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1. Electron-electron and electron-phonon interactions in jellium
(20 + 20 = 40 points)
The microscopic Hamiltonian of conduction electrons interacting electrostatically with
core ions of charge Zce0 in a solid is given by
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The jellium model neglects the periodic lattice structure of the ions (plus core electrons)
and considers the ionic system as a uniform background of positive charges with charge
density Zie0Ni/V , where Ni is the number of core ions the system of volume V . The
number of conduction electrons is equal to N = ZiNi so that total system is charge
neutral. The Hamiltonian of the jellium model is given by
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We have regularized the Coulomb potential by introducing an exponential factor, and
have to take the limit α→ 0 in the end. The parts Hph +He,ph describe the interaction
of the oscillations of the ions, the phonons, with the electrons. We will deal with this
part below.

(a) Write the Hamiltonian Hjellium in momentum space q with respect to the electron
coordinate ri and explicitly perform the integrations over R to show that the q =
0 component of the electron-electron interaction vanishes (in the thermodynamic
limit).

(b) One obtains the phonon Hph and the electron-phonon part He,ph of the Hamiltoni-
an by expanding to lowest non-vanishing order in the deviations of the ions from
the equilibrium positions δRν = Rν −R0
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the electron-phonon part of the Hamiltonian take the form (in second quantization)
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By expanding the electron-ion Coulomb interaction to linear order in δRν obtain
an explicit result for the electron-phonon matrix element gkk′λ within the jellium
model. Note that the only the coupling to longitudinal phonons is non-zero.

2. Random phase approximation of Coulomb interaction in jellium
(15 + 15 + 10 + 20 = 60 points)
The free conduction electron system is described by the HamilonianHe,0 =

∑
kσ εkc

†
kσckσ

with dispersion εk = k2/2m. The free phonon system is given in Eq. (2).

(a) Determine the time evoluation of the electron operators in the Heisenberg picture
to calculate the free time-ordered Green function in real-time at zero temperature
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)
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Here, T denotes the time-ordering symbol and |0〉 denotes the many-body ground
state at zero temperature with states below the Fermi wavevector kF being filled and
states above it being empty. Give the Green function in frequency space G0(kσ, t) =∫∞
−∞
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(b) Determine the time evoluation of the phonon operators in the Heisenberg picture
to calculate the free time-ordered Green function in real-time at zero temperature
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where ϕqλ(t) = aqλ(t) + a†−qλ(t) and |0〉 denotes the zero temperature ground state
of Hph.

(c) Write down the bare Coulomb interaction Hamiltonian in momentum space in se-
cond quantized form (using your results from exercise 1).

(d) The main screening effects of the Coulomb interaction arise from the bubble dia-
grams shown in the figure. Summing over all the bubble diagrams amounts to the
so-called RPA approximation

VRPA(q, ω) = V (q)− V (q)PRPA(q, ω)VRPA(q, ω) (6)
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G0(p + q, ω + ω0)G0(p, ω). Write the screened inter-

action as VRPA(q, ω) = V (q)/ε(q, ω) and determine ε(q, ω). Determine in which
region Imε becomes non-zero. Disuss the cases ε(q, 0), ε(|qF |, 0 and ε(|q →∞, ω).


