $m_1 \neq m_2$ ist die Kraft kleiner als $(m_1 + m_2)\vec{g}$. Das folgt aus $4m_1m_2 < (m_1 + m_2)^2$. Das bedeutet, dass ein Teil der Gewichtskräfte zur Beschleunigung der Massen dient.