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Exercise Sheet No. 5
“Computational Condensed Matter Theory”

Wilson’s Numerical Renormalization Group method (NRG)

The Single Impurity Anderson Model (SIAM) describes a localised impurity in an otherwise non-
interacting electronic conduction band. The Hamiltonian of this system is given by
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As shown in the lecture the Hamiltonian can be mapped onto a semi-infinite tight-binding chain. Due to
the logarithmic discretisation of the conduction band, the hopping elements of the Hamiltonian become
site dependend and decrease with distance as
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which in the limit M — oo recovers the the full Hamiltonian.
The central aspect of the renormalization algorithm is, that the Hamiltonians Hj; obeye the recursion
relation
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In the formulas above, c;ro,, ¢, , denote fermionic creation and annihilation operators acting on site [ of

a one-dimensional chain, dz,dg are fermionic creation and annihilation operators acting on the single
impurity site. The state of a single site of the chain as well as the impurity are characterized by four
dimensional state vectors |a) = (|0), ] 1),| 1), ]2))7 denoting empty, single or double occupied sites.

The low-energy spectrum of the Hamiltonian Hj; (Eq.|1)) can be exploited applying an iteration scheme
in which at every step the system is enlarged by adding a new site [ and after diagonalization only the
quarter of states with the lowest energy are kept.
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In order to avoid the problem of exponentially small energies and to pave the ground for fixpoints one

actually applies the method to the rescaled Hamiltonian

a)

b)

d)
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Solve H;

Write the Hamiltonian H; (Eq.|1)) for M = 1 as matrix in the basis |a)4 ® |a)1. Diagonalize this
16 x 16 matrix and project the Hamiltonian to its eigenbasis |\);. The energies should be relative
to the groundstate, thus subtract the lowest eigenvalue A;1.

Transform ¢; ; and ¢; |

Write the annihilation operators ¢; + and ¢; | in the basis |a); ® |a)1 and, using the result of a),
transform them into the new basis |\);.

Iteration step E’M — E’MH

Build an iteration step Hp; — ﬁMH as given by the recursion relation (Eq. :

Assume you have an Hamiltonian H), in its eigenbasis |\)y; and ¢, s given in the same basis.
Enlarge the system by a site £ = M + 1 which results in a larger basis |A\)y+1 = |[A\)m @ |a).
Construct the Hamiltonian Hj; and the operators émM, éLMH in this new basis and calculate
Hyry1.

Projection in energy space

Diagonalize ﬁMH and select the N¢ lowest eigenvalues A = A1 ... Ay, and the corresponding
eigenvectors |A\)ps11 = |A1)...|An.). Construct a projection to the subspace spanned by these
eigenvectors |\)as4+1. Project ﬁMH and ¢, p741 on [A)ar+1 and as in a) subtract the groundstate
energy Eg = A1 from ﬁMH.

Many particle spectrum

Choose as parameters the values A = 0.5, U = t, ¢4 = —U/2, t; = 0.2t and N¢ = 100. Starting
with H; and repeatedly applying steps c) and d) calculate the spectrum of Hy;—Egq, for M=1..50.

Plot the 20 lowest values as function of M. The energies vary between even and odd number of
sites, thus plot odd and even M in two seperate graphs. Interpret your results.



