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7 Tight-binding chain (1d) with disorder

Consider the tight-binding Hamiltonian

Ĥ = −
∑
〈k,l〉

tklc
†
kcl +

∑
l∈L

εlc
†
l cl (1)

c†l , cl denote fermionic creation and annihilation operators acting on site l of a 1d chain with L = 500

sites. The hopping matrix tkl connects nearest neighbors, only. Assume periodic boundary conditions.

a) On-site disorder

First consider a uniform hopping tkl = t and random “on-site energies” εl. The values for εl are

uniformly distributed random numbers from an interval [−W/2,W/2] with W = t = 1.

Calculate, by exact diagonalization, the spectrum and the corresponding density of states (DOS)

for three different disorder realizations. Visualize several eigenfunctions. Discuss your observations

and the physical implications.

Calculate the DOS averaged over an ensemble of 1000 disorder realizations.

Useful Matlab function: rand

b) Off-diagonal disorder

Now consider pure off-diagonal disorder εl = 0 and tl,l+1 = t+δtl at random values for δtl chosen

to be uniformly distributed from an interval [−W
2 ,

W
2 ]. As disorder strength choose W = t

Again, average the DOS over 1000 disorder configurations. Compare your results with the previous

on-site disorder case.

8 Arnoldi method

In preparation for upcoming problems we implement and study methods to construct an orthonormal

basis of the Krylov subspace Km(v),

Km(v) = span
{
v;Av; . . . ;Am−1v

}
.

a) Classical Gram-Schmidt Orthogonalization

Write a function which takes as arguments a set of vectors and performs a classical Gram-Schmidt

orthogonalization (Alg. 1) of these vectors.

Now consider a Hamiltonian as described in exercise 7a). Using the starting vector v = (1, 1, . . . 1)T,

construct a basis
{
v; Ĥv; . . . ; Ĥm−1v

}
for m = 20 explicitly. Use the Gram-Schmidt method to

explicitly calculate an orthonormal basis set {vi}. Calculate the matrix elements Ha
ij = vT

i Ĥvj

and diagonalize the matrix Ha.
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8 Arnoldi method (continued)

b) Modified Gram-Schmidt Orthogonalization

Write a function analogous to the previous exercise that implements the modified Gram-Schmidt

orthogonalization (Alg. 2). Use this new function to calculate a new orthonormal basis {vi},
the corresponding matrix elements Hb

ij and the eigenvalues of Hb. Use the same initial basis{
v; Ĥv; . . . ; Ĥm−1v

}
as in a).

c) Arnoldi Method

Now implement the Arnoldi method to obtain a third basis: Write a function which takes as

arguments a matrix A, an initial vector v1 = v/||v||, and the size of the Krylov subspace m.

Using the algorithm introduced in the lecture the function should return the upper Hessenberg

matrix H̄ and the matrix Vm = [v1,v2, . . . ,vm].

Using this function, calculate Vm and H̄ for the Hamiltonian of exercise 7a), v = (1, 1, 1, 1, . . . 1)T

and m = 20. Calculate the spectrum of the matrix Hc, which is obtained from H̄ by eliminating

the last row.

d) Comparison of Methods

Test the orthogonality of the vectors {vi} for all three given methods and compare. For the

Arnoldi method, examine the off-tridiagonal elements of the matrix Hc. Compare the spectra

of Ha, Hb, and Hc to the spectrum of the full Hamiltonian Ĥ. Discuss your results. Why do

people prefer modified Gram-Schmidt over classical Gram-Schmidt for orthonormalization? Why

do people prefer the Arnoldi method of exercise c) to the explicit construction of the Krylov space

done in exercises a) and b)?

9* Lanczos Method

The Lanczos method for symmetric matrices as introduced in the lecture, enables the calculation of

selected eigenvalues of huge systems not treatable by full diagonalization. Consider the Hamiltonian for

a 1d chain with on-site disorder from exercise 7a), but construct it as a sparse matrix for a system size

L = 100 000. Implement and apply the Lanczos method to calculate the lowest lying eigenvalue and

eigenvector for both H and H2. Terminate if the eigenvalue differs by less than 10−5 (absolute value)

between two iterations. Visualize the eigenvectors. Can one trust these results?

Algorithm 1:

Classical Gram-Schmidt Orthogonalization

1. Input: Set of vectors ui, i ∈ {1, . . . ,m}
2. Output: Vm = [v1, . . . ,vm]

3. v1 ← u1/||u1||
4. For j = 2, . . . ,m Do

(a) w← uj

(b) For k = 1, . . . , j − 1 Do
i. w← w − (v†kuj)vk

(c) End-For
(d) vj ← w/||w||

5. End-For

Algorithm 2:

Modified Gram-Schmidt Orthogonalization

1. Input: Set of vectors ui, i ∈ {1, . . . ,m}
2. Output: Vm = [v1, . . . ,vm]

3. v1 ← u1/||u1||
4. For j = 2, . . . ,m Do

(a) w← uj

(b) For k = 1, . . . , j − 1 Do
i. w← w − (v†kw)vk

(c) End-For
(d) vj ← w/||w||

5. End-For


