Klassische Theoretische Physik II (Theorie B)

Sommersemester 2016

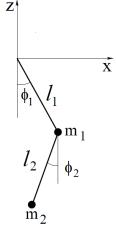
Prof. Dr. Alexander Mirlin PD Dr. Igor Gornyi, Nikolaos Kainaris

Musterlösung: Blatt 8. Besprechung: 14.06.2016

1. Das ebene Doppel-Pendel

(4+6+4=14 Punkte)

Betrachten Sie das in Abb. 1 dargestellte ebene Doppel-Pendel. Beide Massenpunkte bewegen sich nur in der x-z Ebene. Die Massen der Massenpunkte sind m_1 und m_2 und die Längen der massenlosen Stäbe sind l_1 und l_2 . Die Gravitationskraft wirkt parallel zur z-Achse.



- (a) Wählen Sie als generalisierte Koordinaten die Winkel ϕ_1 und ϕ_2 . Geben Sie die Matrizen m_{ij} und V_{ij} des allgemeinen Verfahrens für kleine Schwingungen an. Leiten Sie die Bewegungsgleichungen für ϕ_1 und ϕ_2 her.
- (b) Stellen Sie die Eigenwertgleichung auf und bestimmen Sie die Eigenfrequenzen. Geben Sie die Normalkoordinaten Q_k an.

Abbildung 1.

(c) Betrachten Sie nun das Pendel mit $l_1 = l_2 = l$. Geben Sie die Eigenfrequenzen und Eigenvektoren für die Grenzfälle $m_1 \gg m_2$ und $m_1 \ll m_2$ an und beschreiben Sie die Bewegung des Pendels in beiden Fällen.

Lösung:

(a). Wir schreiben

$$x_1 = l_1 \sin \phi_1, \quad z_1 = -l_1 \cos \phi_1,$$

 $x_2 = x_1 + l_2 \sin \phi_2, \quad z_2 = z_1 - l_2 \cos \phi_2.$

Dann gilt

$$\dot{x}_1 = l_1 \dot{\phi}_1 \cos \phi_1, \quad \dot{z}_1 = l_1 \dot{\phi}_1 \sin \phi_1,$$

$$\dot{x}_2 = l_1 \dot{\phi}_1 \cos \phi_1 + l_2 \dot{\phi}_2 \cos \phi_2, \quad \dot{z}_2 = l_1 \dot{\phi}_1 \sin \phi_1 + l_2 \dot{\phi}_2 \sin \phi_2.$$

Die kinetische Energie dann lautet

$$T = \frac{1}{2}m_1(\dot{x}_1^2 + \dot{z}_1^2) + \frac{1}{2}m_2(\dot{x}_2^2 + \dot{z}_2^2)$$

= $\frac{1}{2}(m_1 + m_2)l_1^2\dot{\phi}_1^2 + \frac{1}{2}m_2\left[l_2^2\dot{\phi}_2^2 + 2l_1l_2\cos(\phi_1 - \phi_2)\dot{\phi}_1\dot{\phi}_2\right],$

wobei wir $\cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2 = \cos(\phi_1 - \phi_2)$ benutzt haben.

Die potenzielle Energie:

$$U = g(m_1 z_1 + m_2 z_2) = -(m_1 + m_2)gl_1 \cos \phi_1 - m_2 gl_2 \cos \phi_2.$$

Lagrange-Funktion:

$$L(\phi_1, \phi_2, \dot{\phi}_1, \dot{\phi}_2) = T - U = \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\phi}_1^2 + \frac{1}{2} m_2 \left[l_2^2 \dot{\phi}_2^2 + 2 l_1 l_2 \cos(\phi_1 - \phi_2) \dot{\phi}_1 \dot{\phi}_2 \right] + (m_1 + m_2) g l_1 \cos\phi_1 + m_2 g l_2 \cos\phi_2.$$
(1)

Die Lagrange-Gleichungen zweiter Art:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\phi}_1} = \frac{\partial L}{\partial \phi_1}, \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{\phi}_2} = \frac{\partial L}{\partial \phi_2}$$

Bewegungsgleichungen:

$$\ddot{\phi}_1 + \frac{m_2}{m_1 + m_2} \frac{l_2}{l_1} \left[\dot{\phi}_2^2 \sin(\phi_1 - \phi_2) + \ddot{\phi}_2 \cos(\phi_1 - \phi_2) \right] + \frac{g}{l_1} \sin \phi_1 = 0, \quad (2)$$

$$\ddot{\phi}_2 + \frac{l_1}{l_2} \left[-\dot{\phi}_1^2 \sin(\phi_1 - \phi_2) + \ddot{\phi}_1 \cos(\phi_1 - \phi_2) \right] + \frac{g}{l_2} \sin \phi_2 = 0.$$
 (3)

Für kleine Schwingungen $\phi_1 \ll 1$, $\phi_2 \ll 1$ können die Gleichungen (1), (2) und (3) linearisiert werden. Das bedeutet, dass wir die folgenden Näherungen benutzen:

$$\sin \phi_1 \approx \phi_1$$
, $\sin \phi_2 \approx \phi_2$, $\cos \phi_1 \approx 1 - \frac{\phi_1^2}{2}$, $\cos \phi_2 \approx 1 - \frac{\phi_2^2}{2}$.

Dann gilt auch

$$\sin(\phi_1 - \phi_2) \approx \phi_1 - \phi_2, \quad \cos(\phi_1 - \phi_2) \approx 1 - \frac{(\phi_1 - \phi_2)^2}{2}.$$

Lagrange-Funktion für kleine Schwingungen:

$$L(\phi_{1}, \phi_{2}, \dot{\phi}_{1}, \dot{\phi}_{2}) \approx \frac{1}{2}(m_{1} + m_{2})l_{1}^{2}\dot{\phi}_{1}^{2} + \frac{1}{2}m_{2}\left[l_{2}^{2}\dot{\phi}_{2}^{2} + 2l_{1}l_{2}\dot{\phi}_{1}\dot{\phi}_{2}\right]$$

$$+ (m_{1} + m_{2})gl_{1}\left(1 - \frac{\phi_{1}^{2}}{2}\right) + m_{2}gl_{2}\left(1 - \frac{\phi_{2}^{2}}{2}\right)$$

$$= \frac{1}{2}m_{1}l_{1}^{2}\dot{\phi}_{1}^{2} + \frac{1}{2}m_{2}\left(l_{1}\dot{\phi}_{1} + l_{2}\dot{\phi}_{2}\right)^{2}$$

$$- \frac{(m_{1} + m_{2})gl_{1}}{2}\phi_{1}^{2} - \frac{m_{2}gl_{2}}{2}\phi_{2}^{2} + (m_{1} + m_{2})gl_{1} + m_{2}gl_{2}$$

$$= \frac{1}{2}\sum_{i,j=1}^{2}\left(m_{ij}\dot{\phi}_{i}\dot{\phi}_{j} - V_{ij}\phi_{i}\phi_{j}\right) + (m_{1} + m_{2})gl_{1} + m_{2}gl_{2}.$$

$$(5)$$

Matrizen m_{ij} und V_{ij} :

$$\hat{m} = \begin{pmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2 \\ m_2l_1l_2 & m_2l_2^2 \end{pmatrix}, \qquad \hat{V} = \begin{pmatrix} (m_1 + m_2)gl_1 & 0 \\ 0 & m_2gl_2 \end{pmatrix}. \tag{7}$$

Bewegungsgleichungen für kleine Schwingungen:

mithilfe von Gl. (7), $\sum_{j=1,2} (m_{ij}\ddot{\phi}_j + V_{ij}\dot{\phi}_j) = 0$, i = 1, 2, oder aus der Linearisierung von Gln. (2) und (3) \Rightarrow

$$\ddot{\phi}_1 + \frac{m_2}{m_1 + m_2} \frac{l_2}{l_1} \ddot{\phi}_2 + \frac{g}{l_1} \phi_1 = 0, \tag{8}$$

$$\ddot{\phi}_2 + \frac{l_1}{l_2}\ddot{\phi}_1 + \frac{g}{l_2}\phi_2 = 0. (9)$$

(6)

(b). Eigenwertgleichung: $\det(\hat{V} - \omega^2 \hat{m}) = 0$,

$$\hat{V} - \omega^2 \hat{m} = \begin{pmatrix} (m_1 + m_2)gl_1 & 0 \\ 0 & m_2gl_2 \end{pmatrix} - \omega^2 \begin{pmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2 \\ m_2l_1l_2 & m_2l_2^2 \end{pmatrix} \\
= \begin{pmatrix} (m_1 + m_2)gl_1 - \omega^2(m_1 + m_2)l_1^2 & -\omega^2m_2l_1l_2 \\ -\omega^2m_2l_1l_2 & m_2gl_2 - \omega^2m_2l_2^2 \end{pmatrix}$$

$$\det(\hat{V} - \omega^2 \hat{m}) = 0 \implies \left[(m_1 + m_2)gl_1 - \omega^2(m_1 + m_2)l_1^2 \right] \left[m_2gl_2 - \omega^2 m_2l_2^2 \right] - (-\omega^2 m_2 l_1 l_2)(-\omega^2 m_2 l_1 l_2) = 0$$

$$\Rightarrow \qquad \omega^4 m_1 m_2 l_1^2 l_2^2 - \omega^2 (m_1 + m_2) m_2 g l_1 l_2 (l_1 + l_2) + (m_1 + m_2) m_2 g^2 l_1 l_2 = 0.$$

Eigenfrequenzen:

$$\omega_1^2 = \frac{2g}{(l_1 + l_2) + \sqrt{(l_1 + l_2)^2 - 4l_1 l_2 m_1 / (m_1 + m_2)}},$$
(10)

$$\omega_2^2 = \frac{2g}{(l_1 + l_2) - \sqrt{(l_1 + l_2)^2 - 4l_1 l_2 m_1 / (m_1 + m_2)}}.$$
(11)

Eigenvektoren (nicht normierte):

$$\sum_{i=1,2} (V_{ij} - \omega_k^2 m_{ij}) A_j^{(k)} = 0,$$

$$A^{(1)} = \begin{pmatrix} m_2/(m_1 + m_2) \\ -\frac{l_1 - l_2 - d}{2l_2} \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} m_2/(m_1 + m_2) \\ -\frac{l_1 - l_2 + d}{2l_2} \end{pmatrix}$$
(12)

mit

$$d = \sqrt{(l_1 + l_2)^2 - 4l_1 l_2 m_1 / (m_1 + m_2)}. (13)$$

Aus den Vektoren $A_i^{(k)}$ bilden wir die quadratische Matrix \hat{a} mit Koeffizienten c_i :

$$\hat{a} = (a_{ij}) = (c_1 A^{(1)}, c_2 A^{(2)})$$

$$= \begin{pmatrix} c_1 m_2 / (m_1 + m_2) & c_2 m_2 / (m_1 + m_2) \\ -c_1 \frac{l_1 - l_2 - d}{2l_2} & -c_2 \frac{l_1 - l_2 + d}{2l_2} \end{pmatrix}.$$

Die Koeffizienten c_i werden aus der Normierung

$$\hat{a}^T \hat{m} \hat{a} = \hat{1}$$

bestimmt:

$$c_{1} = \left\{ \frac{2(m_{1} + m_{2})}{m_{2}} \frac{1}{m_{1}(l_{1} - l_{2})^{2} + m_{2}(l_{1} + l_{2})^{2} + d[l_{1}(m_{2} - m_{1}) + l_{2}(m_{1} + m_{2})]} \right\}^{1/2},$$

$$c_{2} = \left\{ \frac{2(m_{1} + m_{2})}{m_{2}} \frac{1}{m_{1}(l_{1} - l_{2})^{2} + m_{2}(l_{1} + l_{2})^{2} - d[l_{1}(m_{2} - m_{1}) + l_{2}(m_{1} + m_{2})]} \right\}^{1/2}.$$

Normalkoordinaten:

$$\vec{\phi} = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \hat{a} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = \hat{a} \vec{Q} \quad \Rightarrow \quad \vec{Q} = \hat{a}^{-1} \vec{\phi}.$$

$$\hat{a}^T \hat{m} \hat{a} = \hat{1} \quad \Rightarrow \quad \hat{a}^{-1} = \hat{a}^T \hat{m} \quad \Rightarrow \quad \vec{Q} = \hat{a}^T \hat{m} \vec{\phi}.$$

Deswegen erhalten wir:

$$Q_1 = \frac{c_1 m_2}{2} \left[l_1 (l_1 + l_2 + d) \phi_1 + l_2 \left(l_1 + l_2 - \frac{m_1 l_1}{m_1 + m_2} + d \right) \phi_2 \right], \tag{14}$$

$$Q_2 = \frac{c_2 m_2}{2} \left[l_1 (l_1 + l_2 - d) \phi_1 + l_2 \left(l_1 + l_2 - \frac{m_1 l_1}{m_1 + m_2} - d \right) \phi_2 \right]. \tag{15}$$

(c). Für $l_1 = l_2 = l$ erhalten wir aus Gln. (10) und (11):

$$\omega_{1,2}^2 = \frac{g/l}{1 \pm \sqrt{m_2/(m_1 + m_2)}}. (16)$$

Für $m_1 \gg m_2$ gilt

$$\omega_{1,2}^2 \approx \frac{g}{l}$$
.

Das bedeutet, dass die Masse m_1 fast ruhig ist, und die Masse m_2 oszilliert mit der üblichen Frequenz $\sqrt{g/l}$.

Für $m_1 \ll m_2$ gilt

$$\omega_1^2 \approx \frac{g/l}{1 + [1 - m_1/(2m_2)]} \approx \frac{g}{2l}$$

und

$$\omega_2^2 \approx \frac{g/l}{1 - \sqrt{1 - m_1/m_2}} \approx \frac{g/l}{1 - [1 - m_1/(2m_2)]} = \frac{2g}{l} \frac{m_2}{m_1}.$$

Die erste Mode (ω_1) entspricht einem Pendel der Länge 2l. Für diese Mode gilt $a_2 \approx a_1$, d.h., dass das Doppel-Pendel sich wie ein einzelnes Pendel der Länge 2l bewegt. Für die zweite Mode (ω_2) gilt $a_2 \approx -a_1$. Das bedeutet, dass die Masse m_2 ungefähr in Ruhe bleibt und m_1 schwingt.

2. Pendel mit bewegtem Aufhängepunkt.

(3+4+5=12 Punkte)

Ein ebenes Pendel mit der Masse m und Fadenlänge l, dessen Aufhängepunkt (der die Masse M besitzt) sich entlang einer horizontalen Geraden frei bewegen kann, ist rechts abgebildet. Gesucht sei die Frequenz der Schwingungen des Systems.



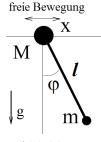


Abbildung 2.

(b) Zeigen Sie, dass die horizontale Komponente des Schwerpunktimpulses (P_x) eine Erhaltungsgröße ist. Setzen Sie $P_x = 0$ und eliminieren Sie die zyklische Koordinate in der Bewegungsgleichung und Energie.

- (c) Betrachten Sie zunächst den Fall kleiner Schwingungen. Geben Sie die Normalkoordinaten Q_k an und bestimmen Sie die Frequenzen der Schwingungen. Was ergibt sich im Limes $M \to \infty$?
- 5 Bonuspunkte: Betrachten Sie nun den Fall einer beliebigen Schwingungsamplitude φ_{\max} . Bestimmen Sie aus der Energieerhaltung die Schwingungsdauer des Pendels als Integral über die nicht-zyklische Koordinate.

Lösung:

(a).
$$T = \frac{1}{2} M \dot{x}^2 + \frac{m}{2} (\dot{x} + l \dot{\phi} \cos \phi)^2 + \frac{m}{2} (l \dot{\phi} \sin \phi)^2$$

 $= \frac{M + m}{2} \dot{x}^2 + \frac{1}{2} m l^2 \dot{\phi}^2 + m l \dot{x} \dot{\phi} \cos \phi$
 $U = mgl (1 - \cos \phi)$
 $L = T - U$
 $E = T + U$

Bewegengsgleichengen:

für
$$x$$
 $\frac{d}{dt} \left[(M+m)\dot{x} + ml\dot{\varphi}\cos\varphi \right] = 0$
für φ $\frac{d}{dt} \left[ml^2\dot{\varphi} + ml\dot{x}\cos\varphi \right] = -mgl\sin\varphi - ml\dot{x}\dot{\varphi}\sin\varphi$

(b).
$$x - 2yk$$
 lisch
$$\frac{dP_x}{dt} = 0 , P_x = (M+m)\dot{x} + ml\dot{\phi}\cos\varphi$$

$$= M\dot{x} + ml\dot{x} + l\dot{\phi}\cos\varphi = P_x^{(M)} + P_x^{(M)} - \frac{1}{2} V_x^{(M)}$$

$$= V_x + ml\dot{\phi}\cos\varphi = V_x + l\dot{\phi}\cos\varphi$$

$$= V_x + l\dot{\phi}\cos\varphi$$

$$E = \frac{M+m}{2} \left(\frac{m}{M+m} \right)^2 \ell^2 \dot{\varphi}^2 \cos^2 \varphi + \frac{m}{2} \ell^2 \dot{\varphi}^2 - \frac{m^2}{M+m} \ell^2 \dot{\varphi}^2 \cos^2 \varphi + mgl(1-\cos \varphi)$$

$$= \frac{1}{2} m \ell^2 \dot{\varphi}^2 \left[1 - \frac{m}{M+m} \cos^2 \varphi \right] + mgl(1-\cos \varphi)$$

Benequenesgleichung

$$\frac{d}{dt} \left(l \dot{\varphi} + \dot{x} \cos \varphi \right) = -g \sin \varphi - \dot{x} \dot{\varphi} \sin \varphi$$

$$\Rightarrow \frac{d}{dt} \left[l \dot{\varphi} \left(1 - \frac{m}{M+m} \cos^2 \varphi \right) \right] = -g \sin \varphi + \frac{m}{M+m} l \dot{\varphi}^2 \cos \varphi \sin \varphi$$

(c). Kleine Schwingungen ($\phi \ll 1$):

$$l\frac{M}{M+m}\ddot{\varphi} = -g\varphi \qquad \Rightarrow \qquad \omega = \sqrt{\frac{g}{l}\frac{M+m}{M}}.$$

Um Normalkoordinaten anzugeben, verwenden wir das allgemeine Verfahren für kleine Schwingungen $(x_1 = x \text{ und } x_2 = l\varphi)$:

$$L(x, \varphi, \dot{x}, \dot{\varphi}) = \frac{1}{2} \left[(M+m)\dot{x}_1^2 + m\dot{x}_2^2 + 2m\dot{x}_1\dot{x}_2 \right] - \frac{1}{2}\frac{mg}{l}x_2^2$$
$$= \frac{1}{2} \sum_{i,j=1}^2 \left(m_{ij}\dot{x}_i\dot{x}_j - V_{ij}x_ix_j \right),$$

wobei

$$\hat{m} = \begin{pmatrix} M+m & m \\ m & m \end{pmatrix}, \qquad \hat{V} = \begin{pmatrix} 0 & 0 \\ 0 & mg/l \end{pmatrix}. \tag{17}$$

Eigenwertgleichung:

$$\hat{V} - \omega^2 \hat{m} = \begin{pmatrix} 0 & 0 \\ 0 & mg/l \end{pmatrix} - \omega^2 \begin{pmatrix} M+m & m \\ m & m \end{pmatrix} \\
= \begin{pmatrix} -\omega^2 (M+m) & -\omega^2 m \\ -\omega^2 m & mg/l - \omega^2 m \end{pmatrix}$$

$$\det(\hat{V} - \omega^2 \hat{m}) = 0 \implies -\omega^2 (M+m) \left(mg/l - \omega^2 m \right) - (-\omega^2 m)^2 = 0$$

$$\Rightarrow \qquad \omega^2 [(M+m)(mg/l - \omega^2 m) + \omega^2 m^2] = 0.$$

Eigenfrequenzen:

$$\omega_1^2 = 0, (18)$$

$$\omega_2^2 = \frac{M+m}{M} \frac{g}{l}. \tag{19}$$

Eigenvektoren (nicht normierte):

$$A^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} 1 \\ 1 + M/m \end{pmatrix}$$
 (20)

Aus den Vektoren $A_i^{(k)}$ bilden wir die quadratische Matrix \hat{a} mit Koeffizienten c_i :

$$\hat{a} = (a_{ij}) = (c_1 A^{(1)}, c_2 A^{(2)}) = \begin{pmatrix} c_1 & c_2 \\ 0 & -c_2 (1 + M/m) \end{pmatrix}.$$

Die Koeffizienten c_i werden aus der Normierung

$$\hat{a}^{T}\hat{m}\hat{a} = \begin{pmatrix} c_{1} & 0 \\ c_{2} & -c_{2}(1+M/m) \end{pmatrix} \begin{pmatrix} m+M & m \\ m & m \end{pmatrix} \begin{pmatrix} c_{1} & c_{2} \\ 0 & -c_{2}(1+M/m) \end{pmatrix}$$
$$= \begin{pmatrix} c_{1}^{2}(M+m) & 0 \\ 0 & c_{2}^{2}M(1+M/m) \end{pmatrix} = \hat{1}$$

bestimmt:

$$c_1 = \frac{1}{\sqrt{M+m}}, \quad c_2 = \sqrt{\frac{m}{M(m+M)}}.$$

Somit erhalten wir

$$\hat{a} = (a_{ij}) = \begin{pmatrix} \frac{1}{\sqrt{M+m}} & \sqrt{\frac{m}{M(M+m)}} \\ 0 & -\sqrt{\frac{M+m}{Mm}} \end{pmatrix}.$$

Normalkoordinaten:

$$\begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = \hat{a}^{-1} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \hat{a}^T \hat{m} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \sqrt{M+m} & \frac{m}{\sqrt{M+m}} \\ 0 & -\sqrt{\frac{M}{M+m}} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow$$

$$Q_1 = \sqrt{M+m} x_1 + \frac{m}{\sqrt{M+m}} x_2 = \sqrt{M+m} x + \frac{m}{\sqrt{M+m}} l\varphi, \qquad (21)$$

$$Q_2 = -\sqrt{\frac{Mm}{M+m}} x_2 = -\sqrt{\frac{Mm}{M+m}} l\varphi. \qquad (22)$$

Für $M \to \infty$ erhalten wir:

$$\omega_2 = \sqrt{\frac{g}{l}} \qquad \Rightarrow \tag{23}$$

harmonische Schwingungen des gewöhnlichen Pendels.

5 Bonuspunkte:

$$\frac{1}{2} m \ell^{2} \dot{\varphi}^{2} \left[1 - \frac{m}{M+m} \cos^{2} \varphi \right] + mg \ell \left(1 - \cos \varphi \right) = E \implies \dot{\varphi}^{2} = \frac{E - mg \ell \left(1 - \cos \varphi \right)}{\frac{1}{2} m \ell^{2} \left[1 - \frac{m}{M+m} \cos^{2} \varphi \right]}$$

$$y = y_{max} \iff \dot{y} = 0 \implies E = mgl(1 - cos y_{max})$$

Schwingungsdauer T_{o}

$$\varphi^2 = 2 \frac{g}{\ell} \frac{\cos \varphi - \cos \varphi_{\text{max}}}{1 - \frac{m}{M + m} \cos^2 \varphi}$$

$$T_0 = 4 \int_0^{4\pi} \frac{d\varphi}{\dot{\varphi}} = 4 \sqrt{\frac{\ell}{2q}} \int_0^{2\pi} d\varphi \sqrt{\frac{1 - \frac{m}{M+m} \cos^2 \varphi}{\cos \varphi - \cos \varphi_{max}}}$$

$$(\omega = 2\pi/T_0)$$
Prüfe Lines der kleinen Auslenkungen (9max «1):
$$= T_0 \simeq 4 \sqrt{\frac{\ell_{2g}}{g}} \int_{0}^{\ell_{max}} \frac{d\varphi}{\sqrt{(4\frac{2}{max} - \varphi^2)/2}} = 4 \sqrt{\frac{\ell_{max}}{g}} \frac{M}{M+m} \int_{0}^{\infty} \frac{dx}{\sqrt{1-x^2}} = 2\pi \sqrt{\frac{\ell_{max}}{g}} \frac{M}{M+m}$$

3. Asymmetrisches dreiatomiges Molekül

(3+5+6=14 Punkte)

Betrachten Sie das in Abb. 3 skizzierte Model für ein dreiatomiges lineares Molekül. Die drei Atome der Masse $m_1 = m_2 = m$ und $m_3 = M$ sind über zwei Federn der Federkonstanten k und 2k miteinander verbunden und können sich nur entlang der Molekülachse bewegen. Der Gleichgewichtsabstand zwischen benachbarten Atomen sei l. Die Auslenkungen aus den jeweiligen Ruhelagen werden mit x_i (i = 1, 2, 3) bezeichnet.

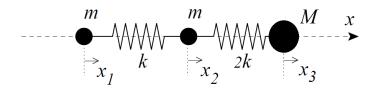


Abbildung 3.

- (a) Geben Sie die Lagrange-Funktion des Moleküles und die zugehörigen Matrizen m_{ij} und V_{ij} an.
- (b) Bestimmen Sie die Eigenfrequenzen und zugehörigen Eigenvektoren. Was ergibt sich im Limes $M \to \infty$?
- (c) Betrachten Sie nun den Fall M = 2m. Geben Sie die Normalkoordinaten Q_k und die allgemeine reelle Lösung an.
- **5 Bonuspunkte:** Bestimmen Sie mithilfe der obigen allgemeinen Lösung die spezielle Lösung mit den Anfangsbedingungen $x_1(t=0) = x_2(t=0) = 0$, $x_3(t=0) = l$ und $\dot{\vec{x}}(t=0) = 0$.

Lösung:

(a). Die Langrange-Funktion des Moleküles lautet:

$$L = \frac{m}{2} \left(\dot{x}_1^2 + \dot{x}_2^2 \right) + \frac{M}{2} \dot{x}_3^2 - \frac{k}{2} (x_2 - x_1)^2 - k(x_3 - x_2)^2.$$
 (24)

Dies lässt sich auch schreiben als

$$L = \frac{1}{2} \left(\dot{\vec{x}}^T \hat{m} \dot{\vec{x}} - \vec{x}^T \hat{V} \vec{x} \right) = \frac{1}{2} \sum_{ij} \left[m_{ij} \dot{x}_i \dot{x}_j - V_{ij} x_i x_j \right]$$

mit den beiden (symmetrischen) Matrizen

$$\hat{m} = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & M \end{pmatrix} \quad \text{und} \quad \hat{V} = \begin{pmatrix} k & -k & 0 \\ -k & 3k & -2k \\ 0 & -2k & 2k \end{pmatrix}.$$

(b). Eigenwertgleichung:

$$0 = \det \begin{pmatrix} k - \omega^2 m & -k & 0 \\ -k & 3k - \omega^2 m & -2k \\ 0 & -2k & 2k - \omega^2 M \end{pmatrix}$$
$$= (k - \omega^2 m)(3k - \omega^2 m)(2k - \omega^2 M) - k^2(2k - \omega^2 M) - 4k^2(k - \omega^2 m)$$
$$= -\omega^2 \left[Mm^2 \omega^4 - 2km(2M + m)\omega^2 + 2k^2(M + 2m) \right].$$

Eigenfrequenzen:

$$\omega_1^2 = 0, (25)$$

$$\omega_2^2 = \frac{k}{M} \left(1 + \frac{2M}{m} - \sqrt{1 + \frac{2M^2}{m^2}} \right), \tag{26}$$

$$\omega_3^2 = \frac{k}{M} \left(1 + \frac{2M}{m} + \sqrt{1 + \frac{2M^2}{m^2}} \right). \tag{27}$$

Eigenvektoren (nicht normierte):

$$\sum_{i=1,2} (V_{ij} - \omega_k^2 m_{ij}) A_j^{(k)} = 0,$$

$$A^{(1)} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \tag{28}$$

$$A^{(2)} = \begin{pmatrix} 1 \\ -1 - \frac{m}{M} + \sqrt{2 + \frac{m^2}{M^2}} \\ \frac{m^2}{M^2} - \frac{m}{M} \sqrt{2 + \frac{m^2}{M^2}} \end{pmatrix}, \tag{29}$$

$$A^{(3)} = \begin{pmatrix} 1 \\ -1 - \frac{m}{M} - \sqrt{2 + \frac{m^2}{M^2}} \\ \frac{m^2}{M^2} + \frac{m}{M} \sqrt{2 + \frac{m^2}{M^2}} \end{pmatrix}.$$
 (30)

Limes $M \to \infty$:

$$\omega_2^2 = (2 - \sqrt{2})k/m, \quad \omega_3^2 = (2 + \sqrt{2})k/m.$$
 (31)

(c). Für M = 2m erhalten wir:

$$\omega_2 = \sqrt{k/m}, \quad \omega_3 = 2\sqrt{k/m}.$$
 (32)

und

$$A^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad A^{(2)} = \begin{pmatrix} 1 \\ 0 \\ -1/2 \end{pmatrix}, \quad A^{(3)} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}.$$
 (33)

Aus den Vektoren $A_i^{(k)}$ bilden wir die quadratische Matrix \hat{a} mit Koeffizienten c_i :

$$\hat{a} = (a_{ij}) = (c_1 A^{(1)}, c_2 A^{(2)}, c_3 A^{(3)}) = \begin{pmatrix} c_1 & c_2 & c_3 \\ c_1 & 0 & -3c_3 \\ c_1 & -c_2/2 & c_3 \end{pmatrix}.$$

Aus der Normierung

$$\hat{a}^T \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 2m \end{pmatrix} \hat{a} = \hat{1}$$

bestimmen wir die Koeffizienten c_i :

$$c_1 = \frac{1}{2\sqrt{m}}, \quad c_2 = \sqrt{\frac{2}{3m}}, \quad c_3 = \frac{1}{2\sqrt{3m}}.$$
 (34)

und erhalten

$$\hat{a} = \begin{pmatrix} \frac{1}{2\sqrt{m}} & \sqrt{\frac{2}{3m}} & \frac{1}{2\sqrt{3m}} \\ \frac{1}{2\sqrt{m}} & 0 & -\frac{\sqrt{3}}{2\sqrt{m}} \\ \frac{1}{2\sqrt{m}} & -\frac{1}{\sqrt{6m}} & \frac{1}{2\sqrt{3m}} \end{pmatrix}.$$
 (35)

Normalkoordinaten:

$$\vec{Q} = \hat{a}^T \hat{m} \vec{x} \quad \Rightarrow \tag{36}$$

$$Q_1 = \frac{\sqrt{m}}{2}(x_1 + x_2 + 2x_3), \tag{37}$$

$$Q_2 = \sqrt{\frac{2m}{3}}(x_1 - x_3), (38)$$

$$Q_3 = \frac{\sqrt{m}}{2\sqrt{3}}(x_1 - 3x_2 + 2x_3). \tag{39}$$

Lösung mit $\omega_1^2 = 0$: In Normalkoordinaten lautet die enstprechende Gleichung

$$\ddot{Q}_1 + \omega_1^2 Q_1 = \ddot{Q}_1 = 0$$

und damit ist die Lösung gegeben durch

$$Q_1(t) = \beta_1 t + \alpha_1 \,,$$

was einer gleichförmigen Bewegung des gesamten Moleküles entspricht.

Die allgemeine Lösung:

$$\vec{x}(t) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (\beta_1 t + \alpha_1) + \begin{pmatrix} 1 \\ 0 \\ -1/2 \end{pmatrix} \beta_2 \cos(\omega_2 t + \alpha_2) + \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} \beta_3 \cos(\omega_3 t + \alpha_3) \quad (40)$$

mit den sechs reellen Konstanten α_i , β_i (i = 1, 2, 3). Es sind sechs Konstanten, da wir es mit drei Differentialgleichungen zweiter Ordung zu tun haben.

5 Bonuspunkte:

Die beiden Randbegingungen führen auf die Gleichungen

$$\alpha_1 + \beta_2 \cos(\alpha_2) + \beta_3 \cos(\alpha_3) = 0, \tag{41}$$

$$\alpha_1 \qquad -3\beta_3 \cos(\alpha_3) = 0, \tag{42}$$

$$\alpha_1 - \frac{\beta_2}{2}\cos(\alpha_2) + \beta_3\cos(\alpha_3) = l, \tag{43}$$

$$\beta_1 - \beta_2 \omega_2 \sin(\alpha_2) - \beta_3 \omega_3 \sin(\alpha_3) = 0, \tag{44}$$

$$\beta_1 + 3\beta_3 \omega_3 \sin(\alpha_3) = 0, \tag{45}$$

$$\beta_1 + \frac{\beta_2}{2}\omega_2\sin(\alpha_2) - \beta_3\omega_3\sin(\alpha_3) = 0. \tag{46}$$

Gl. (41)+Gl. (42)+2× Gl. (43)
$$\Rightarrow \alpha_1 = l/2$$
.

Gl. (42)
$$\Rightarrow \beta_3 \cos(\alpha_3) = l/6$$
.

Gl. (41)
$$\Rightarrow \beta_2 \cos(\alpha_2) = -2l/3$$
.

Gl. (44)+Gl. (45)+2× Gl. (46)
$$\Rightarrow \beta_1 = 0$$
.

Gl. (45)
$$\Rightarrow \beta_3 \sin(\alpha_3) = 0 \Rightarrow \alpha_3 = 0 \Rightarrow \beta_3 = l/6$$
.

Gl. (46)
$$\Rightarrow \beta_2 \sin(\alpha_2) = 0 \Rightarrow \alpha_2 = 0 \Rightarrow \beta_2 = -2l/3.$$

Spezielle Lösung:

$$\vec{x}(t) = \frac{l}{2} \begin{pmatrix} 1\\1\\1 \end{pmatrix} - \frac{2l}{3} \begin{pmatrix} 1\\0\\-1/2 \end{pmatrix} \cos\left(\sqrt{k/m} \ t\right) + \frac{l}{6} \begin{pmatrix} 1\\-3\\1 \end{pmatrix} \cos\left(2\sqrt{k/m} \ t\right). \tag{47}$$