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1. Matsubara summation II (15 + 15 4 20 Points)

In part 2(b) of the previous problem sheet you showed that the sum
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can be written as a contour integral
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where C consists of two vertical lines enclosing the infinite number of poles of n,,.

(a) Perform the Matsubara summation in the expression
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Here, D (wy, q) is the bosonic propagator and G (wy,, k) is the fermion propagator.
w,, are bosonic Matsubara frequencies.

(b) Assume now that f(z) is analytic everywhere except on the real axis. By deforming
C show that
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holds. You may assume that f(z) decays in a suitable form as z — oo.

(¢) For a non-interacting electron gas, the free energy can be written in terms of the
Matsubara Green’s function
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Using part (a), compute the sum over n and show that F' is the well-known expres-
sion from non-interacting fermion theory. In order to carry out the calculation, you
will have to use the fact that the logarithm can only be defined with a branch-cut
(if one wants to avoid multivalued functions). It is convenient to choose a definition
where the logarithm log z has its branch-cut in [—o0, 0].



