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1. Boltzmann equation in the presence of spin-orbit interaction:

(a) Derive the kinetic equation for a system with SO interaction

Consider first a signle spin. It can be described by a 2 x 2 density matrix p satisfying

the equation of motion
dp
E i, H
dt 3 [p7 ] Y
where he Hamiltonian H is also a 2 x 2 matrix. The diagonal elements of p give the

probabilities to
nd the system in a state with s; = £1/2:

(52) = Trps. = (p11 — p22)/2.

The off-diagonal elements of p take into account the possibility to find the spin in
a state which is a coherent superposition of the states with s, = +1/2, e.g. a state
with a definite projection of s,.
Consider now the kinetic equations describing a particle with spin. Now, the density
matrix involves not only spin variables, but also phase space variables. Treating the
latter semicalssically, we find

dp

pn =i[p, H] + I[p].

As a result, the kinetic equation has the form

ap dp .0p .
Ly vl 4 pZl —ilp, H + 1]p).

Finally, using the explicit form of the Hamoltonian

_ 7
we find 5 9
p J— _p =
5+ i[Q(p)o, p] eEap I[p]



(b)

Spin and charge distribution functions

Here we use the explicit form for a density matrix where the phase space part is
treated semiclassically

p= 3 F(t.0) + 8(t.p)o,

where f(t,p) is the usual (charge) distribution function, S(t,p) is the spin distribu-
tion function, and the first term is proportional to the unit matrix (no texplicitly
written).

Substituting the above density matrix into the kinetic equation we find

19f 98 . 1 . of 08
éa + EO’ + Z[Q<p)0-7 SU] - §eEa8_pa - 6Eaa_pao' - I[p]

The commutator can be simplified using the properties of the Pauli matrices
This way we find the matrix equation

19f a8

19f 98 _ af oS
20t ot

1
21Qp) x S|lo — —eby— —eE,—o = I|p|.
[ (p) ]0- 26 Oéapa € apaa- [p]
The matrix equation can be reduced to a set of scalar equations by multiplying the
equation by the Pauli matrices and evaluating the trace. We find

of of
E - €Eaa—pa = Tr[[p],

28, 9s;, 1

pn — 2[9(1)) X S]l — eEaa_pa = §Trazf[p]

Finally, let us assume the simplest T-approximation for the collision integral

Substituting this into the above kinetic equations we find

of of  of

2 eE, =L,

ot “Ope T
95, s, 68,
ot — 2[9(1)) X S]z — eEaa—pa = — - .

Rashba spin-orbit coupling
For the case of the Rashba coupling,

Q= a(pyu _pz)u

the vector product in the kinetic equations has the form

Qx8= a(_pmszy _pySzapxSx +pysy) = _apSz + a(SL : p)ezu



where S| = (5;,5,) and e, is the unit vector in the z-direction.
The equations for the spin distribution function now have the form

085, 08, 05,
28, p—eB, 2% =
ot aSi-p-e “ Opa T’
0S| 0S| 0S|
+2apS, — ¢E - 2L
ot aps: — cba OPa T

Equilibrium distribution function

The Hamiltonian

H=—+Q
has the following eigenvalues
2
e+(p) 2p—m +ap

Without writing down the eigenvectors, we may relate the Hamiltonian in the dia-
gonal form to the original basis using a unitary transformation

2
H=U" {f—m—l—apaz} U,

with
Utapo,U = Q(p)o.

The equilibrium occupation numbers of the eigenstates are given by the Fermi func-
tions nrle,(p)]. Hence the equilibrium density matrix in the basis of the eigenstates
is given by

_ 1

o = 5{nrles(p)] + nrle- ()] + 0= (nrles (p)] = nrle- ()] |-

The density matrix in the original basis can be found using the same unitary rotation

i)

2

m:wa:l{mkmm+mk@N+@ﬂu@kﬂﬂewm .

Reading off the expressions for the charge and spin distributions we find (with
e =p?/(2m))
fo=mnrler(p)] + nele-(p)] — 2np(e),

) 2®) L onp)

Si0= (np[e+(p)] — nple-(p)] ap a0

SZ70 - O



(e)

Linear response solution

Consider the equations for the spin distribution function in the steady state. Intro-
ducing small deviations from equilibrium,

SL:SL,O+6SL7 52253Z7

we linearize the equations for the spin distribution function. For the purpose of
linearizing, it is important to understand that both S and E are small quantities
(deviations from equilibrium). In particular, we disregard terms like E, 45, as those
are of second order in small quantities. We find

208" + 2068 . p = 8S. /7,

oS
2ap3S, — eE,—0 = —0S, /T,
Ipa
where the first term vanishes, since S,y o< Q(p) and Q(p) L p. Clearly, in the
absence of the electric field the solution is zero, 6.5 = 0, proving that we have the
correct equilibrium distribution. We can use the second equation to eliminate 0.5

from the first; then, solving for 4.5,, we find,

—2at%e

0S, = ——m——
1+ 4a2p?72

1,0 »

where we have used the general relation (product rule of differentiation) (9,,S. ) -
p = 0,,(SLop) — Sio - Oy, p which reduces to (9,,S10) - P = —(SL0)a, due to
S1 0 L p. Inserting the result for 05, into the second equation, we find

8SL70 460./27'3

OPpa 1+ 4a?72p?

§SL = GTEa (E . SLO)p.

Average spin polarization

The average spin is given by

Given that 4.5, is an odd function of the momentum components p,, we conclude
that

(s.) = 0.

The planar polarization we calculate choosing the z-direction along the in-plane
electric field,
E = (FE,0,0).

In this case, only the y-component of the magnetization is nonzero. For weak spin-
orbit coupling (o — 0) we find

2

d*p P
_ 3,3 y 2
(sy) = deEa’T / O 4a272p2nIF<p /2m).




At T =0,
1
np(p*/2m) = —55(17—%),

and the integral can be easily evaluated, e.g. in polar coordinates.

The final result is given by
a*8pf

1
(s,) = ——eEm——"-—.
v s 1 + 4a272p%



