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Part I

Quenched disorder and the replica
method
Real solids are affected by imperfections of the periodic arrangement of atoms.
Vacancies and accidentally or deliberately induced disorder strongly affect the
electronic, magnetic etc. properties of a given material. In most cases the
system is unable to “heal” the randomness due to disorder, as the characteristic
time scales for the diffusion of an ill-placed atom tend to be much larger than
many of the internal degrees of freedom. A system is then characterized by a
given, quenched (i.e. fixed) disorder configuration that undergoes no dynamics
and is therefore frozen-in-time. The Hamiltonian for such a system is given as

H [σ,w] = H0 [σ] +W [σ,w] , (1)

where σ stands for the microscopic degrees of freedom that equilibrate on the
time scale of a typical measurement, while w stands for the disorder config-
uration. For example, in the case a disordered electron gas σ stands for the
positions xi and spins αi of the electrons and

W =
∑
i

w (xi) =

ˆ
ddx

∑
α

w (x)ψ†α (x)ψα (x) (2)

is characterized by a random single-particle potential w (x).
The probability distribution of the disorder is P [w] with measure Dw such

that ˆ
DwP [w] = 1. (3)
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Usually, we consider uncorrelated disorder of the type

w (x)w (x′) = gδ (x− x′) , (4)

with Gaussian distribution function

P [w] ∝ exp

(
− 1

2g

ˆ
ddxw (x)

2

)
. (5)

Consider now the quantum mechanical expectation value Xw of some exten-
sive macroscopic variable X. Xw depends on the given disorder configuration
w. For most practical applications is it sufficient to consider disorder averages
such as the mean value

Xw =

ˆ
DwP [w]Xw. (6)

This is in particular the case for self-averaging variables X which obey:

lim
N→∞

RX → 0. (7)

Here we use the relative variance

RX ≡
X2
w −Xw

2

Xw
2 , (8)

while N is the system size. One justification for performing the average is that
one may subdivide a macroscopic system in a sufficiently large set of smaller,
but still macroscopic subsystems. In each subsystem the disorder realization is
statistically similar but individually distinct. Averaging over these subsystems
should then yield information about the behavior of the entire system. In case
of a macroscopic variable with short range interactions and correlations, the law
of large numbers immediately implies that

RX ∝ N−1, (9)

leading to what is referred to as strong self-averaging. As we will see, near a
critical point the decay of RX with system size can be severely slowed down and
in some cases it even follows that limN→∞RX = const. with non zero constant.
This corresponds to a break-down of self-averaging. Even in this case of no self-
averaging, where an entire distribution function of observables becomes crucial,
it is still sensible to analyze mean values of observables.

Quantities that should be averaged are macroscopic extensive observables,
such as the energy, the heat capacity, the susceptibility or correlation functions.
Thus, we should for example average the free energy:

Fav. = Fw = −T logZw, (10)

where
Zw = trσe

−βH[σ,w] (11)
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is the partition sum of a given disorder realization. This is qualitatively different
from an average of the partition function Zw and then taking the logarithm.
Note, the average Zw can be performed rather naturally by using the usual
field-theoretical methods of many-body theory. One calls the average Zw an
annealed average while logZw corresponds to a quenced average.

In order to perform the average over the logarithm of the partition function
we use the replica method. At the heart of the method is the identity

logZw = lim
n→0

1

n
(Znw − 1) , (12)

which expresses the logarithm as a limit of small power. The logic is to evaluate
averages of Znw for arbitrary integer n and then analytically continue the result
to n→ 0. Thus, we first analyze for integer n:

Znw =
(

trσe
−βH[σ,w]

)n
= tr{σi}e

−β
∑n

i=1
H[σi,w]. (13)

The average

ZnW = tr{σi}e
−β
∑n

i=1
H[σi,W ] (14)

looks like an annealed average of an extended (replicated) system. The replica
index i enters the theory like an additional flavor index. Now we define the
corresponding replicated free energy.

Fn ≡ −
T

n
logZnw. (15)

It holds

lim
n→0

Fn = −T lim
n→0

1

n
logZnw

= −T lim
n→0

1

n
log exp (n logZw)

= −T lim
n→0

1

n
log (1 + n logZw)

= −T logZw = Fav (16)

Thus, we managed to express an average of the logarithm of the partition func-
tion in terms of an average of the partition function, yet with the additional
flavor (replica) index for all observables.

While the replica method appears rather technical, there is a simple physical
motivation for the procedure. Consider first the free energy of a given disorder
configuration

Fw = −T logZw. (17)

Suppose now that the disorder is in equilibrium as well, yet at a different tem-
perature T ′. Then we would obtain a partition function

Z ′ =

ˆ
DwP [w] e−β

′Fw = Znw (18)
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where now
n =

T

T ′
. (19)

The corresponding free energy is

F ′ = −T ′ logZ ′

= −T
n

logZnw, (20)

i.e. the same expression that enters the replica formalism in Eq.16. We realize
that the quenched average of the free energy corresponds to the limit T ′ →
∞, where the internal degrees of freedom have no feedback on and cause no
correlation of the disorder distribution. The disorder is so uncorrelated that it
appears to originate from a much higher temperature and was then frozen in.
This is the reason why we call this average quenched, as it originates from a
much higher temperature as had no time to truly equilibrate. The quenched
average is therefore nothing but

Fav = lim
T ′→∞

F ′, (21)

which offers a rather simple physical interpretation for the replica formalism.

Part II

Summary of critical behavior in
clean systems
1 Classical critical systems
The continuum’s version of the Ising model is the classical φ4-theory determined
by the effective Hamiltonian

H [φ] =
1

2

ˆ
ddx

(
r0φ

2 + (∇φ)
2

+
u

2
φ4
)
. (22)

It determines the partition function

Z =

ˆ
Dφ exp (−βH [φ]) . (23)

Here Dφ =
∏
k

dφk where φk are the Fourier modes of the field φ(x). If the

underlying microscopic theory is defined on a lattice with lattice constant a, no
Fourier coefficients with k > 2π/a should occur. In addition, the above effective
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Hamiltonian should be understood as a coarse grained version of the theory,
i.e. it should be valid only for wavelengths that are longer that the typical
microscopic length scale. This gives rise to an upper momentum cut off Λ that
is smaller that 2π/a. Modes are suppressed for k > Λ.

There is no reason to confine ourselves to φ being a real number. For exam-
ple, in case of continuously varying spins, as described by theXY - or Heisenberg
models, the order parameter is an N -component vector φ = (φ1, φ2, · · · , φN ),
with N = 2 or 3, respectively. It is often interesting and convenient to consider
N -component order parameters with arbitrary N . Then the φ4-model becomes

H [φ] =
1

2

ˆ
ddx

(
r0φ · φ+∇φ · ∇φ+

u

2
(φ · φ)

2
)

(24)

where φ · φ =
∑N
i=1 φ

2
i .

1.1 Lower critical dimension
The role of fluctuations depends sensitively on the dimension d. As we will
see, the space-dimension where fluctuations become important is referred to as
the upper critical dimension duc. In case of the φ4-theory we will find that
duc = 4. The notion of an upper critical dimension makes only sense if there
is in fact long range order and a finite transition temperature. For example,
in case of the one-dimensional Ising model we found that no finite transition
temperature exists. Whether long range order occurs or not can we estimated
rather easily and determines the lower critical dimension dlc. We will now show
that dlc = 1 for systems with discrete order parameter symmetry (and short
range interactions), while dlc = 2 for systems with continuous order parameter.

Let us first consider a discrete order parameter, like the Ising model. Suppose
we have an ordered state with a given order parameter φ (x) = φ0. Now lets
estimate the free energy cost of a defect of the perfectly ordered state. In case
of the Ising model (i.e. scalar φ4-model) such a defect could be a droplet of size
L. Suppose inside the droplet holds φ (x) = −φ0, while outside of it the order
parameter has the opposite sign. A typical configuration would be

φ (x) ' φ0 tanh

(
x− L
l0

)
(25)

where l0 is some microscopic length scale. It follows for the energy of the defect

Edefect =

ˆ
ddx (∇φ)

2 ' φ2
0

1

l0
Ld−1 (26)

The typical energy of such a defect is

Fdefect ' φ2
0

1

l0
Ld−1 − T logLd, (27)

where the second term is the entropy associated with the possible arrangement
of the droplet. Such droplets will certainly occur and they are the natural
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mechanism that reduce then order parameter to a smaller but finite value at
0 < T < Tc. As long as d > 1, the interface-energy will always dominate
over the entropy-gain of the defect, making large droplets increasingly unlikely.
However, for d = 1 holds that the interface energy is independent of size (the
surface consists of only two points no matter how large the droplet size L). There
is nothing to prevent arbitrarily large droplets and droplets in other droplets etc.
to occur. Thus, long range order will not occur. This is of course in complete
agreement with our exact result for the one-dimensional Ising model. It holds
dlc = 1 as mentioned above.

Next we consider a continuously varying order parameter, i.e. φ = (φ1, φ2, · · · , φN ).
In comparison to the scalar order parameter, we can now simply rotate the order
parameter vector without changing its amplitude. For example

φ = φ0 (cos θ (x) , sin θ (x) , · · · , 0) (28)

with

θ (x) =

{
π
(

1− |x|L
)
|x| < L

0 |x| ≥ L
(29)

Then, the order parameter outside the defect is φ (|x| ≥ L) = (1, 0, · · · , 0) and it
slowly rotates to reach φ (x = 0) = (0, 1, · · · , 0). Since φ · φ = φ2

0 the nonlinear
φ4 term is completely unaffected by this defect, in distinction to the single
component order parameter that had to "climb over the hill" of the energy
landscape and locally melt to zero. The penalty comes from

Edefect =

ˆ
ddx (∇φ)

2
= φ2

0

ˆ
ddx (∇θ)2 ' φ2

0L
d−2, (30)

yielding
Fdefect ' φ2

0L
d−2 − T logLd. (31)

The same reasoning as before leads to dlc = 2 for systems with continuously
varying order parameter. No long range order is possible in d = 2 and below.
This statement can be proven rigorously and goes back to Hohenberg as well as
Mermin and Wagner.

1.2 Landau theory of phase transitions
A first attempt to solve these problems is to approximate the integral by the
dominant contribution of the integrand, i.e. we write

ˆ
Dφ exp (−βH [φ]) ' exp (−βH [φ0]) (32)

where δH
δφ

∣∣∣
φ=φ0

= 0. This leads to the Landau theory of phase transitions. Of

course, in general, it is not only the minimum ofH [φ] w.r.t. φ which corresponds
to physically realized configurations. Instead one has to integrate over all values
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of φ to obtain the free energy. Before we do this, we briefly discuss the Landau
theory.

Landau proposed that one should introduce an order parameter to describe
the properties close to a phase transition. This order parameter should vanish in
the high temperature phase and be finite in the ordered low temperature phase.
The mathematical structure of the order parameter depends strongly on the
system under consideration. In case of an Ising model the order parameter is a
scalar, in case of the Heisenberg model it is a vector. For example, in case of a
superconductor or the normal fluid - superfluid transition of 4He it is a complex
scalar, characterizing the wave function of the coherent low temperature state.
Another example are nematic liquid crystals where the order parameter is a
second rank tensor.

In what follows we will first develop a Landau theory for a scalar, Ising type
order. Landau argued that one can expand the free energy density in a Taylor
series with respect to the order parameter φ. This should be true close to a
second order transition where φ vanishes continuously:

H (φ) = −hφ+
r0

2
φ2 +

b

3
φ3 +

u

4
φ4 + ... (33)

The physical value of the order parameter is the determined by minimizingH (φ)

∂H (φ)

∂φ

∣∣∣∣
φ=φ0

= 0. (34)

If u < 0 this minimum will be at ±∞ which is unphysical. If indeed u < 0 one
needs to take a term ∼ φ6 into account and see what happens. In what follows
we will always assume u > 0. In the absence of an external field should hold
that H (φ) = H (−φ), implying h = b = 0. Whether or not there is a minimum
for φ 6= 0 depends now on the sign of r0. If r0 > 0 the only minimum of

H (φ) = f0 +
r0

2
φ+

u

4
φ4 (35)

is at φ = 0. However, for r0 < 0 there are two a new solutions φ = ±
√
−r0
u .

Since φ is expected to vanish at T = Tc we conclude that r0 (T ) changes sign at
Tc suggesting the simple ansatz

r0 (T ) = a0 (T − Tc) (36)

with a0 > 0 being at most weakly temperature dependent. This leads to a
temperature dependence of the order parameter

φ0 =

{ √
a0(Tc−T )

u T < Tc
0 T > Tc

. (37)

It will turn out that a powerlaw relation like

φ ∼ (Tc − T )
β (38)
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is valid in a much more general context. The main change is the value of β.
The prediction of the Landau theory is β = 1

2 .
Next we want to study the effect of an external field (= magnetic field in

case φ characterizes the magnetization of an Ising ferromagnet). This is done
by keeping the term hφ in the expansion for f . The actual external field will be
proportional to h. Then we find that f is minimized by

r0φ0 + uφ3
0 = h (39)

Right at the transition temperature where r0 = 0 this gives

φ0 ∼ h1/δ (40)

where the Landau theory predicts δ = 3. Finally we can analyze the change
of the order parameter with respect to an external field. We introduce the
susceptibility

χ =
∂φ0

∂h

∣∣∣∣
h→0

(41)

and find from Eq.39
r0χ+ 3uφ2

0 (h = 0)χ = 1 (42)

using the above result for φ2
0 (h = 0) = r0

u if T < Tc and φ2
0 (h = 0) = 0 above

Tc gives

χ =

{
1

4a0
(Tc − T )

−γ
T < Tc

1
a0

(T − Tc)−γ T > Tc
(43)

with exponent γ = 1.
Next we consider the specific heat where we insert our solution for φ0 into

the free energy density.

H (φ0) =
r0

2
φ2

0 +
u

4
φ4

0 =

{
− a20

4u (T − Tc)2
T < Tc

0 T > Tc
(44)

This yields for the specific heat per volume

C = −T ∂
2f

∂T
= −T ∂

2H (φ0)

∂T
=

{
a20
4uT T < Tc
0 T > Tc

. (45)

The specific heat is discontinuous. As we will see later, the general form of the
specific heat close to a second order phase transition is

C (T ) ∼ (T − Tc)−α + const (46)

where the result of the Landau theory is

α = 0. (47)
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In our analysis of the Landau theory we only considered spatially homoge-
neous solutions of the order parameter. Next, we include the more general case
of spatially varying order parameters, i.e.

H =

ˆ
ddxH [φ] (48)

is given as

H [φ] =
r0

2
φ (x)

2
+
u

4
φ (x)

4 − h (x)φ (x) +
1

2
(∇φ (x))

2 (49)

where we assumed that it costs energy to induce an inhomogeneity of the order
parameter. In addition we assumed that we can always absorb the coefficient
1
2 (∇φ (x))

2 into the definition of the order parameter. The variational minimum
δH
δφ

∣∣∣
φ=φ0

= 0 of H is now determined by the Euler-Lagrange equation

∂H
∂φ
−∇ ∂H

∂∇φ
= 0 (50)

which leads to the nonlinear partial differential equation

r0φ (x) + uφ (x)
3

= h (x) +∇2φ (x) . (51)

Above the transition temperature we neglect again the non-linear term and
have to solve

r0φ (x)−∇2φ (x) = h (x) (52)

It is useful to consider the generalized susceptibility

δφ (x) =

ˆ
ddx′χ (x− x′) δh (x′) (53)

which determines how much a local change in the order parameter is affected
by a local change of an external field at a distance x−x′. This is often written
as

χ (x− x′) =
δφ (x)

δh (x′)
. (54)

We determine χ (x− x′) by Fourier transforming the above differential equation
with

φ (x) =

ˆ
ddk

(2π)
d
e−ikxφ (k) (55)

which gives
r0φ (k) + k2φ (k) = h (k) (56)

In addition it holds for χ (k):

δφ (k) = χ (k) δh (k) . (57)
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This leads to
χ (k) =

1

ξ−2 + k2
(58)

where we introduced the length scale

ξ =

√
1

r0
=

√
1

a0
(T − Tc)−1/2 (59)

This result can now be back-transformed yielding at large distances

χ (x− x′) =

(
ξ

|x− x′|

) d−1
2

exp

(
−|x− x

′|
ξ

)
(60)

Thus, spins are not correlated anymore beyond the correlation length ξ. In
general the behavior of ξ close to Tc can be written as

ξ ∼ (T − Tc)−ν (61)

with ν = 1
2 . A similar analysis can be performed in the ordered state. Starting

again at
r0φ (x) + uφ (x)

3
= h (x) +∇2φ (x) (62)

and assuming φ (x) = φ0 +ψ (x) where φ0 is the homogeneous, h = 0, solution,
it follows for small ψ (r):(

r0 + 3uφ2
0

)
ψ (x) = h (x) +∇2ψ (x) (63)

and it holds r0 + 3uφ2
0 = −2r0 > 0. Thus in momentum space

χ (k) =
dψ (k)

dh (k)
=

1

ξ−2
< + k2

(64)

with

ξ =

√
1

−2r0
=

√
1

2a0
(Tc − T )

−1/2 (65)

1.3 Ginzburg criterion
One can now estimate the range of applicability of the Landau theory. This is
best done by considering the next order corrections and analyze when they are
small. If this is the case, one can be confident that the theory is controlled.
Before we go into this we need to be able to perform some simple calculations
with these multidimensional integrals.

First we consider for simplicity a case where Heff [φ] has only quadratic
contributions. It holds

Z =

ˆ
Dφ exp

(
−1

2

∑
k

φk
(
r0 + k2

)
φ−k

)
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=
∏
k

ˆ
dφk exp

(
−1

2
φk
(
r0 + k2

)
φ−k

)

=
∏
k

(
(2π)

d

r0 + k2

)1/2

= exp

(
1

2

∑
k

logχ (k)

)
(66)

with
χ (k) =

1

r0 + k2
. (67)

It follows for the free energy

F = −kBT
2

N

ˆ
ddk

(2π)
d

logχ (k) (68)

One can also add to the Hamiltonian an external field

H [φ]→ H [φ]−
ˆ
ddkh (k)φ (k) (69)

Then it is easy to determine the correlation function

χ (k) = 〈φkφ−k〉 − 〈φk〉 〈φ−k〉 (70)

via

δ logZ

δhkδh−k

∣∣∣∣
h→0

=
δ

δhk

1

Z

ˆ
Dφφke

−βHeff [φ]

=
1

Z

ˆ
Dφφkφ−ke

−βHeff [φ] −
(´
Dφφke

−βHeff [φ]
)2

Z2

= χ (k) (71)

This can again be done explicitly for the case with u = 0:

Z [h] =

ˆ
Dφ exp

(
−1

2

ˆ
ddkφk

(
a+ bk2

)
φ−k +

ˆ
ddkh (k)φk

)
= Z [0] exp

(
1

2

ˆ
ddkhkχ (k)h−k

)
(72)

Performing the second derivative of logZ gives indeed 〈φkφ−k〉 = 1
r0+k2 . Thus,

we obtain as expected

χ (k) =
δφk
δh−k

. (73)

Let us analyze the specific heat related to the free energy

F = −kBT
2

N

ˆ
ddk logχ (k) (74)
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It holds for the singular part of the specific heat

C ∼ −∂
2F

∂r2
0

∼
ˆ
ddkχ (k)

2 ∼
ˆ

kd−1dk

(ξ−2 + k2)
2 ∼ ξ

4−d (75)

Thus, as ξ →∞ follows that there is no singular (divergent) contribution to the
specific heat if d > 4 just as we found in the Landau theory. However, for d < 4
the specific heat diverges and we obtain a behavior different from what Landau
theory predicted.

Another way to see this is to study the role of inhomogeneous fluctuations
as caused by the

Hinh =
1

2

ˆ
ddr (∇φ)

2 (76)

Consider a typical variation on the scale ∇φ ∼
√
−r0
u ξ−1 and integrate those

over a volume of size ξd gives

Hinh ∼ ξd−2 r0

u
∼ 1

u
ξd−4 (77)

Those fluctuations should be small compared to temperature in order to keep
mean field theory valid. If their energy is large compared to kBT they will be
rare and mean field theory is valid. Thus we obtain again that mean field theory
breaks down for d < 4. This is called the Ginzburg criterion. Explicitly this
criterion is

ξ−1 > (ukBT )
1

4−d . (78)

Note, if b is large for some reason, fluctuation physics will enter only very
close to the transition. This is indeed the case for many so called conventional
superconductors.

1.4 Scaling laws
A crucial observation of our earlier results of second order phase transitions was
the divergence of the correlation length

ξ (T → Tc)→∞. (79)

This divergency implies that at the critical point no characteristic length scale
exists, which is in fact an important reason for the emergence of the various
power laws. Using h as a dimensionless number proportional to an external
field and

r =
T − Tc
Tc

(80)

as dimensionless measure of the distance to the critical point the various critical
exponents are:

ξ (r, h = 0) ∼ r−ν
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φ (r, h = 0) ∼ |r|β

φ (r = 0, h) ∼ h1/δ

χ (r, h = 0) ∼ r−γ

C (r, h = 0) ∼ r−α

χ (x→∞, r = 0) ∼ x2−d−η. (81)

where d is the spatial dimensionality. The values of the critical exponents for a
number of systems are given in the following table

exponent mean field d = 2, Ising d = 3, Ising
α 0 0 0.12
β 1

2
1
8 0.31

γ 1 7
4 1.25

ν 1
2 1 0.64

δ 3 15 5.0
η 0 1

4 0.04

It turn out that a few very general assumptions about the scaling behavior
of the correlation function χ (q) and the free energy are sufficient to derive
very general relations between these various exponents. Those relations are
called scaling laws. We will argue that the fact that there is no typical length
scale characterizing the behavior close to a second order phase transition leads
to a powerlaw behavior of the singular contributions to the free energy and
correlation function. For example, consider the result obtained within Landau
theory

χ (q, r) =
1

r + q2
(82)

where we eliminated irrelevant prefactors. Rescaling all length r of the system
according to x → x/b, where b is an arbitrary dimensionless number, leads to
k → kb. Obviously, the mean field correlation function obeys

χ (q, r) = b2χ
(
bq, b2r

)
. (83)

Thus, upon rescaling ( k → kb), the system is characterized by a correlation
function which is the same up to a prefactor and a readjustment of the distance
from the critical point. In what follows we will generalize this expression and
assume that even beyond the mean field theory of Landau a similar relationship
holds

χ (q, r) = b2−ηχ (bq, byr) . (84)

The mean field theory is obviously recovered if y = 2 and η = 0. Since b is
arbitrary, we can for example chose tby = 1 implying b = t−

1
y and we obtain

directly from our above ansatz

χ (q, t) = r−
2−η
y χ

(
qr−

1
y , 1
)
. (85)
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By definition, the correlation length is the length scale which characterizes the
momentum variation of χ (q, r) i.e. χ (q, r) ∼ f (qξ), which leads to ξ ∼ r−

1
y

and we obtain
ν = y−1. (86)

The exponent y of our above ansatz for χ (q, r) is therefore directly related to
the correlation length exponent. This makes it obvious why it was necessary to
generalize the mean field behavior. y = 2 yields the mean field value of ν. Next
we consider r = 0 and chose bq = 1 such that

χ (q, r = 0) =
1

q2−η χ (1, 0) (87)

which gives

χ (x, r = 0) =

ˆ
ddq

(2π)
d
χ (q, r = 0) eikx ∼

ˆ
dqeikx

qd−1

q2−η (88)

substituting z = kx gives

χ (x, r = 0) ∼ x2−d−η. (89)

Thus, the exponent η of Eq.84 is indeed the same exponent as the one given
above. This exponent is often called anomalous dimension and characterizes
the change in the powerlaw decay of correlations at the critical point (and more
generally for length scales smaller than ξ). Thus we can write

χ (q, r) = b2−ηχ
(
bq, b

1
ν r
)
. (90)

Similar to the correlation function can we also make an assumption for the
free energy density

f (r, h) = b−dF (rby, hbyh) . (91)

The prefactor b−d is a simple consequence of the fact that an extensive quantity
changes upon rescaling of length with a corresponding volume factor. Using
y = ν−1 we can again use tby = 1 and obtain

f (r, h) = rdνF
(
1, hr−νyh

)
. (92)

This enables us to analyze the specific heat at h = 0 as

C ∼ ∂2F (r, 0)

∂r2
∼ rdν−2 (93)

which leads to
α = 2− dν. (94)

This is a highly nontrivial relationship between the spatial dimensionality, the
correlation length exponent and the specific heat exponent. It is our first scaling
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law. Interestingly, it is fulfilled in mean field (with α = 0 and ν = 1
2 ) only for

d = 4.
The temperature variation of the order parameter is given as

φ (r) ∼ ∂f (r, h)

∂h

∣∣∣∣
h→0

∼ rν(d−yh) (95)

which gives
β = ν (d− yh) = 2− α− νyh (96)

This relationship makes a relation between yh and the critical exponents just
like y was related to the exponent ν. Within mean field

yh = 3 (97)

Alternatively we can chose hbyh = 1 and obtain

f (r, h) = h
d
yh f

(
rh
− 1
νyh , 0

)
(98)

This gives for the order parameter at the critical point

φ (r = 0, h) ∼ ∂f (r = 0, h)

∂h
∼ h

d
yh
−1 (99)

and gives 1
δ = d

yh
− 1. One can simplify this to

δ =
yh

d− yh
=

2− α− β
β

(100)

and yields
β (1 + δ) = 2− α (101)

Note, the mean field theory obeys δ = yh
yh−d only for d = 4. whereas δ = 2−α−β

β
is obeyed by the mean field exponents for all dimensions. This is valid quite
generally, scaling laws where the dimension, d, occurs explicitly are fulfilled
within mean field only for d = 4 whereas scaling laws where the dimensionality
does not occur are valid more generally.

The last result allows us to rewrite our original ansatz for the free energy

f (r, h) = b(2−α)ν−1

f
(
rb

1
ν , hb

βδ
ν

)
. (102)

such that tb
1
ν = 1 leads to

f (r, h) = f2−αr
(
1, ht−βδ

)
(103)

We next analyze how the susceptibility diverges at the critical point. It holds

χ ∼ ∂2f (r, h)

∂h2

∣∣∣∣
h→0

∼ r2−α−2βδ (104)
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which leads to
γ = α− 2 + 2βδ (105)

which is yet another scaling relation.
The last scaling law follows from the fact that the correlation function χ (q, r)

taken at q = 0 equals the susceptibility χ just analyzed. This gives

χ (r) = b2−ηχ (rby) (106)

and choosing again rby = 1 yields

χ (r) = r−ν(2−η) (107)

such that
γ = ν (2− η) . (108)

To summarize, we have identified all the exponents in the assumed scaling
relations of F (t, h) and χ (q, t) with critical exponents (see Eqn.90 and102). In
addition we have four relationships the six exponents have to fulfill at the same
time which are collected here:

α = 2− dν
β (1 + δ) = 2− α
2βδ − γ = 2− α

γ = ν (2− η) (109)

One can easily check that the exponents of the two and three dimensional Ising
model given above indeed fulfill all these scaling laws. If one wants to calculate
these exponents, it turns out that one only needs to determine two of them, all
others follow from scaling laws.

1.5 Fast and slow variables
The divergency that is related the Ginzburg criterion for d ≤ 4 is caused by long
wave length, i.e. the k → 0 behavior of the momentum integral. One suspicion
could be that only long wave length are important for an understanding of this
problem. However, this is not consistent with the scaling concept, where the
rescaling parameter was always assumed to be arbitrary. In fact it fluctuations
on all length scales are crucial close to a critical point. This is on the one
hand a complication, on the other hand one can take advantage of this beautiful
property. Consider for example the scaling properties of the correlation function

χ (q, r) = b2−ηχ
(
bq, rb

1
ν

)
. (110)

Repeatedly we chose rb
1
ν = 1 such that b = r−ν → ∞ as one approaches the

critical point. However, if this scaling property (and the corresponding scaling
relation for the free energy) are correct for generic b (of course only if the system
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is close to Tc) one might analyze a rescaling for b very close to 1 and infer the
exponents form this more "innocent" regime. If we obtain a scaling property of
χ (q, r) it simply doesn’t matter how we determined the various exponents like
ν, η etc.

This, there are two key ingredients of the renormalization group. The first is
the assumption that scaling is a sensible approach, the second is a decimation
procedure which makes the scaling transformation x → x/b explicit for b ' 1.
A convenient way to do this is by considering b = el for small l. Lets consider
a field variable

φ (k) =

ˆ
ddx exp (ik · x)φ (x) (111)

Since there is an underlying smallest length-scale a ('interatomic spacing), no
waves with wave number larger than a given upper cut off Λ < 2π/a should
occur. For our current analysis the precise value of Λ will be irrelevant, what
matters is that such a cut off exists. Thus, be observe that φ (k) = 0 if k > Λ.

We need to develop a scheme which allows us to explicitly rescale length or
momentum variables. How to do this goes back to the work of Leo Kadanoff
and Kenneth G. Wilson in the early 70th of the last century. The idea is to
divide the typical length variations of φ (k) into short and long wave length
components

φ (k) =

{
φ< (k) 0 < k ≤ Λ/b
φ> (k) Λ/b < k ≤ Λ

. (112)

If one now eliminates the degrees of freedoms φ> one obtains a theory for φ<
only

exp
(
−H ′

[
φ<
])

=

ˆ
Dφ> exp

(
−H

[
φ<, φ>

])
. (113)

The momenta in H ′ [φ<] are confined to the smaller region 0 < k ≤ Λ/b. We
can now rescale simply according to

k′ = bk (114)

such that the new variable k′ is restricted to the original scales 0 < k′ ≤ Λ. The
field variable is then φ< (k′/b) and will conveniently be called

φ′ (k′) = b−ρφ< (k′/b) (115)

where the prefactor b−ρ is only introduced for later convenience to be able to
keep the prefactor of the k2 term in the Hamiltonian the same. The renormalized
Hamiltonian is then determined by H ′ [φ′].

In practice we start for example from a theory of the type Eq.24 and obtain
a renormalized Hamiltonian

H (r, u)→ H ′ (r (l) , u (l)) . (116)

If one now analyzes the so-called flow equation of the parameters r (l), u (l) etc.
there are a number of distinct cases. The most interesting one occurs if one
approaches a fixed point where r (l→∞) = r∗ , u (l→∞) = u∗ etc. If this is
the case the low energy behavior of the system is identical for all initial values
which reach the fixed point.
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1.6 Scaling behavior of the correlation function:
We start from H [φ] with cut off scale Λ. The new Hamiltonian with cut off
Λ/b, which results from the shell integration, is then determined by

e−H
′[φ<] =

ˆ
Dφ>e−H[φ<,φ>], (117)

which is supplemented by the rescaling

φ< (k) = bρφ′ (bk)

which yields the new Hamiltonian H ′ [φ′] which is governed by the same cut off
Λ. If one considers states with momenta with k < Λ/b, it is possible to determine
the corresponding correlation function either from H [φ] or from H ′ [φ′]. Thus,
we can either start from the original action:

〈φ (k1)φ (k2)〉 =

ˆ
Dφe−H[φ]

Z
φ (k1)φ (k2) = χ (k1) δ (k1 + k2) (118)

or, alternatively, use the renormalized action:

〈φ (k1)φ (k2)〉 =

ˆ
Dφ′e−H

′[φ′]

Z ′
b2ρφ′ (bk1)φ′ (bk1)

= b2ρχ′ (kb1) δ (bk1 + bk2)

= b2ρ−dχ′ (bk1) δ (k1 + k2) (119)

where χ′ (bk) = χ (bk, r (l) , u (l)) is the correlation function evaluated for H ′ i.e.
with parameters r (l) and u (l) instead of the "bare" ones r and u, respectively.
It follows

χ (k, r, u) = b2ρ−dχ (k, r (l) , u (l)) (120)

This is close to an actual derivation of the above scaling assumption and suggests
to identify

2ρ− d = 2− η. (121)

What is missing is to demonstrate that r (l) and u (l) give rise to a behavior
teyl = tby of

1.7 ε-expansion of the φ4-theory
We will now follow the recipe outlined in the previous paragraphs and explicitly
calculate the functions r (l) and u (l). It turns out that this can be done in a
controlled fashion for spatial dimensions close to d = 4 and we therefore perform
an expansion in ε = 4 − d. First we consider the free part of the Hamiltonian
given by:

H0(φ) =
1

2

ˆ Λ ddk

(2π)
d
χ−1

0 (k) φ(k) · φ(−k) (122)

18



where
χ−1

0 (k) = r0 + k2. (123)

Incidentally, if we want to determine the correlation function, it follows from
usual Gaussian integration:

〈φ (k)φ (−k)〉 =

´
Dφφ (k)φ (−k) e−H0´

Dφe−H0
= χ0 (k) . (124)

Here we used
´
dφφ2 exp

(
− 1

2χ0
φ2
)

=
√

2πχ
3/2
0 and

´
dφ exp

(
− 1

2χ0
φ2
)

=
√

2πχ
1/2
0 .

Integrating out states in the momentum shell between Λ/b and Λ with b = el

yields an additive correction δF to the free energy and we are left with the
effective action of states φ<(q) with momenta smaller than Λ/b:

H ′0(φ<) =
1

2

ˆ Λ/b ddk

(2π)
d

(
r + k2

)
φ<(k) · φ<(−k) (125)

In order to recover the original form of the action we finally rescale momen-
tum and temperature via: k′ = bk and φ′(k′) = Z

1/2
φ φ<(k) with Zφ = b−2ρ.

Choosing 2ρ = d+ 2 gives finally the renormalized action:

H ′0(φ′) =
1

2

ˆ Λ ddk′

(2π)
d

(
r(l) + k′2

)
φ′(k′) · φ′(−k′) (126)

The renormalized parameter r (l) obeys the following equation:

dr(l)

dl
= 2r(l) (127)

Next we consider the quartic term

Hint =
u

4

ˆ
ddk1d

dk2d
dk3φ (k1)φ (k2)φ (k3)φ (−k1 − k2 − k3) (128)

which couples φ> and φ<. If all three momenta are inside the inner shell, we
can easily perform the rescaling and find

H ′int =
ub4ρ−3d

4

ˆ
dDk′1d

Dk′2d
Dk′3φ (k′1)φ (k′2)φ (k′3)φ (−k′1 − k′2 − k′3) (129)

which gives with the above result for ρ:

4ρ− 3d = 4− d (130)

yielding
u (l) = ue(4−d)l. (131)

which is equivalent:
du(l)

dl
= (4− d)u(l). (132)
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Thus, at tree level, the Gaussian fixed point u∗ = 0 is unstable if d < 4. If how-
ever some of the momenta in Hint are in the outer shell and others have Fourier
modes inside Λ/b we need to analyze the coupling between them. Integrating
out of states in the momentum shell between Λ/b and Λ can be performed using

exp
(
−H ′(φ<)

)
∝ exp

(
−H ′0(φ<)

) 〈
exp

(
−Hint(φ

<, φ>)
)〉
>

≡ exp
(
−H ′0(φ<)− δH ′(φ<)

)
(133)

where the average 〈· · ·〉> is with respect the spin excitations, φ>, with momenta
between Λ/b and Λ that are characterized by H ′0(φ>). Within the one loop
approximation, it is useful to use the cumulant expansion:

δH ′ = 〈Hint〉> −
1

2

(〈
H2
int

〉
>
− 〈Hint〉2>

)
+ · · · . (134)

Explicitly it holds for the correction term to the action:

Hint(φ
<, φ>) =

u

4

ˆ Λ ddk1

(2π)
d
· · ·
ˆ Λ ddk4

(2π)
d

(φ<(k1) + φ>(k1)) · (φ<(k2) + φ>(k2))

(φ<(k3) + φ>(k3)) · (φ<(k4) + φ>(k4))δk1+k2+k3+k4 . (135)

Averaging with respect to the φ>(k) excitations yields non-vanishing contribu-
tions only if the number of φ>(k) fields in the corresponding term is even. The
case with zero φ>(k) was already discussed above. It is referred to as the tree
level contribution to the interaction term. The term with four φ>(k) fields yields
a constant which renormalizes the free energy on the two loop level. Finally,
there are in case of N = 3 altogether 10 contributions with two φ>(k) fields.
Here the remaining two field carry momentum |k| < Λ/b. These terms renor-
malize the free Hamiltonian. In the case of an O(N) symmetric vector field,
there are altogether 2(N + 2) contributions of this kind, yielding

δH ′0(φ<) = 4(N + 2)
u

4

ˆ > ddq

(2π)
d
〈φ (q)φ (−q)〉>

1

2

ˆ Λ/b ddk

(2π)
d
φ<(k) · φ<(−k)

= (N + 2)u

ˆ > ddq

(2π)
d
G(p)

1

2

ˆ Λ/b ddk

(2π)
d
φ<(k) · φ<(−k), (136)

where
´ >

ddq denotes a momentum integration with |q| between Λ/b and Λ.
Considering the second term on the right hand side of Eq.134, which is of

order u2, at the one loop level it is sufficient to consider renormalizations of the
interaction part of the action. All renormalizations of the free part will contain
two closed loops and are beyond the present single loop approximation. There
are altogether 8(N + 8) combinations to contract spin fields φ<(k) leaving four
φ>(k) fields which can finally be expressed as:

δH ′int(φ
<) = −1

2
8(N + 8)

(u
4

)2
ˆ Λ/b dk1

(2π)
d
· · ·
ˆ Λ/b dk4

(2π)
d
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× φ<(k1) · φ<(k2)φ<(k3) · φ<(k4)

×
ˆ > ddp

(2π)
d
G(p)G(q1 + q2 − p) δk1+k2+k3+k4 (137)

From these considerations we can finally obtain the renormalization group
equations for the correlation length and coupling constant within the one loop
approximation,

r′ = e2lr + (N + 2)u

ˆ > ddq

(2π)
d
G(p)

u′ = e(4−d)lu− (N + 8)u2

ˆ > ddq

(2π)
d
G(p)G(−p). (138)

The key difference to a straightforward perturbation theory is, that the momen-
tum integration is restricted to the shell with radius between Λ/b and Λ. This
avoids all the complications of a direct perturbation theory where a divergency
in u′ would result from the lower limit of the integration (long wave lengths).
Integrals of the type

I =

ˆ
Λ/b<k<Λ

ddk

(2π)
d
f (k) = Kd

ˆ Λ

Λe−l
kd−1f (k) dk (139)

where the integration over angles yields Kd = 2

(2
√
π)
d
Γ(d/2)

, i.e. K2 = 1
2π ,

K3 = 1
2π2 , or K4 = 1

8π2 . For small l follows:

I ' KdΛ
d−1f (Λ)

(
Λ− Λe−l

)
' KdΛ

df (Λ) l (140)

It holds therefore

r′ = (1 + 2l) r +
(N + 2)KdΛ

d

r + Λ2
ul

u′ = (1 + εl)u− (N + 8)KdΛ
d

(r + Λ2)
2 u2l, (141)

which is due to the small-l limit conveniently written as a differential equation

dr

dl
= 2r +

(N + 2)KdΛ
d

r + Λ2
u,

du

dl
= εu− (N + 8)KdΛ

d

(r + Λ2)
2 u2. (142)

Before we proceed, we introduce more convenient variables

r → r

Λ2
(143)

u → KdΛ
d−4u (144)
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which are dimensionless and obtain the differential equations

dr

dl
= 2r +

(N + 2)u

1 + r

du

dl
= εu− (N + 8)u2

(1 + r)
2 . (145)

The system has indeed a fixed point (where dr
dl = du

dl = 0) determined by

ε =
(N + 8)u∗

(1 + r∗)
2

2r∗ = − (N + 2)u∗

1 + r∗
(146)

This simplifies at leading order in ε to

u∗ =
ε

N + 8
or 0

r∗ = − (N + 2)

2
u∗ (147)

If the system reaches this fixed point it will be governed by the behavior in its
immediate vicinity, allowing us to linearize the flow equation in the vicinity of
the fixed point, i.e. for small

δr = r − r∗

δu = u− u∗. (148)

Consider first the fixed point with u∗ = r∗ = 0 gives

d

dl

(
δr
δu

)
=

(
2 3
0 ε

)(
δr
δu

)
(149)

with eigenvalues λ1 = 2 and λ2 = ε. Both eigenvalues are positive for ε > 0
(d < 4) such that there is no scenario under which this fixed point is ever
governing the low energy physics of the problem.

Next we consider u∗ = ε
9 and r∗ = − ε6 . It follows

d

dl

(
δr
δu

)
=

(
2− N+2

N+8ε N + 2 + (N+2)2

2(N+8)ε

0 −ε

)(
δr
δu

)
(150)

with eigenvalues

y = 2− N + 2

N + 8
ε

y′ = −ε (151)
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the corresponding eigenvectors are

e = (1, 0)

e′ =

(
−3 (N + 2) (N + 6)

4 (N + 8)
+
ε

8
, 1

)
(152)

Thus, a variation along the e-direction (which is varying r) causes the system
to leave the fixed point (positive eigenvalue), whereas it will approach the fixed
point if

(r, u) ∼ e′ (153)

this gives

rc (u) = u

(
−3 (N + 2) (N + 6)

4 (N + 8)
+
ε

8

)
(154)

which defines the critical surface in parameter space. If a system is on this
surface it approaches the fixed point. If it is slightly away, the quantity

t = r − rc (u) (155)

is non-zero and behaves as

t (l) = teyl = tby. (156)

The flow behavior for large l is only determined by the value of t which is the
only scaling variable, which vanishes at the critical point. Returning now to the
initial scaling behavior of the correlation function we can write explicitly

χ (k, t) = b2χ (k, tby) (157)

comparing this with χ (q, t) = b2−ηχ
(
bq, tb

1
ν

)
gives immediately the two critical

exponents

η = O
(
ε2
)

ν ' 1

2
+
N + 2

N + 8

ε

4
. (158)

A systematic improvement of these results occurs if one includes higher order
terms of the εexpansion. Thus, the renormalization group approach is a very
powerful tool to analyze the highly singular perturbation expansion of the φ4-
theory below its upper critical dimension. How is it possible that one can obtain
so much information by essentially performing a low order expansion in u for
a small set of high energy degrees of freedom? The answer is in the power of
the scaling concept. We have assumed that the form χ (q, t) = b2−ηχ

(
bq, tb

1
ν

)
which we obtained for very small deviations of b from unity is valid for all b. If
for example the value of ν and η would change with l there would be no way
that we could determine the critical exponents from such a procedure. If scaling
does not apply, no critical exponent can be deduced from the renormalization
group.some quantity t which vanishes at the phase transition. To see this is
easier if one performs the calculation explicitly.
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2 Quantum critical behavior

Part III

Critical behavior in disordered
systems
3 Random mass disorder
Next we wish to describe a disordered system. Imagine a spin system where the
exchange interaction Ji,j between spins is affected by disorder and fluctuates
from site to site. In the continuum’s description this amounts to replacing r0

by a spatially varying function:

r0 → r0 + δr (x) . (159)

One could now try to solve the problem for a given configuration of δr (x) and try
to deduce information about the system. If we are only interested in averaged
quantities, it makes sense to define a distribution function of the δr (x) and
analyze averaged quantities.
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