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1. Nichtwechselwirkende Spins:

(a) Stationary states are characterized by the sets of quantum numbers {σa} with the
corresponding energies E{σa} = −µ

∑
σzaH = −MH. Here M is the magnetization

in the direction of the field, which we have chosen as the z axis. σa = ±1 are the
z-components of the individual spins. We choose units with kB = 1.

(b) The statistical sum is

Z =
∑
{σa}

e−E{σa}/T =
∑
{σa}

N∏
a=1

e−µHσa/T =
N∏
a=1

∑
{σa}

e−µHσa/T =

[
2 cosh

µH

T

]N
.

The free energy is the logarithm of the statistical sum

F = −T lnZ = −NT ln

[
2 cosh

µH

T

]
.

(c) The entropie:

S = −
(
∂F

∂T

)
H

= N ln

[
2 cosh

µH

T

]
− µHN

T
tanh

µH

T
.

The magnetization:

M = −
(
∂F

∂H

)
T

= µN tanh
µH

T
.

The specific heat:

cH = T

(
∂S

∂T

)
H

=
µ2H2

T 2 cosh2 µH
T

.

The specific heat for constant magnetization can be calculated inverting the function
M(H,T ):

cM = T

(
∂S(T,H(M,T ))

∂T

)
M

= T

(
∂S(T,H(M,T ))

∂T

)
H

+ T

(
∂S(T,H(M,T ))

∂H

)
T

(
∂H(M,T )

∂T

)
M

= 0.



(d) In the limit of large fields,
M(µH � T ) ≈ µN.

In the limit of small fields,

M(µH � T ) ≈ µ2N
H

T
.

Therefore the susceptibility is given by the Curie law

χ(T ) = lim
H→0

(
∂M

∂H

)
T

=
µ2N

T
.

2. Heisenberg–Modell für 2 Gitterplätze:

According to the general rules of addtion of angular momentum, the system of two
momenta can be described by a set of four quantum numbers. The two common possi-
bilities are either (i) s21, s

2
2, s

z
1, s

z
2, or (ii) s21, s

2
2, S

2, Sz, where S = s1 +s2. Suppose we
choose the first possibility. Then for fixed s21 = s1(s1 +1), s22 = s2(s2 +1), the quantities
szi take 2si + 1 values each, so that the total number of states being (2s1 + 1)(2s2 + 1).

For two spins 1, si = 1, we have 9 possible states.

In this problem, it is more convenient to choose the second representation, since

s1 · s2 =
1

2
[S(S + 1)− s1(s1 + 1)− s2(s2 + 1)] .

The 9 possible states correspond to the following values (fixing s1 = s2 = 1):

S = 0, Sz = 0, ⇒ s1 · s2 = −2,

S = 1, Sz = 0,±1, ⇒ s1 · s2 = −1,

S = 2, Sz = 0,±1,±2, ⇒ s1 · s2 = 1.

(a) In the absence of the field, the statistical sum is given by

Z =
∑
{S,Sz}

eJs1·s2/T = 5eJ/T + 3e−J/T + e−2J/T = 6 cosh J/T + 2eJ/T + e−2J/T .

The free energy is
F = −T lnZ.

The specific heat is

CV = −T ∂
2F

∂T 2
=
J2

T 3
e−2J/T

[
4

(
T

J
− 1

)
+ 3

(
2T

J
− 1

)
eJ/T − 5

(
2T

J
+ 1

)
e3J/T

]



(b) In the presence of the field, the statistical sum is

Z =
∑
{S,Sz}

e(Js1·s2+µHS
z)/T =

= eJ/T
(

1 + 2 cosh
µH

T
+ 2 cosh

2µH

T

)
+ e−J/T

(
1 + 2 cosh

µH

T

)
+ e−2J/T .

The free energy is
F = −T lnZ.

The magnetization is

M = − ∂F
∂H

=
4µ

Z

[
cosh

J

T
sinh

µH

T
+ eJ/T sinh

2µH

T

]
.

The susceptibility is

χ(T ) =
4µ2

Z0T

[
cosh

J

T
+ 2eJ/T

]
,

where Z0 is the above statistical sum in the absence of the field. This susceptibility
becomes Curie-like only at high temperatures T � J .

3. Masselose relativistische Teilchen:

(a) The statistical sum of a system of non-interacting particles factorizes:

Z =
ZN

1

N !
.

The single-particle “statistical sum” is given by (here ~ = c = 1)

Z1 = V

∫
d2p

(2π)2
e−c|p|/T =

V

2π

∞∫
0

pe−cp/Tdp =
V T 2

2πc2

∞∫
0

ze−zdz =
V T 2

2πc2
.

Hence, the statistical sum is

Z =
V N

N !(2π)N

(
T

c

)2N

.

The free energy is

F = −T lnZ = −T

{
2N ln

T
√
V

c
√

2π
− lnN !

}
= −T

{
2N ln

[
T

c

(
V

2π

)1/2
]
−N lnN +N

}
,

or

F = −2NT ln

[
T

c

(
V

2πN

)1/2
]
−NT.



(b) The entropy is given by the derivative

S = −
(
∂F

∂T

)
V,N

= −F
T

+ 2N.

Similarly, the pressure is

P = −
(
∂F

∂V

)
T,N

=
NT

V
.

(c) The equation of state relates the internal energy of the system to temperature. The
internal energy is

U = V

∫
d2p

(2π)2
cpθ(pF − p) =

cV

2π

pF∫
0

p2dp =
cV p3F

6π
.

This should be related to the particle density

N

V
=

∫
d2p

(2π)2
θ(pF − p) =

1

2π

pF∫
0

pdp =
p2F
4π
.

Hence
pF =

√
4πN/V

and the internal energy can be expressed as

U =
4cN

3

√
4πN

V

The pressure can be evaluated also as

P = −
(
∂U

∂V

)
T,N

=
U

2V
.

Comparing with the previous result, we find the equation of state

PV = NT ⇒ U = 2NT.

4. Ideales Gas:

(a) The statistical sum of a system of non-interacting particles factorizes:

Z =
ZN

1

N !
.

The single-particle “statistical sum” is given by (here ~ = c = 1)

Z1 = V

∫
d3p

(2π)3
e−a|p|

4/T =
V

2π2

∞∫
0

p2e−ap
4/Tdp =

V T 3/4

2π2a3/4

∞∫
0

z2e−z
4

dz =
V

8π2
Γ(3/4)

(
T

a

)3/4

.



Hence, the statistical sum is

Z =
V N

N !

[
Γ(3/4)

8π2

]N (
T

a

)3N/4

.

The free energy is

F = −T lnZ = −T

{
N ln

[
V

Γ(3/4)

8π2

(
T

a

)3/4
]
− lnN !

}

= −T

{
3N

4
ln

[
T

a

(
V Γ(3/4)

8π2

)4/3
]
−N lnN +N

}
,

= −3

4
NT ln

[
T

a

(
V Γ(3/4)

8π2N

)4/3
]
−NT.

(b) The entropy is given by the derivative

S = −
(
∂F

∂T

)
V,N

= −F
T

+
3

4
N.

Similarly, the pressure is

P = −
(
∂F

∂V

)
T,N

=
NT

V
.

(c) The equation of state relates the internal energy of the system to temperature. The
internal energy is

U = V

∫
d3p

(2π)3
ap4θ(pF − p) =

aV

2π2

pF∫
0

p6dp =
aV p7F
14π2

.

This should be related to the particle density

N

V
=

∫
d3p

(2π)3
θ(pF − p) =

1

2π2

pF∫
0

p2dp =
p3F
6π2

.

Hence
pF = 3

√
6π2N/V

and the internal energy can be expressed as

U =
3aN

7

(
6π2N

V

)4/3

The pressure can be evaluated also as

P = −
(
∂U

∂V

)
T,N

=
4U

3V
.

Comparing with the previous result, we find the equation of state

PV = NT ⇒ U =
3

4
NT.


