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1. Thermodynamics of a superconductor (10 + 15 + 15 = 40 points)

(a) Consider a volume V of a system with movable charges but fixed matter. The
movable charges experience a force density f = ρf (E +v×B/c). If the charges are
moved with velocity v, one needs to provide the system with power −

∫
d3rf · v =

−
∫
d3rjf ·E.

Derive the change in (internal) energy density du for this case by using the Max-
well equations in matter and by identifying the surface contribution that can be
expressed using the Poynting vector S = c

4π
E ×H .

The Maxwell equations read ∇·D = 4πρf , ∇×H − 1
c
Ḋ = 4π

c
jf , ∇×E + 1

c
Ḃ = 0

and ∇·B = 0, where the total charge density is ρ = ρf +ρP with ρP = −∇·P and
the total current density is j = jf +jP +jM with jP = Ṗ and jM = c∇×M . Here,
P = χEE denotes the polarization with electric susceptibility χE and M = χHH
the magnetization with magnetic susceptibility χH .

(b) Show that using your result from part (a), it follows that the free energy density is
given by df = −sdT+ 1

4π
HdB. Perform a Legendre transformation to the Gibbs free

energy density g(T,H) with H = |H|. Then determine the difference gn/s(T,H)−
gn/s(T, 0) in both the normal state, where χH ≈ 0, as well as the superconducting
state, where you need to consider the Meissner effect.

(c) The critical field strength Hc(T ) is defined via the condition that the Gibbs free
energy density of the normal and superconducting state are equal for this field value:
gn(T,Hc) = gs(T,Hc). Express the entropy density difference ss(T,H) − sn(T,H)
and the specific heat difference cH,s(T,H)−cH,n(T,H) (at constant field H) in terms
of this function Hc(T ) and determine the order of the phase transition in zero and
finite magnetic field.

2. Infinite conductivity and Meissner effect (10 + 10 + 20 + 20 = 60 points)

(a) Consider a homogeneous and isotropic system with ρext = 0. We are interested
in low frequency behavior and thus neglect the contribution 1

c
Ė in the Maxwell

equation ∇ × B = 4π
c

(jext + jind) + 1
c
Ė, where jind = jP + jM . Assuming the

relation

4π

c
jind(x, t) = −

∫ ∞
−∞

d3x′dt′K(x− x′, t− t′)A(x′, t′) (1)

between the induced current density and the vector potential A(x, t), solve for the
magnetic field B(x, t) for given jext(x, t) in terms of a Fourier integral.



(b) Relate the conductivity σ(q, ω) to the kernel K(q, ω), where the conductivity relates
the induced current density to the electric field via

jind(x, t) =

∫ ∞
−∞

d3x′dt′σ(x− x′, t− t′)E(x′, t′) . (2)

It might be useful to employ the Fourier representation of the Heaviside-θ function

θ(t) =

∫ ∞
−∞

dω

2π

i

ω + i0+
e−iωt . (3)

(c) Express the real and imaginary part of the conductivity σ(q, ω) = σ′(q, ω) +
iσ′′(q, ω) in terms of the real and imaginary part of the kernes K(q, ω). Show
that the conductivity σ′(q, ω) becomes infinite if

lim
ω→0

lim
q→0

K ′(q, ω) 6= 0 , (4)

where q = |q|.
(d) Neglecting again the contribution from 1

c
Ė, use Maxwell’s equations to express the

magnetic field H(x, t) as a Fourier integral over the function jext(q, ω). Use the
result from part (a), to find the magnetic permeability B(q, ω) = µ(q, ω)H(q, ω).
Using that µ(q, 0) must be positive for zero frequency, show that q2 +K ′(q, 0) may
only vanish at q = 0 and show that

lim
q→0

lim
ω→0

K ′(q, ω) 6= 0 (5)

is a sufficient condition for the Meissner effect. Finally, compute the magnetic
susceptibility χH(q, ω) in the case that Eq. (5) is fulfilled.

Infinity conductivity and the Meissner effect thus require different properties of the
kernel K ′(q, ω) and do not imply each other.


