Home | deutsch  | Legals | Data Protection | Sitemap | KIT

Institute for Theoretical Condensed Matter physics

Karlsruhe Institute of Technology

Wolfgang-Gaede-Str. 1
D-76131 Karlsruhe

Phone: +49 721 608-43367
Fax: +49 721608-47779


Quantum Dynamics of the Driven and Dissipative Rabi Model

Quantum Dynamics of the Driven and Dissipative Rabi Model

Loïc Henriet, Zoran Ristivojevic, Peter P. Orth, Karyn Le Hur


Phys. Rev. A 90, 023820 (2014)

preprint: arXiv:1401.4558 

Date: 18.01.2014

The Rabi model considers a two-level system (or spin-1/2) coupled to a quantized harmonic oscillator and describes the simplest interaction between matter and light. The recent experimental progress in solid-state circuit quantum electrodynamics has engendered theoretical efforts to quantitatively describe the mathematical and physical aspects of the light-matter interaction beyond the rotating wave approximation. We extend a stochastic non-perturbative Schrödinger equation approach which enables us to access the strong-coupling limit of the Rabi model and study the effects of dissipation and AC drive in an exact manner. We consider the high-Q cavity limit and include the effect of ohmic noise on the non-Markovian spin dynamics resulting in Kondo-type correlations. We compute the time evolution of spin variables in various conditions. As a scope, we discuss the possibility to reach a steady state with one polariton in realistic experimental conditions.