Karlsruher Institut für Technologie

Institut für Theorie der Kondensierten Materie

Theorie der Kondensierten Materie I WS 2012/2013

Prof. Dr. J. Schmalian	Blatt 13
Dr. P. Orth, Dr. S.V. Syzranov	Besprechung 01.02.2013

1. BCS gap equation

(10 + 30 = 40 Punkte)

The BCS gap equation reads

$$\Delta = \nu_0 V_0 \int_0^{\omega_D} d\xi \frac{\Delta}{\sqrt{\xi^2 + \Delta^2}} \tanh \frac{\sqrt{\xi^2 + \Delta^2}}{2T} \,,$$

where ν_0 is the density of states (assumed constant over the range of integration), $V_0 > 0$ describes the attractive interaction, $\xi = \epsilon - \mu$ is the energy of the electrons measured from the Fermi surface, T is the temperature and ω_D the Debye frequency. We assume that $\Delta \in \mathbb{R}$.

- (a) Determine the critical temperature T_c for a transition to a superconducting state $(\Delta \neq 0)$ from the condition that $\Delta(T_c) = 0$.
- (b) Consider temperatures below but close to T_c , where the gap is small. The hierarchy of energy scales reads $\omega_D \gg T_c \sim \Delta(T=0) \gg \Delta(T\simeq T_c)$. Expand the right-hand side of the gap equation to first order in Δ^2 , and thus find the temperature behavior of the gap $\Delta(T)$ for $T \leq T_c$.

2. Thermodynamics of BCS theory

$$(15 + 15 + 30 = 60 \text{ Punkte})$$

- (a) Determine the entropy of a superconductor at temperature *T*. The Bogoliuov quasiparticles constitute a Fermi gas with dispersion $E_k = \sqrt{\xi_k^2 + \Delta^2}$ where $\xi_k = \epsilon_k - \mu$. *Note*: a result from the first homework might be useful.
- (b) Find an expression for the heat capacity $C_V(T)$ of a superconductor at temperature T in terms of E_k , T, Δ and the Fermi function $f(E_k)$.
- (c) Determine the heat capacity $C_V(T)$ close to T_c . You have to use the temperature behavior of $\Delta(T)$ found in the previous exercise and expand the derivative of the Fermi function as $\partial_E f(E) \approx -\delta(E) - \frac{\pi^2}{6}T^2\delta''(E)$. Find the size of the universal jump of the heat capacity across T_c :

$$\frac{\delta C_V}{C_V (T = T_c + 0^+)} \, ;$$

where $\delta C_V = C_V(T = T_c - 0^+) - C_V(T = T_c + 0^+)$ and 0^+ stands for a small positive real number.