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I. PHONONS

In our discussion of the electronic properties, we assumed that the ions are fixed, an

assumption that was justified because of the large difference in the electron and ion masses.

Next we will analyze the behavior of ionic vibrations. Before we perform a systematic

investigation of the problem we discuss a few simple examples.

A. Linear Chain of vibrating atoms

We consider a long chain of coupled ions, where coupling only exists between nearest

neighbors. We consider equal massesM and equal force constants k, respectively. In addition

we assume periodic boundary condition, i.e. we consider a ring of N oscillators. The

positions of the l-th ions are given as:

Rl = R
(0)
l + ul. (1)

The lattice "vector" (we are in one dimension) that corresponds to the equilibrium positions

is

R
(0)
l = la, (2)

where a is the distance between two neighboring equilibrium positions of the ions. ul is the

deviation of the ions from their minimum potential position and characterizes the lattice

dynamics. The equation of motion follows immediately as

M
d2ul
dt2

= −2kul + k (ul+1 + ul−1) . (3)

This equation of motion also follows from the Lagrage function

L =
∑
l

M

2

(
dul
dt

)2

− k

2

∑
l

(ul − ul−1)2 . (4)

To solve the equation of motion we make the ansatz

ul = Aeiωte−i
2πnl
N . (5)

The last equation reflects the periodic boundary condition

ul+N = ul, (6)
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which follows if n is an integer. The corresponding wave number is

qn =
2π

a

n

N
(7)

and we can write

ul = Aeiωte−iRlqn . (8)

It holds immediately that

ul±1 = e∓iqnaul (9)

which allows us to write the equation of motion as

−Mω2ul = −2kul
(
1− e−iqna − e+iqna

)
(10)

which yields

ω (q) =

√
2k

M
(1− cos (qa))1/2 . (11)

It obviously holds that only solutions with −π
q
< q ≤ π

a
are physically nonequivalent. To see

this one analyzes ul for q and q+ 2π
a
and finds that they are indeed identical. The situation

is exactly as we saw in case of the periodic electronic system. Only wave numbers of the

first Brillouin are relevant. In the limit of large N the wave vector values qn are dense and

we don’t have to worry about the integer label n of q.

In the limit of small ω, which corresponds to small q, we use cosx ' 1 − x2/2 and it

follows

ω (q) = cs |q| (12)

which determines the sound velocity

cs =

√
k

m
a. (13)

1. Continuum’s limit and one dimensional field theory

It is possible to determine this last result without solving the entire discrete problem

explicitly. To this end we consider the so called continuum’s limit, where we replace sums

by integrations etc. In this case it is convenient to change the notation somewhat. We use

x to label coordinates, i.e. Rl → x. In the continuum limit we are not interested in what
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happens at distances of order of a, but at much larger distances, i.e. we can, whenever

convenient, replace ∑
l

· · · → 1

a

∫
dx · · · . (14)

For our Lagrangian follows

L =
∑
l

a
M

2a

(
dul
dt

)2

− ka

2

∑
l

a

(
ul − ul−1

a

)2

→
∫
dx

(
m

2a

(
∂u (x, t)

∂t

)2

− ka

2

(
∂u (x, t)

∂x

)2
)

(15)

Lets introduce

µ =
m

a
and κ = ka (16)

which yields the action S =
∫
dtL of the classical field theory

S =

∫
dtL =

∫
dxdt

(
µ

2

(
∂u

∂t

)2

− κ

2

(
∂u

∂x

)2
)
. (17)

It is also convenient to introduce the Lagrange density

L =
µ

2

(
∂u

∂t

)2

− κ

2

(
∂u

∂x

)2

(18)

such that

S =

∫
dxdtL (19)

In the next step we derive the equation of motion that follows from this action. We use the

notation

ut ≡
∂u

∂t

ux ≡
∂u

∂x
(20)

We consider a somewhat more general situation and analyze a Lagrange density that

depends on ut, ux, as well as u. Suppose that u (x, t) is the solution that minimizes the

action S. This implies that all solutions

u (x, t, α) = u (x, t) + αζ (x, t) (21)

will increase S and thus dS
dα

∣∣
α=0

= 0. We furthermore assume that ζ (x, ti,f ) = 0 for t = ti

and tf (i.e. the initial and final time points). In addition we assume ζ (xs, t) = 0, where xs

are surface points of our problem.
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It follows
dS

dα
=

∫
dxdt

(
∂L
∂u

∂u

∂α
+
∂L
∂ut

∂ut
∂α

+
∂L
∂ux

∂ux
∂α

)
= 0 (22)

It holds ∫
dt

∂L
∂ut

∂ut
∂α

= −
∫
dt

∂

∂t

∂L
∂ut

∂u

∂α∫
dx

∂L
∂ux

∂ux
∂α

= −
∫
dx

∂

∂x

∂L
∂ux

∂u

∂α
(23)

which yields
dS

dα
=

∫
dxdt

(
∂L
∂u
− ∂

∂t

∂L
∂ut
− ∂

∂x

∂L
∂ux

)
∂u

∂α
= 0 (24)

which yields for arbitrary ∂u
∂α

= ζ (x, t) the generalized Euler-Lagrange equation

∂

∂t

∂L
∂ut

+
∂

∂x

∂L
∂ux
− ∂L
∂u

= 0 (25)

We are now in a position to determine the equation of motion. It holds with

L =
µ

2
u2
t −

κ

2
u2
x (26)

that
∂L
∂ut

= µut and
∂L
∂ux

= −κux (27)

and the equation of motion is

µutt − κuxx = 0 (28)

or explicitly
1

c2
s

∂2u

∂t2
− ∂2u

∂x2
= 0 (29)

with

cs =

√
κ

µ
=

√
k

m
a (30)

as sound velocity. The last interpretation is justified as the above equation of motion is

obviously a wave equation with solution

u (x, t) = Aeiωte−iqx (31)

where insertion yields

−ω
2

c2
s

+ q2 = 0 (32)
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yielding the low momentum portion of the above spectrum

ω = csq (33)

with same cs. Thus, if we are only interested in the long wavelength behavior of the system,

it is suffi cient to perform the continuum limit at the level of the actions and Lagrangian

already.

B. Acustic and optic branches of the spectrum

Next we consider the situation with more than one atom per unit cell. We consider for

simplicity a one dimensional system with two atoms in each unit cell. The positions of the

ions are given as

R1
l = R

(0)
l + u1

l

R2
l = R

(0)
l + b+ u2

l (34)

The lattice vector is R(0)
l = la (l is an integer) that corresponds to the equilibrium positions

of atom 1, while atom 2 has equilibrium positions R(0)
l + b, where 0 < b < a. Let k1 and

k2 be the force constants (they can be different as b must not be a/2) and M1 and M2 the

corresponding masses. The equations of motion follow immeadiately as

M1
d2u1

l

dt2
= −k1

(
u1
l − u2

l

)
− k2

(
u1
l − u2

l−1

)
M2

d2u2
l

dt2
= −k1

(
u2
l − u1

l

)
− k2

(
u2
l − u1

l+1

)
(35)

We make again the ansatz

ukl = Akeiωte−iR
(0)
l q. (36)

and obtain

−ω2M1A
1 = −k1

(
A1 − A2

)
− k2

(
A1 − A2e−iqa

)
−ω2M2A

2 = −k1

(
A2 − A1

)
− k2

(
A2 − A1eiqa

)
(37)

This is a homogeneous system of equations. Requiring that the determinant vanishes one

obtains the frequencies

ω2
± =

1

2
ω2

0

(
1±

√
1− γ sin2 (qa/2)

)
(38)
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FIG. 1: Dispersion relation of a chain of atoms with two atoms per unit cell

where

ω2
0 =

k1 + k2

M1M2

(M1 +M2)

γ =
16M1M2k1k2

(k2 + k2)2 (M1 +M2)2 (39)

0 < γ < 1 and takes its largest value γmax = 1 in case M1 = M2 and k1 = k2.

At small momenta holds

ω− '
√
γ
ω0a

4
q

ω+ ' ω0

(
1− γ

32
(qa)2

)
(40)

Thus, ω− behaves like the sound waves we discussed previously. It is called the acoustic

branch. On the other hand ω+ remains finite in the long wavelenth limit and is called the

optical branch. To interpret these two branches (and thus justify the nomenclature acoustic

and optic branch) we determine the ratio A1/A2 from the above system of equations

A1

A2
=
k1 + k2 −M2ω

2
±

k1 + k2eiqω±

In the limit of q = 0 follows for ω− that A1

A2 = 1. Thus, both atoms move in phase. On

the other hand, for ω+ follows A1

A2 = −M2

M1
and both atoms move against each other, hence

the term optical branch as such motions easily couple to dipole excitations. The entire

momentum dependence is shown in the Fig.1 We also see a gap in the spectrum between
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the largest state of ω− and the lowest state of ω+. The gap is given as

∆ =
ω0√

2

(√
1 +

√
1− γ −

√
1 +

√
1 + γ

)
which vanishes as γ → 1. In this limit the two ions are identical and the lattice constant is in

fact ã = a/2. The two branches now describe the states with 0 < |q| < 1
2
π
ã
and 1

2
π
ã
< |q| < π

ã

of the actual Brillouin zone of the system. Indeed, for γ = 1 we have ω2
0 = k/M and

ω2
± =

1

2

k

M

(
1±

√
1− sin2 (qã)

)
(41)

which is equivalent to our earlier treatment of the chain with one atom per unit cell.

In the Fig.?? we show the dispersion for γ = 1 in comparison with that of a single-atom

chain and lattice constant 2a.

C. Systematic treatment of lattice vibrations

We now perform a more systematic treatmant of lattice vibrations and come back to

the potential energy V eff
ii that we discussed when we analyzed the Born Oppenheimer ap-

proximation. This potential describes the interaction energy of slow ions due to their direct

Coulomb repulsion

Vii =

Ni∑
l,l′=1

e2ZlZl′

|Rl −Rl′ |
(42)

and due to the electronic ground state energy determined from the electron Schrödinger

Equation Helψn = Eel,nψn:

V eff
ii = Vii + Eel,n

The positions of ions are given by

Rk
n = R(0)

n + akn + ukn , (43)

where R(0)
n are the Bravais lattice vectors. The superscript k stands for the ion number k

in the unit cell. akn refers to the classical equilibrium position of minimal potential of the

ions in the crystalline solid. The deviations from this mean position are denoted by ukn or in

components by ukn,α, where α = x, y, z. As ukn,α = 0 is the absolute minimum of the potential

energy we can expand and obtain

Vii

(
Rk
n

)
= Vii

(
R(0)
n + akn

)
+

1

2

∑
n,n′,α,β,k,k′

Φk,k′

n,n′;α,β u
k
n,α u

k′

n′,β (44)
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i.e.

Φk,k′

n,n′;α,β =
∂2Vii

∂ukn,α∂u
k′
n′,β

(45)

The classical equation of motion is given as:

Mkü
k
n,α = −

∑
n′,β,k′

Φk,k′

n,n′;α,βu
k′

n′,β (46)

The coeffi cients Φk,k′

n,n′;α,β have certain symmetries: Since partial derivatives are symmetric,

it follows

Φk,k′

n,n′;α,β = Φk′,k
n′,n;β,α. (47)

Translational symmetry implies

Φk,k′

n,n′;α,β = Φ(Rn −Rn′)
k,k′

α,β (48)

Finally, a homogeneous shift or rotation should not produce any force. To this end we write

ukn = δu

for all k and n or

ukn = δω ×Rk
n,

The simultaneous motion of all atoms does not lead to a force, i.e. the right hand side of

Newton’s law, Eq.46 should vanish ∑
n′,β,k′

Φk,k′

n,n′;α,βδuβ = 0

which is true for arbitrary components δuβ of δu, i.e.∑
n′,k′

Φk,k′

n,n′;α,β = 0. (49)

From the rotation invariance follows∑
n′,k′

Φk,k′

n,n′;α,βR
k′

n′β = 0.

It is very useful to introduce amplitudes Akn,α ≡
√
Mk u

k
n,α. We look for solutions of the

following form

Akn,α = Akα(q) e
i
(
qR

(0)
n −ωt

)
(50)
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or equivalently

ukn,α =
Akα(q)√
Mk

e
i
(
qR

(0)
n −ωt

)
(51)

Inserting this ansatz, we obtain

−ω2Mku
k
n,α = −

∑
n′,β,k′

Φk,k′

n,n′;α,βu
k′

n′,β

which gives

ω2Akn,α =
∑
n′,β,k′

Φk,k′

n,n′;α,β

Ak
′
n′,β√

MkMk′

From Translation invariance follows

Φk,k′

n,n′;α,β =

√
MkMk′

N

∑
p

e
ip·
(
R

(0)
n −R(0)

n′

)
Dk,k′

α,β (p)

which leads to

ω2Akα(q) =
1

N

∑
n′,β,k′

Ak
′

β (q) e
iq
(
R

(0)

n′ −R
(0)
n

)∑
p

e
ip·
(
R

(0)
n −R(0)

n′

)
Dk,k′

α,β (p)

Summation over n′ leads with

1

N

∑
n′

ei(q−p)R
(0)

n′ = δq,p

to

ω2Akα(q) =
∑
β,k′

Dk,k′

α,β (q)Ak
′

β′(q) (52)

which is an eigenvalue equation in the space of vector components of the displacement

(labelled by the index α or β) and the space labelled by the atoms per unit cell (with index

k and k′ = k′). The eigenmodes are found from

det(ω2 1̂− D̂) = 0 , (53)

where the matrix D̂ is given by

Dk,k′

α,β (q) =
∑
n′

Dk,k′

n,n′;α,β e
−iq·

(
R

(0)
n −R(0)

n′

)

=
∑
n′

1√
MkMk′

Φk,k′

n,n′;α,β e
−iq·

(
R

(0)
n −R(0)

n′

)
=

1√
MkMk′

Φ(q)k,k
′

α,β . (54)
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It is easy to show that

[Dk′,k
β,α (q)]∗ =

∑
n′

1√
MkMk′

Φk′,k
n′,n;β,α e

iq·
(
R

(0)

n′ −R
(0)
n

)

=
∑
n′

1√
MkMk′

Φk,k′

n,n′;α,βe
−iq·

(
R

(0)
n −R(0)

n′

)
= Dk,k′

α,β (q)

This means that the matrix D̂ is hermitian and that 3M real solutions exist, where M is

the number of ions in a unit cell. We denote solutions by the subscript j: ωj(q) and Akj,α.

The roots of the secular Eq.52 are all real. If the Dk,k′

α,β (q) are real as well it follows that

the solutions Ak
′

β′(q) are also real. For q = 0 the Dk,k′

α,β (q = 0) are clearly real. In general

this is however not the case. It follows that Dk,k′

α,β (−q) = [Dk,k′

α,β (q)]∗ which means that

ωj(−q) = ωj(q) and Akj,α(−q) = [Akj,α(q)]∗ . (55)

Now consider the limit q→ 0. We obtain from the equation of motion for q = 0:

ω2(0)Mk
Akα(0)√
Mk

=
∑
n′,β,k′

Φk,k′

n,n′;α,β

Ak
′
β (0)
√
Mk′

. (56)

There are solutions with

Akj,α(0)/
√
Mk = δuα 6= 0

independent of α, that yield

ω2(0)Mk δuα =
∑
β

δuβ
∑
n′,k′

Φk,k′

n,n′;α,β = 0 (57)

where we used our earlier result
∑

n′,k′ Φ
k,k′

n,n′;α,β = 0. There are in total 3 independent

solutions of its kind with δuα, α = x, y, z which yields that there are 3 modes for which

ωj(0) = 0. Those are the three dimensional acoustic modes, where for small qα follows

ωj (q) = cj |q|+ · · ·

with three distinct velocities of sound, depending on the acoustic modes under consideration.

Thus, there should be 3M − 3 solutions with ωj (0) > 0. Those are the optic modes, that

only emerge in systems with more than one atom per unit cell. Physically this is due to

the fact that they correspond to a motion of different atoms in the unit cell relative to each

other. To see this we analyze

ω2(0)Mk
Akα(0)√
Mk

=
∑
n′,β,k′

Φk,k′

n,n′;α,β

Ak
′
β (0)
√
Mk′

(58)
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and sum over k:

ω2(0)
∑
k

Mk
Akα(0)√
Mk

=
∑

n′,β,k′,k

Φk,k′

n,n′;α,β

Ak
′
β (0)
√
Mk′

=
∑
k′β

Ak
′
β (0)
√
Mk′

∑
n,k

Φk,k′

n,n′;α,β = 0 (59)

Since we consider ωj (0) > 0, it must hold that

∑
k

Mk
Akα(0)√
Mk

=
∑
k

Mk u
k
α(0) = 0

i.e. the mean dispacement, averaged over all atoms per unit cell vanishes (as expected for a

relative motion). In optical modes the center of mass is constant.

Finally, acoustic modes are divided into 1 longitudinal and 2 transversal, depending of

whether its eigenvector Akj,α(q→ 0) is parallel or perpendicular to q, respectively.

D. Quantization of phonon modes.

The kinetic energy of vibrations reads

T =
1

2

∑
n,k,α

Mk(u̇
k
n,α)2 =

1

2

∑
n,k,α

(Ȧkn,α)2 . (60)

The potential energy reads

U =
1

2

∑
n,n′,α,β,k,k′

Φk,k′

n,n′;α,β u
k
n,α u

k′

n′,β =
1

2

∑
n,n′,α,β,k,k′

Dk,k′

n,n′;α,β A
k
n,αA

k′

n′,β . (61)

The Fourier transform of the D matrix Dk,k′

α,β (q) is a Hermitian matrix. Thus, it has 3M

orthonormal eigenvectors ekj,α(q) with real eigenvalues ω2
j(q):∑

α,k

ekj,α[ekj′,α]∗ = δj,j′ . (62)

Another property is

ekj,α(−q) = [ekj,α(q)]∗ (63)

We expand the amplitudes Akn,α using the eigenvectors e
k
j,α(q)

Akn,α(t) =
1√
N

∑
q

Akα(q, t) eiq·R
(0)
n =

1√
N

∑
j,q

ekj,α(q)Qj(q, t) e
iq·R(0)

n , (64)
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where N is the total number of unit cells (N = N1N2N3). Since Akn,α(t) is real we must have

Qj(−q, t) = [Qj(q, t)]
∗.

Using othonormality of the vectors ekj,α(q) we obtain

T =
1

2

∑
j,q

∣∣∣Q̇j(q, t)
∣∣∣2 =

1

2

∑
j,q

Q̇j(q)Q̇j(−q) , (65)

and for the potential energy we obtain

U =
1

2

∑
j,q

ω2
j(q) |Qj(q, t)|2 =

1

2

∑
j,q

ω2
j(q)Qj(q)Qj(−q) . (66)

To formulate a Lagrangian theory it would be better to have real coordinates instead of

complex Qj(q). Alternatively one can use Qj(q) and Qj(−q) as independent variables.

To simplify we will suppress the index j and use Qj(q) = Qjq.

The conjugated variables:

Pjq =
∂T

∂Q̇jq

= Q̇j−q . (67)

The Hamiltonian:

H =
1

2

∑
j,q

PjqPj−q +
1

2

∑
j,q

ω2
jqQjqQj−q . (68)

We can now quantize this problem where Pjq and Qjq become operators with canonic com-

mutation relation [Qjq, Pj′q′ ] = i~δq,q′δjj′

We introduce the creation and annihilation operators:

a†jq =
1√

2~ωjq
(ωjqQj−q − iPjq) ,

ajq =
1√

2~ωjq
(ωjqQjq + iPj−q) , (69)

with bosonic commutation relation[
ajq, a

†
j′q′

]
−

= δq,q′δjj′ .

The inverse relations

Qjq =

√
~

2ωjq

(
a†jq + aj−q

)
,

Pjq = i

√
~ωjq

2
(a†jq − aj−q) . (70)
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This gives

H =
∑
q

~ωq
(
a†qaq +

1

2

)
. (71)

It is important to express the physical field ukn,α in terms of the aj,q and a
†
j,q, respectively

ukn,α =
Akn,α√
Mk

=
1√
NMk

∑
j,q

ekj,α(q)Qj(q) eiq·R
(0)
n

=
1

2
√
NMk

∑
j,q

[
Qj(q) ekj,α(q) eiq·R

(0)
n +Qj(−q) ekj,α(−q) e−iq·R

(0)
n

]

=
1√

2NMk

∑
j,q

√
~

ωj (q)

[
aj,q e

k
j,α(q) eiq·R

(0)
n + a†j,q [ekj,α(q)]∗ e−iq·R

(0)
n

]
. (72)

E. Phonon density of states

The Hamiltonian, Eq.71, describes a gas of non-interacting bosons. An important ques-

tion is the value of the chemical potential of the phonons. The number of phonons varies

with temperature with no phonons in the ground state and an increasing number of phonons

as the temperature increases. The number of phonons is determined by the minimal value

of the free energy
∂F

∂N
= 0

which implies that the chemical potential µ = 0. Thus, the internal energy is given as

U =
∑
j,q

~ωjq
(
njq +

1

2

)
= U0 +

∑
j,q

~ωjq njq . (73)

Where U0 is the ground state energy and

njq =
1

eβ~ωjq − 1
, (74)

the bose function. This allows for example to analyze the specific heat

CV =
1

V

∂U

∂T

∣∣∣∣
V

. (75)

In order to evaluate thermodynamic implications of a phonon spectrum we analyze the

phonon density of states:
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D(ω) =
1

V

∑
j,q

δ(ω − ωj(q))

=
∑
j

∫
d3q

(2π)3
δ(ω − ωj(q)) (76)

If we consider acoustic phonons with

ωj (q) = cj |q| , (77)

we obtain after performing the integration over angles:

Dac. (ω) =
∑
j

1

2π2

∫ ∞
0

dqq2δ (ω − cjq)

=
∑
j

ω2

2π2c3
j

≡ 3

〈
1

c3
s

〉
ω2

2π2
(78)

However, one has to be careful, as D (ω) is obviously normalized.∫ ∞
0

Dac. (ω) dω =
3

V

∑
q

= 3
N

V
. (79)

This implies that the parabolic density of states cannot continue forever. The origin of this

behavior is of course that the linear sound dispersion relation is only valid for small momenta

and should not be extended up to the BZ boundary. However, there is a simple trick to

deal with this issue that captures important aspects qualitatively correct. One introduces

an upper cut off ωD (the Debye frequency) such that

3
N

V
= 3

∫ ωD

0

〈
1

c3
s

〉
ω2

2π2
dω (80)

which yields

3
N

V
=

〈
1

c3
s

〉
ω3
D

2π2
(81)

Often one uses a temperature scate, the Debye temperature,

kBθD = ~ωD (82)

to characterize the upper cut off. Typical values for θD are several hundred Kelvin.

First we consider the specific heat at high tempereatures kBT � ~ωD (only for acoustic

phonons) and expand the Bose function

15



1

ex − 1
=

1

x

(
1− x

2
+
x2

12
+ . . .

)
, x� 1 . (83)

This yields

CV =
1

V

∂

∂T

∑
s,q

~ωs,q
kBT

~ωs,q

(
1− 1

2

~ωs,q
kBT

+
1

12

(
~ωs,q
kBT

)2

+ . . .

)

= 3kB
N

V

(
1− 1

12

~2〈ω2
s,q〉

(kBT )2
+ . . .

)
, (84)

where 〈ω2
s,q〉 = 1

3N

∑
s,q ω

2
s,q. The first term is Dulong-Petit law. If the temperature is also

higher than the maximum frequency of he optical phonons, then 3 → 3M as all phonons

contribute to the sum.

In the low temperature limit kBT � ~ωD holds that only acoustic phonons relevant.

CV =
1

V

∂

∂T

∑
j,q

~ωj,qnj,q =
∂

∂T

ωD∫
0

dωD(ω)~ω
1

eβ~ω − 1

=
3

2π2

〈
1

c3
s

〉
∂

∂T

ωD∫
0

dω
~ω3

eβ~ω − 1
=

3

2π2

〈
1

c3
s

〉
∂

∂T

1

~3β4

β~ωD∫
0

dx
x3

ex − 1

' 3

2π2

〈
1

c3
s

〉
4k4

BT
3

~3

∞∫
0

dx
x3

ex − 1
=

3

2π2

〈
1

c3
s

〉
4k4

BT
3

~3

π4

15
.

= αT 3 (85)

where

α =
3

2π2

〈
1

c3
s

〉
4k4

B

~3

π4

15
=

36

5
π4kB

θ3
D

N

V

In this analysis we used that at low temperatures the upper cut off can be set to infinity.

This is obviously not allowed at high temperatures. If we consider for example a metallic

solid, with electronic heat capacity contribution and lattice contribution one obtains the

total heat capacity

Cel+ph.
V = γT + αT 3.

A convenient way to check for this result is to plot CV
T
versus T 2 which should give rise to

a straight line with intersextion γ and slope α. For temperatures below ' θD
√
θD/TF will

the electronic conribution dominate over the lattice contribution.
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To describe the intermediate temperature behavior we consider a finite upper cut off and

have

CV =
∂

∂T

∞∫
0

dωD(ω)~ω
1

eβ~ω − 1

= kB

∞∫
0

dωD(ω)

(
~ω
kBT

)2
eβ~ω

(eβ~ω − 1)2

=
3kB
2π2

〈
1

c3
s

〉(
kBT

~

)3
β~ωD∫
0

dωx2 x4ex

(ex − 1)2 (86)

We use 〈
1

c3
s

〉
=

3~3

(kBθD)3 2π2N

V
(87)

and obtain

CV = 3kB
N

V

(
T

θD

)3
β~ωD∫
0

dωx2 x4ex

(ex − 1)2

= 3kB
N

V

(
T

θD

)3

f (T/θD) (88)

with Debye function

f(y) =

1/y∫
0

dx
x4ex

(ex − 1)2
. (89)

As expected, it holds

f(y = 0) =
4

15
π4 (90)

while for large y holds

f(y) '
1/y∫
0

dx
x4

x2
=

1

3y3
(91)

This allows for a natutral interpolation between the low and high temperature behavior.

Optical phonons are frequently treated within the Einstein model where we neglect the

momentum dependence of the frequency.

ω(q) = ω0 . (92)

In this case holds
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U = U0 + (3M − 3)N
~ω0

e
~ω0
kBT − 1

. (93)

and it follows for the heat capacity.

CV =
1

V

∂U

∂T
= (3M − 3)

N

V
kB

(
~ω0

kBT

)2

e
~ω0
kBT(

e
~ω0
kBT − 1

)2 . (94)

At low temperratures this yields an exponentially small heat capacity. Therefore, the low

temperature heat capacity is dominated by acoustic phonons. The model of acoustic

phonons with quadatic density of states and upper cut off ωD is called Debye model, while

the scenarion wit momentum independent frequency is called the Einstein model.

F. Thermal expansion of solids

Within the harmonic theory developed so far, thermal excitations of the solit will not

change with temperatue as the expectation value
〈
ukn
〉

= 0. To obtan a qualitative under-

standing we include in the expansion of the energy with respect to the lattice constant higher

order terms. We consider for simplicity one atom per unit cell and analyze u = |R−R0|,
the deviation of the atom positions from their ground state values and expand the potential

V (ξ) = V0 +
1

2

∂2V

∂u2
u2 +

1

6

∂3V

∂u3
u3 + · · · (95)

This yields for the force

F = −ku+ gu2 (96)

where k = ∂2V
∂u2 and g = −1

2
∂3V
∂u3 . If we now consider the mean force, it holds:

F = −ku+ gu2. (97)

In equilibrium this mean force is expected to vanish and we obtain

u =
g

k
u2 (98)

If we now consider this analysis as a perturbation theory in g we can evaluate u2 within the

harmonic theory, where k
2
u2 is the averaged potential enegy. If we consider the Harmonic
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oscillator

Ĥ = − ~
2

2m

d2

dx2
+
k

2
x2 (99)

= ~ω
(
â†â+

1

2

)
with ω =

√
k/m, it is easy to express the expertation values of the kinetic and potential

energy in terms of expectation values of the creation and annihiation operators using

x̂ =

√
~

2mω

(
â† + â

)
p̂ = i

√
m~ω

2

(
â† − â

)
, (100)

which yields

1

2m

〈
p̂2
〉

=
~ω
2

(〈
â†â
〉

+
1

2

)
k

2

〈
x̂2
〉

=
~ω
2

(〈
â†â
〉

+
1

2

)
(101)

Thus, it holds

〈V − V0〉 =
1

2
〈H〉 =

1

2
U (102)

where U is the internal energy. This yields

u =
g

k2

U

N
(103)

The themal expansion coeffi cient is

β =
1

V

∂V

∂T
(104)

where L is the sample length, i.e. V = N (a0 + u)3, which yields

β = 3
Na2

0

V

∂u

∂T
= 3

Na2
0

V

g

k2

1

N

∂U

∂T

= 3a2
0

g

k2
CV (105)

Thus, weah thermal expansions can be understood in terms of this simple theory where

the the temperature dependence of the thermal expansion and is determined by the heat

capacity. Often this is expressed in terms of the Grüneisen parameter:

Γ =
β

CV
.

Once Γ deviated from being a constant, it is an interesting hint that the lattice anharmonicity

is more complex than this simple theory suggests.
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II. ELECTRON-ELECTRON INTERACTION IN THE PRESENCE OF

PHONONS

The exchange of phonons gives rise to an effective interaction between electrons. Before

we perform a quantum mechanic investigation of this effect, we show that the main results

can alternatively be understood in terms of a system of coupled charges.

A. Plasma oscillations and Thomas Fermi approximation:

In our investigation of the effective interaction between electrons that is mediated by the

crystalline lattice, we follow Bardeen and Pines and investigate a so called jellium model,

where the ions are described in terms of a structureless positive background of fluctuating

charge densities. We consider an external charge ρexternal (r, t) that leads to induced screening

charges ρ (r, t) in the system.The Maxwell equation that determines the electric field that

results from a charge redistribution is:

∇ · E = 4π (ρ+ ρexternal) .

∇ ·D = 4πρexternal (106)

where we introduced the displacement field

D = εE = E+ 4πP (107)

i.e.

∇ ·P =− ρexternal. (108)

In Fourier space follows

iq ·D(q, ω) = iq · E(q, ω)ε (q,ω)

= 4πρexternal(q, ω). (109)

and

iq · E(q, ω) = 4π (ρ (q,ω) + ρexternal(q, ω)) (110)

Thus, the total charge ρ+ δρ is related to the external charge δρ via

ρ (q,ω) + ρexternal (q,ω) =
1

ε (q,ω)
ρexternal (q,ω) (111)
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We first consider the classical motion of a charge density governed by Newton’s law:

m
d2r

dt2
= eE (112)

and express the veocity of the carriers in terms of the charge current

j = en0
dr

dt
(113)

where n0 is the particle density of charge e. It follows

m
dj

dt
= e2n0E (114)

The current is related to the charge density via the continuity equation

∂tρ+∇ · j = 0, (115)

which yields (assuming ∂j
∂t

= dj
dt
which is correct at linear response to the external electric

field):

∂2ρ

∂t2
= −∇ · ∂j

∂t
= −e

2n0

m
∇ · E

= −4πe2n0

m
(ρ+ ρexternal) (116)

This is the equation of a forced oscillator with resonance frequency

ωp =

√
4πe2n0

m
.

This is the plasma frequency of a system of movable charges. Such plasma oscillations do

indeed occur in metals where the plasma frequency corresponds to several electrons volts,

depending obviously on the electron density. In Fourier space the above result becomes

ρ =
ω2
p

ω2
(ρ+ ρexternal) (117)

which leads to the dielectric constant

ε (ω) = 1−
ω2
p

ω2
. (118)

A vanishing dielectric constant implies an infinite response to an arbitrarily small ecternal

charge density, confirming our expectation that ωp is a resonance frequency of the charge

density. A natural question arises: Do ions also undergo plasma oscillations? If so it seems
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to be in conflict with the emergence of acoustic sound modes where the frequency vanishes

in the long wavelength limit.

To this end we consider a system that consists of electrons and ions. We write the total

induced charge as sum of the charge densitied of both components

ρ (q,ω) = ρe (q,ω) + ρi (q,ω) . (119)

If we treat the ion dynamics as classical, we use Newton’s law

M
d2r

dt2
= eE (120)

and express the veocity of the carriers in terms of the ion-charge current

j = eZn0
dr

dt
(121)

which yields

M
dji
dt

= e2Zn0E (122)

From the continuity equation of the ion charge and current densities

∂tρi +∇ · ji = 0 (123)

follows in analogy to our earlier calculation

∂2ρi
∂t2

= −∇ · ∂ji
∂t

= −e
2Zn0

M
∇ · E

= −4πZe2n0

M
(ρi + ρe + ρexternal) (124)

In Fourier space this corresponds to

ρi =
ω2
i

ω2
(ρi + ρe + ρexternal) (125)

with the ion-plasma frequency

ωi =

√
4πZe2n0

M
. (126)

The key difference to the case of a single component plasma is that now the dynamic electron

charge plays the role of an addition "external" charge. Thus, ωi is not necessarily the

resonance frequency of the charge distribution.

To address this issue we need to develop a model for the induced electron density. To

solve this issue we take advantage of the fact that the on the time scale of the ionic motion,
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electrons react almost instantaneously. Suppose there is a potential φ (r), caused by the

total electric field E = −∇φ. If this potential varies slowly in space we can assume that it
only modified locally the chemical potential

EF → EF + eφ. (127)

We know that the electron concentration without potential is related to the Fermi energy

according to

ne (EF ) = CE
3/2
F (128)

with constant C. The induced electron charge is then

ρe = − (ene (EF + eφ)− ene (EF ))

' −3

2
CE

1/2
F e2φ = −3

2
nee

eφ

EF
. (129)

Since

∇2φ = −4π (ρe + ρi + ρexternal) (130)

which yields

∇2ρe =
6πnee

2

EF
(ρe + ρi + ρexternal) (131)

In Fourier space follows

ρe = −k
2
TF

q2
(ρe + ρi + ρexternal) (132)

where we introduced the Thomas Fermi screening wave number

k2
TF =

6πnee
2

EF
. (133)

If we ignore the ion charge, it follows ρ = ρe = −k2
TF

q2 (ρ+ ρexternal) which leads to the

dielectric constant

ε (q) =
ρexternal

ρ+ ρexternal

=
k2
TF + q2

q2
(134)

The potential energy of a point charge is affected by this dielectric constant

V (r) =
e2

r
→ Veff (r) =

1

ε (r)

e2

r
(135)

In Fourier space this corresponds to

V (q) =
4πe2

q2
→ Veff (q) =

1

ε (q)

4πe2

q2
(136)
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Now we can insert our result for the dielectric constant and obtain

Veff (q) =
4πe2

q2 + k2
TF

(137)

which yields after Fourier transformation

Veff (r) =
e2

r
exp (−kTF r) (138)

Thus, the induced charge density as response to a test charge will effectively weaken the

Coulom interaction at long distances. This electrostatic screening effect leads to an effective

short range interaction between charges.

The above analysis ignored the inclusion of the ion charge dynamics. However, combining

Eq.132 and 124 leads to an dielectric constant

ε (q, ω) =
ω2 (k2

TF + q2)− ω2
i q

2

ω2q2
(139)

This result combines the static screening of the electron interaction with Thomas Fermi

screeniing length in the limit ωi = 0 (frozen ions) with the plasma edge resonance of ions in

the limit kTF = 0 (no electrons). However the actual resonance frequency of the combined

system results from ε (q, ω) = 0 and yields

ωphon (q) =
ωi√

k2
TF + q2

q (140)

which does indeed reproduce the behavior of an acoustic vibration as q → 0. Thus, in case of

the coupled ion-electron systems, the ion plasma frequency is strongly modified by screening

due to electrons, leading to acoustic sound.

Finally we can analyze the effective interaction between electrons coupled to dynamic

charge distribrutions

Veff (q, ω) =
1

ε (q, ω)

4πe2

q2

=
4πe2

k2
TF + q2

ω2

ω2 − ω2
phon (q)

(141)

The crucial aspect of this result is that Veff (q, ω) changes its sign for ω < ωphon (q), i.e.

the interaction between equally charged point charges with frequencies below the phonon

frequencies is attractive. This is the attractive interaction between electrons that is mediated

by phonons.
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III. SUPERCONDUCTIVITY

Superconductivity was discovered in 1911 by Heike Kammerling Onnes. Below Tc = 4.2K

mercury passed into a state with no measurable resitance. It soon became clear that this

new state of matter is in thermodynamic equilibrium where the electronic contribution to

the heat capacity Cns = γT of the normal state is being replaced by

Csc ∝ exp

(
− ∆

kBT

)
(142)

which can easily be interpreted as due to the opening of a gap of order ∆ in the density of

states. It also holds that the transition temperature of a given material and ∆ is approx-

inately constant among different superconductors, i.e. 2∆/(kBTc) ' 3.5. Another crucial

experiment goes back to Meissner and Ochsenfeld, who found that the magnetic flux density

B inside a superconductor vanishes regardless of its past, i.e. regardless of whether it was

cooled down from a normal state at finite external magnetic field or whether the field was

switched on only below Tc. It holds

B = H+4πM = (1 + 4πχ)H (143)

where the magnetic field H coincides for ellipsoidal geometries with the external field. Here

χ = ∂M/∂H is the magnetic susceptibility. B = 0 then corresponds to

χ = − 1

4π
(144)

i.e. a superconductor is, according to Meissner and Ochsenfeld’s measurements, a perfect

diamagnet.

Initially it was polular to argue that superconductivity can be described phenomenolog-

ically in terms of a divergent conductivity, i.e. a superconductor was considered a perfect

conductor. In this case, Ohm’s law

j =σE (145)

with conductivity σ becomes the acceleration equation

∂j

∂t
= νE (146)

with ν = ne2

m
. Using Faraday’s law ∇× E = −1

c
∂B
∂t
it follows

∇× ∂j

∂t
= −ν

c

∂B

∂t
(147)
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Neglecting the displacement current it follows from Ampere’s law, that ∇×B =4π
c
j and it

follows

∇×∇× ∂B

∂t
= −4πν

c2

∂B

∂t
(148)

If we further use that ∇ ·B = 0, we obtain

∇2∂B

∂t
=

4πν

c2

∂B

∂t
. (149)

Interating on both sides with respect to t yields

∇2 (B−B0) =
4πν

c2
(B−B0) (150)

This immeadiately implies that B−B0 decays with length scale λ where

λ−2 =
4πν

c2
=

4πne2

mc2
. (151)

This is almost in agreement with the Meissner effect. The problem is that B doesn’t decay

to zero but instead to its initial value in the past. This is in obvious conflict with the fact

that superconductors are in thermodynamic equilibrium and of course does not agree with

the Meissner effect. Heinz and Fritz London proposed in 1934 that instead of starting from

the acceleration equation one should simply drop the time derivatives in Eq.148 i.e.

∇×∇×B = −4πν

c2
B (152)

which is equivalent to

∇× j = −ne
2

mc
B (153)

This is a new relation that replaces Ohm’s law and the acceleration equation for the super-

conductor. At this point it is clearly only a phenomenological ansatz. Yet, it naturally leads

to

∇2B =
4πne2

mc2
B (154)

which implies that the field decays on the length scale λ to zero in agreement with the

Meissner effect. The length λ is called London penetration depth or often simply penetration

depth. The challenge is now to develop a microscopic theory from which the London equation

follows. Below we will see that the BCS theory of superconductivity indeed leads to the

London equation. In case of ∇ · j = 0 (using the continuity equation this corresponds to

time independent charge distributions ∂ρ/∂t = 0) and in the Coulomb gauge ∇ ·A = 0 it

follows with B =∇×A that the London equation takes the form

j = −ne
2

mc
A. (155)
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A. The Cooper instability

We consider two particles that interact via an attractive potential V (r1 − r2) with

Schrödinger equation(
− ~

2

2m
∇2
r1
− ~2

2m
∇2
r2

+ V (r1 − r2)

)
Ψ (r1, r2) = EΨ (r1, r2) (156)

We consider relative and center of gravity coordinates

r = r1 − r2

R =
1

2
(r1 + r2) (157)

which yields (
− ~2

2m∗
∇2
R −

~2

2µ
∇2
r + V (r)

)
Ψ (R, r) = EΨ (R, r) (158)

where m∗ = 2m is the total mass and µ = m/2 the reduced mass. The center of gravity

motion is unaffected by the potential leading to the ansatz

Ψ (r1, r2) = ψ (r) eiK·R (159)

which yields (
− ~

2

2µ
∇2
r + V (r)

)
ψ (r) = Ẽψ (r) (160)

where E = Ẽ + ~2K2

2m∗ . Obviously the lowest energy corresponds to the center of gravity

momentumK = 0, i.e. the individual momenta of the two particle that scatter are opposite.

In what follows we first consider K = 0, leading to E = Ẽ. Since Ψ (r1, r2) is the spatial

part of the wave function it will be even in case the spin part of the wave function is a singlet

and odd in case of a triplet, i.e. ψ (r) = ±ψ (−r).
It is useful to Fourier transform this equation with ψ (k) =

∫
d3rψ (r) e−ik·r which yields∫

V (k− k′)ψ (k′)
ddk

(2π)d
= (E − 2εk)ψ (k) , (161)

where εk = ~2

2m
k2 is the energy of a single free electron. This yields with ∆ (k) =

(E − 2εk)ψ (k) the equation

∆ (k) = −
∫
V (k− k′)
2εk′ − E

∆ (k′)
ddk

(2π)d
(162)
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A bound state would naturally correspond to E < 2εk′ , i.e. for bound states follows 2εk′ −
E > 0.

Eq.160 and therefore the equivalent Eq.162 are identical to the Schrödinger equation of

a single particle with potential V (r). Suppose we have an attractive potential V (r) = −V0

for |r| < a. It is known that for d = 3 the amplitide V0 of the attractive potential must

exceed the energy V c
0 = h2π2/ (8ma2). A slightly different model would be

V (k− k′) =

 −V0 εk, εk′ < ωD

0 otherwise
(163)

where we need to keep in mind that V0 has dimension energy per volume (due to the

Fourier transform), i.e. it cannot be compared with the earlier V0. It follows in case of a

constant ∆ (k) = ∆ (necessarily implying singlet pairing) that (we use ρ (ε) = A
√
ε with

A = 2π(2m)3/2

h3 ):

∆ = V0A∆

∫ ωD

0

√
ε

2ε− Edε

= V0A∆

(
√
ωD −

√
−E
2

arctan

(√
2ωD
−E

))
.

We used the density of states of a three dimensional system:

ρ (ε) =

∫
d3k

(2π)3 δ

(
ε− ~2

2m
k2

)
=

∫
k2dk

2π2
δ

(
ε− ~2

2m
k2

)
=

2π (2m)3/2

h3
ω1/2θ (ε− ω) ,

and we obtain a critical value for the potential

V c
0 =

1

A
√
ωD

.

Again, bound states only form for suffi ciently strong attractive potentials .

In case of a many fermion system, states with momenta below the Fermi energy are all

occupied and the integration over momenta starts with a magnitiude |k| = kF instead of

|k| = 0. This is the key distinction between electrons in free space and a many body system.

Assuming for example that

V (k− k′) =

 −V0 |εk − εF | , |εk′ − εF | < ωD

0 otherwise
(164)
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it follows in case of a constant ∆ (k) = ∆ (necessarily implying singlet pairing) that

∆ = ∆V0ρF

∫ εF+ωD

εF

dε′

2ε′ − E

= ∆
V0ρF

2
log

(
2εF − E

2 (εF + ωD)− E

)
. (165)

In the limit of small λ = V0ρF where E must be close to 2εF , the solution is

E = 2εF − 2ωDe
− 2
λ , (166)

which yields the binding energy

εb = 2ωDe
− 2
λ . (167)

To stress the distinction between the bound state formation in free space and with filled

Fermi-see once moe, we go back to Eq.162 and vary the chemical potential:

∆ = ∆V0

∫ εF+ω0

εF

ρ (ε)

2ε− E dε (168)

If εF → 0 it is indeed not anymore allowed to approximate the density of states ρ (ε) by a

constant value at the Fermi level. One has to include the variation ρ (ε) = A
√
ε near the

band edge. In case of an empty Fermi see with εF = 0 we have

∆ = ∆V0A

∫ ω0

0

√
ε

2ε+ εb
dε. (169)

As the integral is no longer divergent for small ε and εb → 0, we are back to the original

result that one needs to have a threshold strength for the potential V0 to form a bound state.

We conclude that the Cooper instability for infinitesimal interaction V0 is a consequence of

the fact that the number of low energy states is enhanced in case of a Fermi surface.

Finally we comment on the impact of a finite center of gravity momentum K, that is

naturally associated with a finite current density

j =
nee~
m
|K| , (170)

where ne is the electron density and ~ |K| /m the velocity of the pair. Repeating the above

analysisfor finite K, it follows for the total energy

E = 2εF − εb +
~2K2

2m∗
(171)

with εb of Eq.167. To get a bound state at finite current, it must hold that E < 2εF , which

leads to the appearance of a critical current

jc = 2nee

√
εb
m

(172)

which is of the same order of magnitude as the result that follows from, BCS theory.
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B. BCS theory of superconductivity

The BCS theorry gives an answer to the open question that emerges as consequence of

the Cooper instability: What happens with an entire Fermi-sea of attractively interacting

electrons. Based on the insight that the leading instability occurs at zero center of mass

momentum we modl the attractive interaction between electrons, mediated by phonons via

he BCS or pairing Hamiltonian:

HBCS =
∑
k,σ

εkc
†
kσ ckσ −

V0

N

∑
k,k′

γk,k′ c
†
k′,↑ c

†
−k′,↓ c−k,↓ ck,↑

It consists of the usual kinetic energy with band dispersion (it is easy to generalize the

appoach to different dispersions as we will see):

εk =
~2k2

2m
− µ.

The sign in front of the interaction V0 was chosen such that V0 > 0 corresponds to an

attractive coupling.

γk,k′ =

 1 |εk| , |εk′ | < ~ωD
0 otherwise

takes into account that only fermionic states that have energies relative to the Fermi energy

below the phonon frequency interact. To find an approximate solution of this problem we

perform the Hartree-Fock decoupling

AB = (A− 〈A〉) (B − 〈B〉) + A 〈B〉+B 〈A〉 − 〈A〉 〈B〉

with

A = c†k′,↑ c
†
−k′,↓

B = c−k,↓ ck,↑

This choice for A and B is motivated by the hope, that 〈A〉 6= 0 and 〈B〉 6= 0 amount to

pairing of electrons. Whether this turns out to be the case remains to be analyzed. It is

also clear that an expectation value
〈
c†k′,↑ c

†
−k′,↓

〉
6= 0 makes no sense for a system with fixed

particle number. Thus, this new mean field theory seems to violate charge conservation, an
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issue that we need to address as we proceed. Performing the mean field decoupling yields:

HMF
BCS =

∑
k,σ

εkc
†
kσ ckσ +

V0

N

∑
k,k′

γk,k′〈c
†
k′,↑ c

†
−k′,↓〉 〈c−k,↓ ck,↑〉

− V0

N

∑
k,k′

γk,k′〈c
†
k′,↑ c

†
−k′,↓〉 c−k,↓ ck,↑ −

V0

N

∑
k,k′

γk,k′c
†
k′,↑ c

†
−k′,↓ 〈c−k,↓ ck,↑〉

If we introduce

∆k = −V0

N

∑
k

γk,k′〈c−k,↓ ck,↑〉

this mean field Hamiltonian simplified to:

HMF
BCS =

∑
k,σ

εkc
†
kσckσ +

∑
k

(
∆∗kck↑c−k↓ + ∆kc

†
−k↓c

†
k↑

)
+
∑
k

∆2
k

V0

.

The form of this Hamiltonian is similar to an ffective free electron problem in the sense that

it only contains terms with two operators c†kσ or ckσ, respectively. However, the appearrance

terms like ∆∗kck↑c−k↓ and ∆kc
†
−k↓c

†
k↑ has no analog in the free electron limit. Those terms

are obviously the ones that explicitly violate charge conservation at the mean field level. In

order to bring this Hamiltonian into the desired form, we introduce the Nambu spinor

ck =

 ck↑

c†−k↓

 . (173)

which allows us to express HMF
BCS in a form that resemblesa more the usual free fermion

problem.

where

HMF
BCS =

∑
k

c†k

 εk −∆k

−∆∗k −εk

 ck +
∑
k

(
εk +

∆2
k

V0

)
.

The 2× 2-matrix has eigenvalues determined by

(E − εk) (E + εk)− |∆k|2 = 0

which yields

Ek± = ±Ek

with

Ek =

√
ε2
k + |∆k|2 > 0.
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It is diagonalized by the unitary transformation Uk, that is determined by the eigenvectors.

Suppose one eigenvector is

 uk

vk

 and it corresponds to the eigenvalue +Ek. It holds

 εk −∆k

−∆∗k −εk

 uk

vk

 = Ek

 uk

vk


which yields explicitly

εkuk −∆kvk = Ekuk

−∆∗kuk − εkvk = Ekvk.

This implies that

 −v∗k
u∗k

 is also an eigenvector but with eigenvalue −Ek. The check for

this, we ievaluate  εk −∆k

−∆∗k −εk

 −v∗k
u∗k

 = −Ek

 −v∗k
u∗k


which leads to

−εkv∗k −∆ku
∗
k = Ekv

∗
k

∆∗kv
∗
k − εku∗k = −Eku∗k

which is indeed identical to the first condition above. It also holds that both eienvalues

are orthogal to each other. Thus, we know the unitary transformation that diagonalizes the

above 2× 2 matrix:

U−1
k

 εk −∆k

−∆∗k −εk

Uk =

 Ek 0

0 −Ek


where

Uk =

 uk −v∗k
vk u∗k

 (174)

as well as

U−1
k =

 u∗k vk

−vk uk


It is straightforward to determine uk and vk from the eigenvalue equations, keeping in mind

that nomalization (or unitarity) yields

|uk|2 + |vk|2 = 1
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It follows

uk = − ∆k

Ek − εk
vk

It follows:

u2
k =

1

2

(
1 +

εk
Ek

)
v2
k = 1− u2

k =
1

2

(
1− εk

Ek

)
.

which also implies that

ukv
∗
k =

∆k

2Ek
.

The above unitary transformation naturaly transforms the Namu spinor according to

ak = U−1
k ck

with

ak =

 ak↑

a†−k↓

 ,

and it follows

∑
k

c†k

 εk −∆k

−∆∗k −εk

 ck =
∑
k

c†kUk

 Ek 0

0 −Ek

U−1
k ck

=
∑
k

a†k

 Ek 0

0 −Ek

 ak

=
∑
k

Ek

(
a†k↑ak↑ − a−k↓a

†
−k↓

)
=
∑
k

Ek

(
a†k↑ak↑ + a−k↓a

†
−k↓ − 1

)
=
∑
k,σ

Eka
†
kσakσ −

∑
k

Ek (175)

In total holds

HMF
BCS =

∑
k,σ

Eka
†
kσakσ +

∑
k

(
∆2
k

V0

+ εk −
√
ε2
k + |∆k|2

)
.

Thus, we managed to bring the Hamiltonian into the desired form of a free Fermi gas. In

particular it holds 〈
a†kσakσ

〉
= f (Ek)
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where

f (ε) =
1

exp (βε) + 1

is the usual Fermi function.

Since Ek > 0, it holds that at T = 0 that the ground state energy is

E0 =
∑
k

(
∆2
k

V0

+ εk −
√
ε2
k + |∆k|2

)
.

All excitations are governed by the fermiona akσ. The spectrum of those excitations is√
ε2
k + |∆k|2 which implies that it is gapped with gap |∆k|. The density of states of these

excitations is

ρ (ω) =
1

N

∑
k

δ (ω − Ek) =
1

N

∑
k

δ

(
ω −

√
ε2
k + |∆|2

)
=

∫
dερ0 (ε) δ

(
ω −

√
ε2 + |∆|2

)

where ρ0 (ε) is the density of states of the normal conductor. We substitude z =
√
ε2 + |∆|2

with dε
dz

= z√
z2−∆2 and we obtain

ρ (ω) = θ
(
ω2 −∆2

) |ω|√
ω2 −∆2

ρ0

(
ω√

ω2 −∆2

)
.

There are no states below ∆, while the density of states diverges above the gap edge.

Next we solve the gap equation. From the above unitary transfomation follows:

ck↑ = u∗kak↑ + vka
†
−k↓

c†−k↓ = −vkak↑ + uka
†
−k↓

which yields

c−k↓ = −v∗ka
†
k↑ + u∗ka−k↓

This can be used to express the operator product ck↑c−k↓ that is needed to determine ∆k.

It holds:

ck↑c−k↓ =
(
u∗kak↑ + vka

†
−k↓

)(
u∗ka−k↓ − v∗ka

†
k↑

)
which yields

〈c−k,↓ ck,↑〉 = vkuk

(
2
〈
a†−k↓a−k↓

〉
− 1
)
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and we obtain fo the gap equation:

∆ = −V0

N

∑
k

∆

2Ek
(2f (Ek)− 1)

In the vicinity of the transition temperature the gap ∆ is small and we can linearize the

equation. The linearized gap equation is

∆ = V
∑
k

∆

2ξk
tanh

(
βξk
2

)
(176)

which we write with density of states ρ as

∆ = V ρ∆

∫ ωD

−ωD

tanh
(
βcε
2

)
2ε

dε. (177)

We perform the integral∫ ω0

−ω0

tanh
(
βε
2

)
2ε

dε =

∫ βωD/2

0

tanh (x)

x
dx

= −
∫ βωD/2

0

sech2 (x) log (x) dx+ tanh (x) log x|βωD/20

= γE − log
π

4
+ log

(ωD
2T

)
= log

(
2ωDe

γE

πT

)
, (178)

and obtain

∆ = V ρ∆ log

(
2ωDe

γE

πTc

)
. (179)

which yields for the transition temperature:

Tc =
2ωDe

γE

π
exp

(
−1

λ

)
' 1.134ωD exp

(
−1

λ

)
(180)

where λ = V ρ is the dimensionless coupling constant.

Next we analyze the gap quation at T = 0. Since Ek > 0 follows that f (Ek) = 0 in the

limit of T = 0 and the gap equation simplifies to

∆ = V0ρ

∫ ωD

−ωD
dε

∆

2
√
ε2 + ∆2

= λ∆ log

(
ωD
∆

+

√
1 +

(ωD
∆

)2
)

' λ∆ log

(
2ωD
∆

)
.

This yields the result:

∆ (T = 0) = 2ωD exp (−1/λ) .
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If we compare the value of the transition tempeature with the zero tempratue gap it follows

2∆ (T = 0)

kBTc
=

4ωD exp
(
− 1
λ

)
2eγE
π
ωD exp

(
− 1
λ

)
= 2πe−γE ' 3. 527 3

which is in agreement with numerous observations fo elementary supeconductors.

The result for the zero temperatue gap can alternatively be obtained from the ground

state energy. Earlier we found

E0 =
∑
k

(
∆2
k

V0

+ εk −
√
ε2
k + |∆k|2

)
.

Performing the momentum integration and subtracting the value of the enegy in the normal

state fo ∆ = 0 follows

E0 = E0 (∆ = 0) +N

(
∆2

V0

+ ρ

∫
dε
(
ε−
√
ε2 + ∆2

)
− 2ρ

∫
dεθ (−ε) ε

)
= E0 (∆ = 0) +N

(
∆2

V0

+ 2ρ

∫ ωD

0

dε
(
ε−
√
ε2 + ∆2

) )
= E0 (∆ = 0) +N

(
∆2

V0

+ ρ∆2 log

(
∆

2ωD

)
− ρ

2
∆2

)
Minimizing the ground state enegy with respect to ∆ yields

1

N

∂E0

∂∆
= 2

∆

V0

+ 2ρ∆ log

(
∆

2ωD

)
= 0

which has the nontrivial solution

∆ (T = 0) = 2ωD exp (−1/λ) .

in full ageement with ou earlier result.

C. Heat capacity

To analyze thermodynamic properties we analyze the internal energy

U (T ) = E0 +
∑
k,σ

Ek

〈
a†kσakσ

〉
= E0 + 2

∑
k

Ekf (Ek)
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It implies for the heat capacity

C (T ) =
1

V

∂U (T )

∂T
=

2kB
V

∑
k

(
E2
k

k2
BT

2
− Ek
k2
BT

∂Ek
∂T

)
eβEk

(eβEk + 1)2

where
∂Ek
∂T

=
1

Ek

∂∆k

∂T
.

Thus we obtain:

CV = 2
∑
k

Ek

(
−Ek
T

+
∆

Ek

∂∆

∂T

)
∂f (Ek)

∂Ek
(181)

First, we analyze this result at T → Tc. There Ek ≈ ξk.

With
∂f

∂E
≈ −δ(E)− π2

6
(kBT )2δ′′(E) , (182)

and

∆(T ) ≈ 3.06kBTc

√
1− T

Tc
(183)

as determined ealier it follows for T = Tc − 0+

CV (Tc − 0) = 2ν0

∫
dξ

(
−ξ

2

T

)
∂f

∂ξ
+ ν0

∫
dξ
∂∆2

∂T

∂f

∂ξ

=
2π2ν0k

2
B

3
Tc + (3.06)2ν0k

2
BTc = CV (Tc + 0) + ∆CV (184)

Thus one obtains
∆CV

CV (Tc + 0)
≈ 1.43 (185)

Jump in ∂∆
∂T
leads to jump in CV (see Fig. ??).

For kBT � kBTc ∼ ∆(0) one obtains CV ∝ e
− ∆
kBT .

D. BCS-wave function

We want to determine the ground state that corresponds to the start from a mean field

Hamiltonian

H0 =
∑
k,σ

εkc
†
kσckσ +

∑
k

(
∆kc

†
k↑c
†
−k↓ + h.c.

)
(186)

As outlined above, the Hamiltonian can we written as

H0 =
∑
k

 ck↑

c†−k↓

† εk ∆k

∆∗k −εk

 ck↑

c†−k↓

 . (187)
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H0 is diagonalized by a 2×2 unitary matrix leading to the creation and destruction operator

of the Bogoliubov quasiparticles of the problem ak↑

a†−k↓

 =

 uk −vk
v∗k u∗k

 ck↑

c†−k↓

 . (188)

It then holds

H0 = E0 +
∑
k,σ

Eka
†
kσakσ. (189)

The last result follows from the fact that the eigenvalues of H0 always come in pairs with

opposite sign. In Eq.189we included the ground state energy as additional constant. To

obtain the actual BCS wave function we use the fact that Eq.189 implies that the ground

state wave function is the vacuum state of the Bogoliubov quasiparticles. Thus, it holds

akσ |ΦBCS〉 = 0 for all k, σ. (190)

We assume

|ΦBCS〉 = Ce
∑
k φkc

†
k↑c
†
k↓ |0〉 (191)

where Here |0〉 is the vacuum state of the original operators, i.e. ciσ |0〉 = 0.

• We next determine the pair wave function φij from the condition Eq.190. Eq.190

corresponds to akσ |Φk〉 = 0, where

|ΦBCS〉 = C
∏
k

eφkc
†
k↑c
†
k↓ |0〉 =

∏
k

|Φk〉

We write exlicitly:

ak↑ = ukck↑ − vkc†−k↓
ak↓ = vkc

†
−k↑ + ukck↓. (192)

and obtain from akσ |Φk〉 = 0 that:

ukck↑ |ΦBCS〉 = vkc
†
k↓ |ΦBCS〉 . (193)

We first analyze ck↑ |Φk〉. It is useful to introduce the operator

θ =
∑
k

φkc
†
k↑c
†
−k↓ (194)
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and it holds for the wave function

|ΦBCS〉 ∝
∞∑
n=0

θn

n!
|0〉 (195)

It is easy to show that

[ck↑, θ] = b†−k↓ (196)

with operator

b†−k↓ = φkc
†
−k↓ (197)

follows that
[
b†−k↓, θ

]
= 0. It is now easy to apply ck↑ to each term in the sum of

Eq.195 separately. It holds:

ck↑θ |0〉 = b†−k↓ |0〉

ck↑θ
2 |0〉 = b†−k↓θ |0〉+ θck↑θ |0〉 = 2θb†−k↓ |0〉

...

ck↑θ
n |0〉 = nθn−1b†−k↓ |0〉 . (198)

This result allows to resum the series Eq.195 and we obtain

ck↑ |ΦBCS〉 = b†−k↓ |ΦBCS〉 (199)

The condition akσ |ΦBCS〉 = 0 in form of Eq.193 can then we written as

ukφkc
†
k↓ |ΦBCS〉 = vkc

†
−k↓ |ΦBCS〉 . (200)

This implies immeadiately φk = vk/uk. It is easy to show that the condition a−k↓ |ΦBCS〉 = 0

leads to the same condition. It follows with normalization factor:

C =
∏
k

uk

for the wave function

|ΦBCS〉 = Ce
∑
k vk/ukc

†
k↑c
†
k↓ |0〉

=
∏
k

uke
vk/ukc

†
k↑c
†
k↓ |0〉

=
∏
k

(
uk + vkc

†
k↑c
†
k↓

)
|0〉
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where the last step is a consequence of the fact that due to Pauli Principle
(
c†k↑c

†
k↓

)n
= 0 if

n > 1. The above approach also allows to ptoject the BCS-wave function into the space of

ficed number of electrons N = Np/2.

|ΨBCS, N〉 = C

(∑
k

φkc
†
k↑c
†
k↓

)Np

|0〉 .

E. Microscopic derivation of London equation

Next we analyze the behavior of the BCS state in an external magnetic field. The

magnetic field modifies the kinetic energy of the electrons as follows:

Hkin =

(
p− e

c
A
)2

2m
, (201)

with p = −i~∇. In second quantized form

Hkin =
∑
σ

∫
d3r ψ†σ(r)

(
p− e

c
A
)2

2m
ψσ(r)

= H0,kin +H1 +O(A2) ,

where

H1 = − e

mc

∑
σ

∫
d3r ψ†σ(r)A · pψσ(r). (202)

The order of the two operators A and p is unimportant since ∇ ·A = 0.

The first order correction to the BCS ground state |0〉 = |BCS〉 is

|Φ1〉 =
∑
l 6=0

|l〉 〈l|H1 |0〉
E0 − El

(203)

Current. Velocity

v =
p− e

c
A

m
(204)

Current density

j = e
∑
σ

ψ†σ(r)
p− e

c
A

m
ψσ(r) = e

∑
σ

ψ†σ(r)
p

m
ψσ(r)− e2

cm
A
∑
σ

ψ†σ(r)ψσ(r)

= jp + jd (205)

The jd contribution immediately gives the London equation

jd = −e
2n

mc
A (206)
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Another contribution linear in A could come from jp:

〈jp〉 = 〈Φ1| jp |0〉+ 〈0| jp |Φ1〉 (207)

To calculate |Φ1〉 we need 〈l|H1 |0〉, where |l〉 is an excited state. We assume A = Aqe
iq·r

and q ·Aq = 0. Using ψσ = 1√
N

∑
k cke

iq·r we obtain

H1 = − ~e
mc

∑
k,q,σ

c†k+q,σck,σk ·Aq

We use

ck,σ = ukαk,σ + σvkα
†
−k,−σ , c†k,σ = ukα

†
k,σ + σvkα−k,−σ (208)

and conclude that

〈l| c†k+q,σck,σ |0〉 = σuk+qvk 〈l|α†k+q,σα
†
−k,−σ |0〉 (209)

but also

〈l| c†−k,−σc−k−q,−σ |0〉 = −σukvk+q 〈l|α†−k,−σα
†
k+q,σ |0〉

= σukvk+q 〈l|α†k+q,σα
†
−k,−σ |0〉 (210)

Thus in both cases |l〉 the same, i.e., the same two quasiparticles created. For this particular
|l〉 we obtain

〈l|H1 |0〉 = − ~e
mc

((k ·Aq)σuk+qvk + ((−k− q) ·Aq)σukvk+q)

= − ~e
mc

(k ·Aq)σ (uk+qvk − ukvk+q) (211)

For ~q → 0 we see that the matrix element vanishes. Together with the fact that |E0−El| >
2∆ this gives "rigidity" and

〈jp〉 = 0. (212)

For the total current j = jd + jp follows the London equation

j = −e
2n

mc
A.

Of course only the total current is a gauge invariant quantity and therefore only this sum

of jd + jp determines the electrodynamic properties of the superconductor. Since we obtain

the London equation, we obviously managed to explain the Meissner effect and thus the

key experimental observation of superconductivity. Had we performed the same calculation
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(again in Coulomb gauge) for the normal state, we would also have obtained jd = − e2n
mc
A.

However the "paramagnetic" currect in the normal state follows as jp = e2n
mc
A, such that in

the normal state j = 0. Thus, the key difference is the lack of rigidity of the normal state

wave function.
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