WS 2014/20159.02.2014

Institute of Nanotechnology (INT)

Prof. Dr. Jörg Schmalian, Dr. Peter Schmitteckert, Dr. Andreas Poenicke, Benedikt Schönauer http://www.tkm.kit.edu/lehre/ws2014_1827.php

Exercise Sheet No. 6 "Computational Condensed Matter Theory"

14 Density Matrix Renormalization Group method (DMRG)

[40 points]

Consider a 1D chain of spinless hard-core bosons with nearest-neighbor hopping t and nearest-neighborinteraction U:

$$\hat{\mathbf{H}} = -t \sum_{\langle i,j \rangle} (\hat{\mathbf{c}}_i^{\dagger} \hat{\mathbf{c}}_j + \text{h.c.}) + U \sum_{\langle i,j \rangle} \hat{\mathbf{n}}_i \hat{\mathbf{n}}_j - U \sum_i \hat{\mathbf{n}}_i,$$

$$\tag{1}$$

where \hat{c}_i^{\dagger} denotes the creation operator at site i, \hat{n}_i the density at site i. The last term in the Hamiltonian is included to make the interaction particle-hole symmetric. The creation and annihilation operators $\hat{\mathrm{c}}^{\dagger}$ and \hat{c} for hard-core bosons obey bosonic commutation relations, but only the single occupation of a state is allowed, i.e. $\hat{c}^{\dagger} | 1 \rangle = 0$ and thus a suitable basis for a single site is given by $\{ |0 \rangle, |1 \rangle \}$.

a) Initial System: Two Sites

At first consider a system of 2 sites with hard wall boundary conditions. Write the operators \hat{c}_1 , \hat{c}_2 , \hat{n}_1 and \hat{n}_2 , which in this case are represented as 4×4 matrices.

Using these operators, construct the Hamiltonian (Eq. 1) for the 2-site system. This Hamiltonian describing the initial block A shall be denoted by \hat{H}_2^A .

b) DMRG Iteration Step 1: Add a Site

Now increase the size of the block A by adding an additional site, which results in a larger basis $\left\{\,|\tilde{\lambda}\rangle_{M+1}^A\,\right\} = \left\{\,|\lambda\rangle_M^A\,\right\} \otimes \left\{\,|n\rangle\,\right\}$. Given the Hamiltonian $\hat{\mathrm{H}}_M^A$ (for M sites) the new Hamiltonian in this basis $\tilde{\mathrm{u}}^A$ is always an additional site, which results (for M sites) the new Hamiltonian in this basis, $\tilde{\mathrm{H}}_{M+1}^A$, is obtained by

$$\tilde{\mathbf{H}}_{M+1}^{A} = \hat{\mathbf{H}}_{M}^{A} \otimes \mathbb{1} - t(\hat{\mathbf{c}}_{M}^{\dagger} \otimes \hat{\mathbf{c}} + \hat{\mathbf{c}}_{M} \otimes \hat{\mathbf{c}}^{\dagger}) + U(\hat{\mathbf{n}}_{M} \otimes \hat{\mathbf{n}}) - U(\mathbb{1} \otimes \hat{\mathbf{n}}).$$
(2)

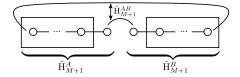
Save the operators $\hat{\mathbf{n}}_{M+1} = \mathbb{1} \otimes \hat{\mathbf{n}}$ and $\hat{\mathbf{c}}_{M+1} = \mathbb{1} \otimes \hat{\mathbf{c}}$.

c) DMRG Step 2: Double the System

Consider a block B, which in our case is a copy of block A, thus $\hat{H}_{M+1}^B = \hat{H}_{M+1}^A$.

The combined system of both blocks may be described in a basis $\big\{\,|\tilde{\lambda}\rangle_{M+1}^{AB}\,\big\} = \big\{\,|\tilde{\lambda}\rangle_{M+1}^{A}\,\big\} \otimes \mathbb{I}$ $\{|\tilde{\lambda}\rangle_{M+1}^B\}$. Construct the Hamiltonian $\hat{\mathrm{H}}_{M+1}^{AB}$, which connects both blocks at the respective sites M+1, and for periodic boundary conditions also at the respective sites 1. Thus,

$$\hat{\mathbf{H}}_{M+1}^{AB} = -t(\hat{\mathbf{c}}_{M+1}^{\dagger} \otimes \hat{\mathbf{c}}_{M+1} + \hat{\mathbf{c}}_{M+1} \otimes \hat{\mathbf{c}}_{M+1}^{\dagger}) - t(\hat{\mathbf{c}}_{1}^{\dagger} \otimes \hat{\mathbf{c}}_{1} + \hat{\mathbf{c}}_{1} \otimes \hat{\mathbf{c}}_{1}^{\dagger}) + U(\hat{\mathbf{n}}_{1} \otimes \hat{\mathbf{n}}_{1} + \hat{\mathbf{n}}_{M+1} \otimes \hat{\mathbf{n}}_{M+1}).$$
(3)



The total Hamiltonian for the combined system of 2M+2 sites is therefore given by

$$\bar{\mathbf{H}}_{2M+2} = \tilde{\mathbf{H}}_{M+1}^A \otimes \mathbb{1} + \mathbb{1} \otimes \tilde{\mathbf{H}}_{M+1}^B + \hat{\mathbf{H}}_{M+1}^{AB}. \tag{4}$$

Hint: Use kron(sparse(mat1), sparse(mat2)) to create a sparse Kronecker product.

d) DMRG Step 3: Diagonalize the Total Hamiltonian

Calculate the ground state energy $E_0(2M+2)$ and wavefunction Ψ_0 of the Hamiltonian H_{2M+2} .

Hint: Matlab's eigs function can be used to efficiently calculate only one eigenvector with the lowest eigenvalue. (Use the option "smallest real part" to achieve this.)

e) DMRG Step 4: Calculate the Reduced Density Matrix

Consider the density matrix for this ground state, $\hat{\rho} = |\Psi_0\rangle \langle \Psi_0|$. Trace out all degrees of freedom from block B to obtain the reduced density matrix ρ^A ,

$$\hat{\rho}_{il}^A = (\operatorname{tr}^B \hat{\rho})_{il} = \sum_{j \in B} \hat{\rho}_{(i,j),(l,j)},$$

where the notation (i, j) denotes a single index of the density matrix ρ , where i is the index belonging to the subspace of block A and j the index belonging to the subspace B.

Hint: An efficient way to calculate the reduced density matrix in Matlab without first constructing the full density matrix is given by the following code:

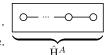
psi_R = reshape(psi_0, dim_B, dim_A); rho_A = psi_R' * psi_R;

Here \dim_A is the dimension of the subspace A and \dim_B the dimension of subspace B.

f) DMRG Step 5: Projection on Subspace

Fully diagonalize the reduced density matrix ρ^A . Now use the eigenvectors corresponding to the largest N_{states} eigenvalues as a new basis. Project and store the operators (for block A) \hat{c}_1 , \hat{c}_{M+1} , $\hat{n}_1, \; \hat{n}_{M+1}.$

As a final step project $\tilde{\mathrm{H}}_{M+1}^A$ to obtain a new $\hat{\mathrm{H}}_{M}^A$ as input for the next iteration. Repeat DMRG steps 1 to 5 until the system size 2M+2 reaches a chosen value.



f) Luttinger-Liquid Behavior

For three different values of $U=0,-\sqrt{3}t,\sqrt{3}t$, perform a DMRG calculation up to a system size of $L_{\rm max}$. Extract the system-size dependence of the ground state energy E(L). Choose $N_{\rm states} = 50$ and $L_{\rm max} = 70$.

As can be shown analytically the lowest-order finite size corrections for the ground state energy per site e_L for this model are given by

$$e_L = \frac{E(L)}{L} = e_{\infty}(U) - v(U)\frac{\pi}{6}\frac{1}{L^2},$$
 (5)

where v is the velocity of lowest-lying excitations in the system. By analyzing your data, extract e_{∞} and v for the given values of U and plot E(L)/L versus $1/L^2$. Discuss the behavior of v(U)with decreasing U. Hint: For U=0 the analytics yield v=2 and $e_{\infty}=-2/\pi$.

15* **Performance Optimization**

The use of the full Hamiltonian \bar{H}_{2M+2} can become very expensive. But for Krylov methods it is sufficient to know the result of the application of the operator to a given vector. eigs uses a Krylov space method, so it is possible to forego the explicit construction of $\bar{\mathrm{H}}_{2M+2}$. With the help of psi_mat = reshape(psi, dim_B, dim_A); one can rewrite any vector in the full tensor product space as a matrix. Then, the following relation holds for the application of operators on this vector:

$$\Phi = (O^A \otimes O^B)\Psi \qquad \Leftrightarrow \qquad \Phi_{\mathrm{Mat}} = O^B \Psi_{\mathrm{Mat}}(O^A)^{\mathrm{T}}$$

Write a function that takes a column vector Ψ as input and returns $\bar{\mathrm{H}}_{2M+2}\Psi$ without explicitly constructing the full Hamiltonian. Use this function to optimize DMRG step 3. Repeat the calculation of exercise 14f) for larger $N_{\rm states}$ and $L_{\rm max}$. Compare your results.

Hint: eigs(matrix, ...) ⇔ eigs(@function, dim_A * dim_B, ...).