Microscopic Theory of Superconductivity WS 2014/15

Prof. Dr. J. Schmalian	Sheet 03
Dr. P. P. Orth	Due date 01.12.2014

1. Fermionic oscillator

(10 + 10 + 10 + 10 = 40 points)

Let Ψ and Ψ^{\dagger} be two fermionic operators obeying anticommutation relations $\{\Psi, \Psi^{\dagger}\} = \Psi\Psi^{\dagger} + \Psi^{\dagger}\Psi = 1.$

- (a) Define the number operator $N = \Psi^{\dagger} \Psi$ and show that $N^2 = N$. Which eigenvalues does N have?
- (b) Define the two number eigentstates $N|0\rangle = 0|0\rangle$ and $N|1\rangle = 1|1\rangle$. Show that $\Psi^{\dagger}|0\rangle = 1$ and $\Psi|1\rangle = |0\rangle$.
- (c) Consider a Fermi oscillator with Hamiltonian $H_0 = \omega \Psi^{\dagger} \Psi$. Explicitly compute the partition function $Z = \text{Tr}e^{-\beta(H_0-\mu N)} = e^{-\beta F(\mu,\beta)}$ and the average particle number $N = -\frac{\partial F}{\partial \mu}$.
- (d) Consider a toy Hubbard model

$$H_0 = \omega (\Psi_1^{\dagger} \Psi_1 + \Psi_2^{\dagger} \Psi_2) + U (\Psi_1^{\dagger} \Psi_1 \Psi_2^{\dagger} \Psi_2).$$
 (1)

Compute the partition sum Z and the average particle number N.

2. Fermion coherent states and Grassmann numbers (5+5+10+10+10+10+10=60 points)

The rules for manipulating Grassmann numbers ψ, ψ' are: (i) all Grassmann numbers anticommute with each other and with all fermionic operators; (ii) when a Grassmann number is taken through a ket or brai containing an odd (even) number of fermions it will (not) change sign; (iii) integrals over Grassmann numbers follow from the two definitions $\int \psi d\psi = 1$ and $\int 1 d\psi = 0$. Note that $d\psi$ is also a Grassmann number. One should not associate a numerical value with Grassmann numbers, all you need are the definitions above.

- (a) Consider a state $|\psi\rangle = |0\rangle \psi |1\rangle$, where the states $|0\rangle, |1\rangle$ were defined above. Show that this state is an eigenstate of the annihilation operator with eigenvalue ψ : $\Psi |\psi\rangle = \psi |\psi\rangle$. The state $|\psi\rangle$ is thus called a fermionic coherent state (in analogy to bosonic coherent states which are eigenstates of a bosonic annihilation operator).
- (b) Consider the state $\langle \bar{\psi} | = \langle 0 | \langle 1 | \bar{\psi}$. Show that this is a left eigenstate of the creation operator with eigenvalue $\bar{\psi}$, *i.e.*, $\langle \bar{\psi} | \Psi^{\dagger} = \langle \bar{\psi} | \bar{\psi}$.
- (c) Compute the inner product $\langle \bar{\psi} | \psi \rangle$ and reexponentiate your result.
- (d) Calculate the Gaussian integrals over Grassmann numbers $\int e^{-a\bar{\psi}\psi}d\bar{\psi}d\psi$, and the generalization $\int e^{-\bar{\psi}M\psi}d\bar{\psi}_1d\psi_1d\bar{\psi}_2d\psi_2$ to a two-component Grassmann vector $\psi = (\psi_1, \psi_2), \ \bar{\psi} = (\bar{\psi}_1, \bar{\psi}_2)$ with 2×2 matrix M.

(e) Calculate the expectation values

$$\begin{split} \langle \bar{\psi}_i \psi_j \rangle &= \frac{\int \bar{\psi}_i \psi_j e^{a_1 \bar{\psi}_1 \psi_1 + a_2 \bar{\psi}_2 \psi_2} d\bar{\psi}_1 d\psi_1 d\bar{\psi}_2 d\psi_2}{\int e^{a_1 \bar{\psi}_1 \psi_1 + a_2 \bar{\psi}_2 \psi_2} d\bar{\psi}_1 d\psi_1 d\bar{\psi}_2 d\psi_2} \\ \langle \bar{\psi}_i \bar{\psi}_j \psi_k \psi_l \rangle &= \frac{\int \bar{\psi}_i \bar{\psi}_j \psi_k \psi_l e^{a_1 \bar{\psi}_1 \psi_1 + a_2 \bar{\psi}_2 \psi_2} d\bar{\psi}_1 d\psi_1 d\bar{\psi}_2 d\psi_2}{\int e^{a_1 \bar{\psi}_1 \psi_1 + a_2 \bar{\psi}_2 \psi_2} d\bar{\psi}_1 d\psi_1 d\bar{\psi}_2 d\psi_2} \,. \end{split}$$

(f) Show the following resolution of identity

$$1 = \int |\psi\rangle \langle \bar{\psi}| e^{-\bar{\psi}\psi} d\bar{\psi} d\psi \,.$$

(g) Evaluate the partition function for the fermionic oscillator

$$Z = \mathrm{Tr} e^{-\beta(\omega-\mu)\Psi^{\dagger}\Psi} = \int \langle -\bar{\psi}| e^{-\beta(\omega-\mu)\Psi^{\dagger}\Psi} |\psi\rangle e^{-\bar{\psi}\psi} d\bar{\psi} d\psi,$$

and compare with your result from the previous question.