Home | deutsch  | Legals | Data Protection | Sitemap | KIT

Institute for Theoretical Condensed Matter physics

Karlsruhe Institute of Technology

Wolfgang-Gaede-Str. 1
D-76131 Karlsruhe

Phone: +49 721 608-43367
Fax: +49 721608-47779

http://www.tkm.kit.edu/

Quantum Dynamics of the Driven and Dissipative Rabi Model

Quantum Dynamics of the Driven and Dissipative Rabi Model
Author:

Loïc Henriet, Zoran Ristivojevic, Peter P. Orth, Karyn Le Hur

Source:

Phys. Rev. A 90, 023820 (2014)

preprint: arXiv:1401.4558 

Date: 18.01.2014

The Rabi model considers a two-level system (or spin-1/2) coupled to a quantized harmonic oscillator and describes the simplest interaction between matter and light. The recent experimental progress in solid-state circuit quantum electrodynamics has engendered theoretical efforts to quantitatively describe the mathematical and physical aspects of the light-matter interaction beyond the rotating wave approximation. We extend a stochastic non-perturbative Schrödinger equation approach which enables us to access the strong-coupling limit of the Rabi model and study the effects of dissipation and AC drive in an exact manner. We consider the high-Q cavity limit and include the effect of ohmic noise on the non-Markovian spin dynamics resulting in Kondo-type correlations. We compute the time evolution of spin variables in various conditions. As a scope, we discuss the possibility to reach a steady state with one polariton in realistic experimental conditions.