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1. Scattering Amplitude:

The scattering state

ψ~k(~r) = ei
~k~r + χ~k(~r), χ~k(~r) = f(~k, k~n)

eik|~r|

|~r|
,

can be found from the Green’s function formalism as follows.

First, one can write down the Schrödinger equation describing a particle moving in a
given potential V (~r) in the momentum representation with the help of the single-particle
Green’s function: [

Ĝ−10 − V̂
]
ψ~k(~r) = 0.

Recall, that in the momentum representation the free-particle Green’s function is

Ĝ0 =
1

ε− ~p 2/(2m) + iδ
,

while the potential V̂ is actually an (integral) operator.

Substituting the above scattering wave function and noticing that the plane wave is a
solution of the Schrödinger equation for a free particle, one finds[

Ĝ−10 − V̂
]
χ~k(~r) = V̂ ei

~k~r = V̂ |~k〉.

The solution can be formally written don using the “full” Green’s function

Ĝ−1 = Ĝ−10 − V̂ ⇒ χ~k(~r) = 〈~r|ĜV̂ |~k〉.

Now, we can expand the Green’s function into a power series

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + . . .

This allows us to write the solution for χ~k(~r) as

χ~k(~r) = 〈~r|Ĝ0V̂ + Ĝ0V̂ Ĝ0V̂ + . . . |~k〉 = 〈~r|Ĝ0F̂ |~k〉,

where
F̂ = V̂ + V̂ Ĝ0V̂ + . . .

This series can be pictorially represented by the diagrams shown in the original figure.



To relate the quantity F̂ to the scattering amplitude, consider the following expression
for the free-particle Green’s function (ε = k2/(2m))

G0(ε;~r, ~r
′) =

∫
d3p

(2π)3
ei~p(~r−~r

′)

ε− ~p 2/(2m) + iδ
= −m

2π

eik|~r−~r
′|

|~r − ~r ′|
.

Here the imaginary part iδ has the sign corresponding to the retarded function. The
use of the advanced function would result in the series for the complex conjugated
scattering amplitude.

Now we are going to consider this Green’s functions “at large distances”. The meaning
of this phrase is the following. We choose the coordinate system in such a way that
the scattering center is located near the origin, while the vector ~r points towards the
observation point. The vector ~r ′ spans the area around the origin, where the potential
V (~r ′) is nonzero (in a scattering problem we are looking at a potential that is confined
to a certain area and study how particles – or waves – arriving from infinity scatter off
this potential). Now we denote the length of the vector ~r by R and assume all other
lengths in the problem to be much smaller:

~r = R~n, |~r − ~r ′| ≈ R− |~r ′| cos θ +O(1/R), cos θ =
~n · ~r ′

r′
,

where θ is the angle between ~n and ~r ′.

Substituting the above approximation into the single-particle Green’s function, we find

χ~k(~r) = −me
ikR

2πR

∫
d3r′e−ik|~r

′| cos θ〈~r ′|F̂ |~k〉.

Comparing this expression with the definition of the scattering amplitude, we find the
relation

f(~k1, ~k2) = −m
2π
〈~k2|F̂ |~k1〉,

where
~k2 =

∣∣∣~k1∣∣∣~n.
Let us now derive the integral equation for the scattering amplitude. We re-write the
series expantion for F̂ in the momentum representation:

F̂ = V̂ + V̂ Ĝ0V̂ + . . . ⇒ F (~k1, ~k2) = F (1)(~k1, ~k2) + F (2)(~k1, ~k2) + . . .

F (1)(~k1, ~k2) = V (~k2 − ~k1),

F (2)(~k1, ~k2) =

∫
d3q

V (~k2 − ~q)V (~q − ~k1)
ε− q2/(2m) + iδ

.

Now we can see, that in the series of diagrams in the figure the straight lines correspond
to free-particle Green’s functions and the curvy lines – to the matrix elements of the
scattering potential. All internal momenta should be integrated over, while the incoming
and outgoing momenta should be “on shell”, i.e. should satisfy ε = k2/(2m).

The integral equation for F̂ can be easily expressed either diagrammatically, or in the
operator form:

F̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + · · · = V̂ + V̂ Ĝ0(V̂ + V̂ Ĝ0V̂ + . . . ) = V̂ + V̂ Ĝ0F̂ .



In the momentum representation the integral equation has the form

F (~k1, ~k2) = V (~k2 − ~k1) + 2m

∫
d3q

(2π)3
V (~k2 − ~q)F (~k1, ~q)

ε− q2/(2m) + iδ
.

Solving this equation by iterations, we again find the series for the scattering amplitude.

2. Shallow well:

(a) In the previous exercise we have derived the following series for the scattering am-
plitude

F̂ (~k1, ~k2) = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + . . .

Here, both V and G0 should be understood as “matrices” in the momentum space.
The potential in momentum space is given by

V (~k1, ~k2) =

∫
ddr1d

dr2V (~r1 − ~r2)e−i
~k1~r1+i~k2~r2 .

For the δ-potential V (~r1 − ~r2) = V (~r1)δ(~r1 − ~r2) we find

V (~k1, ~k2) = V (~k1 − ~k2).

The retarded Green’s function G0 in the momentum space is

G0(ε,~k1, ~k2) = (2π)dδ(~k1 − ~k2)G0(ε,~k1) =
(2π)dδ(~k1 − ~k2)
ε− εk1 + iδ

,

where εk = k2/(2m).

As a result, the scattering amplitude can be also treated as a function of ε:

F (ε,~k1, ~k2) = V (~k1 − ~k2) +

∫
ddq

(2π)d
V (~k1 − ~q)Go(ε, ~q)V (~q − ~k2) + . . .

In contrast to the previous exercise, here we are not taking the “on-shell” solution
F (ε) = F (εk), but consider ε as an independent variable.

The expansion for the full Green’s function can now be expressed in terms of the
scattering amplitude

G = G0 +G0V G0 +G0V G0V G0 + · · · = G0 +G0FG0.

The eigenstates of the system can be found from the poles of the Green’s function.
Hence, if the scattering amplitude had a pole at some negative vale of ε, this would
indicate a bound state.



(b) Let us re-write the series for the scattering amplitude in the form of an integral
equation:

F̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + · · · = V + V G0F,

which explicitly corresponds to

F (ε,~k1, ~k2) = V (~k1 − ~k2) +

∫
ddq

(2π)d
V (~k1 − ~q)G0(ε, ~q)F (ε, ~q,~k2).

Approximating the well by a δ-function potential

V (~r) = −adU0δ(~r), V (~q) = −
∫
ddre−i~q~rV (~r) = −adU0.

As a result, the integral equation fro the scattering amplitude is

F (ε,~k1, ~k2) = −adU0 − adU0

∫
ddq

(2π)d
G0(ε, ~q)F (ε, ~q,~k2).

Solution of this equation are only possible if the scattering amplitude is independent
of both momenta. Then

F (ε) = −adU0

[
1 + F (ε)

∫
ddq

(2π)d
G0(ε, ~q)

]
,

and hence

F (ε) = − adU0

1 + adU0

∫
ddq
(2π)d

G0(ε, ~q)
.

The remaining calculations we will perform separately in each dimensionality.

d=1 ∫
dq

2π
G0(ε, ~q) =

∫
dq

2π

1

ε− q2/(2m) + i0
.

Since we are looking for a bound state at some negative energy, then there is no
pole in this integral and we can drop the imaginary i0. Denoting χ2 = −2mε,
we find ∫

dq

2π
G0(ε, ~q) = −2m

∫
dq

2π

1

q2 + χ2
= −m

χ
.

In this case, the scattering amplitude is given by

F (ε) = − aU0

1− aU0m/χ
.

The pole corresponds to the bound state energy

ε = −ma2U2
0/2.



d=2 Repeating the same argument in two dimensions we arrive at the logarithmically
divergent integral ∫

d2q

(2π)2
G0(ε, ~q) = −2m

∞∫
0

qdq

2π

1

q2 + χ2
.

To regularize the divergence, we recall that the approximation V (~q) is valid
only for q < 1/a. For larger q the potential falls off rapidly. Neglecting this
contribution we find

∫
d2q

(2π)2
G0(ε, ~q) = −2m

1/a∫
0

qdq

2π

1

q2 + χ2
≈ m

π
ln(aχ).

As a result, the scatteing amplitude has the form

F (ε) = − aU0

1 + a2U0m ln(aχ)/π
.

The pole corresponds to the exponentially small bound state energy

ε = − 1

2ma2
e−2π/(ma

2U0).

This result was obtained with the so-called “logarithmic accuracy”: since we
have only estimated the momentum integral, the exponent is valid up to a
factor of order unity.

d=3 Now the momentum integral has the form∫
d3q

(2π)3
G0(ε, ~q) = −2m

∞∫
0

q2dq

2π2

1

q2 + χ2
.

This integral still diverges at large q, but in contrast to the lower dimensions it
converges at small q even in the limit χ→ 0. Then we can estimate the upper
bound by setting χ to zero:

I3(ε) =

∣∣∣∣∫ d3q

(2π)3
G0(ε, ~q)

∣∣∣∣ ≈ 2m

1/a∫
0

q2dq

2π2

1

q2 + χ2
6

m

π2a
.

This yields the following result for the scattering amplitude

F (ε) = − aU0

1− a3U0I3(ε)
.

The last term is small

a3U0I3(ε) 6 ma2U0/π
2 � 1

and hence there is no pole.



(c) The obtained results coinside with those obtained by standard quantum-mechanical
methods.

3. Friedel oscillations:

(a) We begin with the Green’s function in the momentum representation

Gαβ(ε, q) =
δαβ

ε− q2/(2m) + µ+ i0signε
.

The Fourier transform to the coordinate space can be performed as follows

Gαβ(ε, x− x′) = δαβ

∫
dq

2π

eiq(x−x
′)

ε− q2/(2m) + µ+ i0signε
.

Since G(ε, x, x′) = G(ε, x′, x) it is sufficient to consider x > x′. Then we should close
the integration contour in the upper half-plane of complex q.

The integrand has two poles at

q± = ±
√

2m(ε+ µ) + i0signε.

For positive ε > 0, the pole q+ is in the upper half-plane (i.e. has the positive
infinitesimal imaginary part), such that

Gαβ(ε, x− x′) = −iδαβ
m

q+
eiq+|x−x

′|.

(b) In the presence of the boundary the space in ho longer homogeneous. Therefore, the
Green’s function is no longer a function of only the difference of the coordinates.

The easiest way to define the Green’s function is to use the method of images known
from the electrostatics:

G(ε, x, x′) = G0(x− x′)−G0(x+ x′),

where G0 is the Green’s function in the infinite space considered in the previous
exercise.

The formal proof of this method consists in using the fom of the Lehman expansion
for the Gree’s function

G(ε, x, x′) =
∑
α

ψα(x)ψ†α(x′)

ε− q2/(2m) + µ+ i0signε
,

where ψα(x) are the single-particle wavefunctions. In the infinite space, these func-
tions are the plain waves, hence the usual Fourier relation between the momentum
and coordinate representations. On the half-line, the wave functions are sines (see
the next exercise). Expressing the sines in terms of the exponentials, one can easily
derive the same result as above, justifying the method of images.



(c) The wavefunctions of free electrons in the presence of the boundary are no longer
plain waves. The functions satisfying the boundary condition are

ψk(x) =

√
2

L
sin kx.

The particle density is then given by

n(x) = 2
2

L

∑
k<kF

sin2 kx =
4

π

kF∫
0

dk sin2 kx =
2

π

[
kF −

sin kFx

2x

]
.

Same result can be obtained from the Green’s function found in the previous exercise
(3b).


