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1. Dielektrische Funktion des nicht-wechselwirkenden Elektronengases:

Consider a total potential which includes both the external potential and the induced
(screening) potential. Assume that the potential has a form of the plane wave

Vte
i(qr−ωt).

Then the distribution function can be written down as the sum of the equilibrium
distribution and a perturbation

f(p) = f0(p) + f1(p)ei(qr−ωt).

Substituting this expression into the Boltzmann equation in the τ -approximation we
find an equation for f1(p):

−iωf1 +
∂f0
∂ε

v(−iqVt) + iqvf1 = −f1
τ

+
δnf0
τ
.

Notice, that the right-hand side contains two terms. The first term is the usual deviation
of the distribution function f1. The second term is less standard - this is the variation
of the equilibrium distribution due to the variation of particle density. Indeed, nonuni-
form electric fields cause fluctuations of the particle density. As a result, the chemical
potential changes as well. Expanding the distribution function to the linear order in the
variation of the chemical potential we find

∂f0
∂µ

δµ = −∂f0
∂ε

∂µ

∂n
δn = −1

ν

∂f0
∂ε

δn(r) = δnf0,

where ν = ∂n/∂µ is the density of states at the Fermi level and δn(r) is the variation
of local particle density

δn(r) = nse
i(qr−ωt).

Essentially, ns is the density of the screening charge.

Now we use the Boltzmann equation to find the deviation of the distribution function
f1:

f1 =
iqvVtτ(∂f0/∂ε) + δnf0

1− iωτ + iqvτ
.

Now, the deviation of the distribution function results in the density variation

ns = 2

∫
d3p

(2π)3
f1(p).



Let us first average f1 over the angle qv = qv cos θ. As a result we find

f̄1(p) =
δnf0

2iqvτ
ln

1− iωτ + iqvτ

1− iωτ − iqvτ

− Vt
∂f0
dε

[
1− 1− iωτ

2iqvτ
ln

1− iωτ + iqvτ

1− iωτ − iqvτ

]
.

Using the Fermi distribution as f0 and recalling the density of states

ν =
p2

π2v
,

we now find the equation for ns, where we use the expression for δnf0 in the obtained
solution f̄1(p):

ns =
ns

2iqvτ
ln

1− iωτ + iqvτ

1− iωτ − iqvτ

− νVt

[
1− 1− iωτ

2iqvτ
ln

1− iωτ + iqvτ

1− iωτ − iqvτ

]
.

This can be easily solved to obtain ns

The screening charge ns is proportional to the total potential Vt

ns = X(q, ω)Vt,

where the coefficient defines the dielectric response function

ε(q, ω) = 1− 4πe2

q2
X(q, ω).

Using the obtained solution for the screening charge we can now find the dielectric
response function of the semi-classical non-interacting electron gas

ε(q, ω) = 1 +
4πe2

q2
ν

1− 1−iωτ
2iqvτ

ln 1−iωτ+iqvτ
1−iωτ−iqvτ

1− 1
2iqvτ

ln 1−iωτ+iqvτ
1−iωτ−iqvτ

.

2. Das thermoelektrische Effekt:

(a) Assuming a small temperature gradient

T = T1 + (r1 − r2)∇T,

one should note that the chemical potential also becomes position-dependent since
µ depends on T . Thus the “initial” distribution function can be written as

f0(ε, r) =
1

1 + exp
[
ε−µ(r)
T (r)

] .



This is valid while the gradient is not too large, so that

T

|∇T |
� l . . . ,

where l represents the relaxation length in the system.

The left-hand side of the Boltzmann equation contains the following gradient

∇rf0(ε, r) = −∂f0
∂ε

[
∇µ(r) +

ε− µ
T

∇T

]
.

To obtain the result one needs to notice the following

∇rf0(ε, r) =
∂f0
∂µ

∇µ(r) +
∂f0
∂T

∇T,

and
∂f0
∂µ

= −∂f0
∂ε

,

∂f0
∂T

= −∂f0
∂ε

ε− µ
T

.

Assuming that the gradient of the chemical potential is already taken into account
by forming the electro-chemical potential, consider the responce of the system to
the temperature gradient alone. The corresponding Boltzmann equation is

−∂f0
∂ε

ε− µ
T

(v∇T ) = −f − f0
τtr

.

The solution to this equation is then

δf = τtr
ε− µ
T

(v∇T )
∂f0
∂ε

.

The electric current can be evaluated as always from the equation

j = e

∫
(dp)vδf.

Substituting the above solution δf one finds for the case of the isotropic spectrum

j = η∇T,

where

η =
e

T

∫
dε
[
νD
]
(ε− µ)

(
−∂f0
∂ε

)
.

Here

D =
1

3
v2F τtr.

is the diffusion coefficient.

Recall from the lecture that for the calculation of the Drude conductivity it was
sufficient to use the approximation

−∂f0
∂ε
≈ δ(ε− µ).



Here however this is not sufficient since in this approximation the result would be
strictly zero. Moreover, taking into account the derivative of the δ-function as it
was done during the calculation of the thermal conductivity will not change this
result.

What is the physics behind the effect? So far we have always neglected the energy
dependence of the density of states (and/or the diffusion coefficient). In reality this
is not so. The thermo-electric effect is an important example where one has to keep
track of this dependence, i.e. one has to expand in the vicinity of the Fermi level

νD ≈
[
νD
]∣∣∣
EF

+ (ε− µ)
[
νD
]′∣∣∣∣

EF

.

Substituting this expression into η and in addition taking into account that ∂f0/∂ε
is not a δ-function

−∂f0
∂ε

=
1

4T cosh2 ε−µ
2T

one finds

η = e

∫
dε

(ε−µ)2

4T 2

1

cosh2 ε−µ
2T

[
νD
]′∣∣∣∣

EF

=
π2

3
eT
[
νD
]′∣∣∣∣

EF

.

The derivative appearing in the expression for η is the measure of the electron-
hole asymmetry in the system. Indeed, particles react to the temperature gradient
independently of their charge. Both electrons and holes move from hot to cold. But
since their charges are opposite there has to be an asymmetry between them - i.e.
different number of electrons and holes - for this flow to result in non-zero current.

(b) Consider now the contribution of the electric field to the Boltzmann equation. In
the left-hand side we have the term

eE ·∇pf0 = eE ·∇pεp
∂f0
∂ε

= eE · v∂f0
∂ε

.

Adding this term to the above kinetic equation we find

−∂f0
∂ε

ε− µ
T

(v∇T ) + eE · v∂f0
∂ε

= −f − f0
τtr

.

The solution to this equation is

δf = τtr

[
ε− µ
T

(v∇T )− eE · v
]
∂f0
∂ε

.

Now we will evaluate the current. The first term we have already integrated above,
the second term yields∫

(dp)v(E · v)

(
−∂f0
∂ε

)
=

1

2
v2FEν(EF ),

which translates into the standard Drude formula

j = σDE.



In an open circuit, the current is zero which is achieved by the balance between the
two above contributions. This means, that applying the thermal gradient we induce
the electrical field

E =
η

σD
∇T,

where the above calculation yields the values of η and σD for the 3D electron gas
with parabolic dispersion.


