Home | deutsch  | Legals | Data Protection | Sitemap | KIT

Institute for Theoretical Condensed Matter physics

Karlsruhe Institute of Technology

Wolfgang-Gaede-Str. 1
D-76131 Karlsruhe

Phone: +49 721 608-43367
Fax: +49 721608-47779


Dissipative quantum Ising model in a cold-atom spin-boson mixture

Dissipative quantum Ising model in a cold-atom spin-boson mixture

Peter P. Orth, Ivan Stanic, and Karyn Le Hur


Phys. Rev. A 77, 051601(R) (2008)

Using cold bosonic atoms with two (hyperfine) ground states, we introduce a spin-boson mixture that allows one to implement the quantum Ising model in a tunable dissipative environment. The first specie lies in a deep optical lattice with tightly confining wells and forms a spin array; spin-up (spin-down) corresponds to occupation by one (no) atom at each site. The second specie forms a superfluid reservoir. Different species are coupled coherently via laser transitions and collisions. Whereas the laser coupling mimics a transverse field for the spins, the coupling to the reservoir sound modes induces a ferromagnetic (Ising) coupling as well as dissipation. This gives rise to an order-disorder quantum phase transition where the effect of dissipation can be studied in a controllable manner.