
Karlsruhe Institute of Technology WS2012/1313
Institut for Theoretical Condensed Matter physics (TKM)

Dr. Andreas Poenicke and Dr. Peter Schmitteckert 30.10.2012

http://www.tkm.kit.edu/english/teaching/ws2012_1437.php

Exercise Sheet No. 1

“Computational Condensed Matter Theory”

1 Bandstructures for tight-binding chains (1d)

Consider the tight-binding Hamiltonian

Ĥ =
∑
〈l,j〉

tlj c
†
l cj (1)

where c†l , cl denote fermionic creation and annihilation operators acting at the site l of a one-dimensional

(1d) tight-binding chain. The hopping matrix tlj connects nearest neighbors, only.

a) Let the chain be translationally invariant, so tlj = t and apply periodic boundary conditions (PBC)

Ψ(x+M) = Ψ(x), so the chain turns into a ring. Choose the lattice constant a as unit of length and t

as unit of the energy. Perform a numerical Fourier transformation and plot your result for L=512 lattice

sites. Verify your dispersion relation by comparing it with the analytical answer ε(k) = −2t cos k.

[In Matlab the function fft() performs a discrete Fourier transformation (FT) of a vector or all columns

of a matrix. Think how you can use this function to do the (unitary) FT of the Hamiltonian. Beware:

The implementation of matlab uses a different normalization!]

b) Next consider a doubling of the unit cell to describe a situation where the hopping matrix element takes

alternating values t and t + δt. Calculate numerically the resulting band structure for δt/t = 0.1 and

L=512 and discuss your result. In the calculation make sure, that all elements belonging to the same

unit cell are Fourier transformed with the same wave vector and diagonalize the remaining subblocks.

c) The density of states, %(ε), (DOS) is related to the dispersion relation via

%(ε) =
1

N

B. Z.∑
k

δ(ε− ε(k)) N : Number of sites, (2)

where δ(ε) denotes the δ-function. Use the Lorentzian representation of the δ-function

δ(ε) = lim
η→0

1

π

η

ε2 + η2

where η > 0 represents the broadening energy scale, in order to numerically calculate the DOS %η(ε) of

the tight binding chain (1a), and discuss your results.

Examine the depence of %η(ε) on the artificial boadening η for different numbers of lattice sites M =

128, 256, 512. Discuss the relevant energy scales and show, that your result %η(ε) becomes independent

of η in the limit η → 0, provided the system size M goes to infinity first.

Please turn ...
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2(*) Bandstructures of quasi-1d-lattices: graphene ribbons

Consider the Hamiltonian (1), but now with sites l, j that are situated on a quasi-1d-strip (ribbon)

realized by M chains coupled in parallel. Consider rings with sizes M × L with L ≥ 20.

(a)

(b)

(c)

Figure 1: Up: Ribbon from a square lattice with M = 4 constituting chains. Center: zigzag-

graphene ribbon. Bottom: Armchair-ribbon.

a) Calculate the bandstructure for a ribbon that realizes a piece of a square lattice, see Fig. 1a, with

M = 4

b) Eliminate bonds from the previous ribbon to obtain an zig-zag ribbon (Fig. 1b, t′ = 0, t = t′′).

Again determine the bandstructure and plot the density of states.

c) Eliminate bonds from the first ribbon so as to realize an armchair-nanoribbon (Fig. 1c, t′′ = 0, t =

t′) and repeat your bandstructure-calculation.

() d) Investigate the crossover between a) and b)

Discuss your results. What implications do you see for a transport experiment?

Hint Useful commands to solve the problems in Matlab:

doc, zeros, ones, diag, eye, toeplitz, kron, fft, fftshift, eig, figure, plot


