

ABC of DFT: Hands-on session 2

Molecules: structure optimization, visualization of orbitals, charge & spin densities

Tutor: Alexej Bagrets

Wann? 16.11.2012, 11:30-13:00 Wo? KIT Campus Nord, Flachbau Physik, Geb. 30.22, Computerpool, Raum FE-6

1

- Structure optimization, visualization of molecular orbitals and charge densities
 - Examples: benzene, pyridine

- Open shell systems, Jan-Teller distortions
 - Example: cobaltocene

Preparing for the hands-on session 2 ...

- Log into intact cluster (have a look at a separate sheet of paper with instructions)
- Switch to a working directory:

cd ~/ABC_of_DFT/hands-on-sessions/

- Copy a script session2 from dft20 account: cp ~/../dft20/ABC_of_DFT/session2 .
- Type from a command line:
 - ./session2

3

Examples (with this tutorial) will be imported to a directory

~/ABC_of_DFT/hands-on-sessions/session2

Example 1 – Benzene: structure visualization

Go to a directory with example 1 (benzene):
 cd ~/ABC_of_DFT/hands-on-

sessions/session.2/example.1.benzene

- Create you own directory where you are going to run a calculation:
 cp -r structure.benzene my.benzene
 cd my.benzene
- Your directory contains a file coord with atomic positions:

cat coord

\$coord

2.27353301545502	-1.31262489848446	0.00000000000000	С
2.27353301545502	1.31262489848446	0.00000000000000	С
0.000000000000000	2.62524979696891	0.00000000000000	С
-2.27353301545502	1.31262489848446	0.00000000000000	С
-2.27353301545502	-1.31262489848446	0.00000000000000	С
0.000000000000000	-2.62524979696891	0.00000000000000	с
4.03777188872899	-2.33120868688398	0.00000000000000	h
4.03777188872899	2.33120868688398	0.00000000000000	h
0.000000000000000	4.66241737376797	0.00000000000000	h
-4.03777188872899	2.33120868688398	0.00000000000000	h
-4.03777188872899	-2.33120868688398	0.00000000000000	h
0.000000000000000	-4.66241737376797	0.00000000000000	h

\$end

4

5 ABC of DFT, Hands-on session 2: Molecules: structure optimization, visualization of orbitals, charge & spin densities

Example 1 – Benzene: structure visualization

- Convert file coord to the .xyz format: t2x coord > coord.xyz
 Start a visualization program gOpenMol
- Start a visualization program gOpenMol: rungOpenMol &
- Load in coordinates by using a menu of gOpenMol:

File -> Import -> Coords...

You will get a sub-menu where you can select coordinates from. Load the coord.xyz file from your directory and click on the <Apply> buttom.

Example 1 – Benzene: structure visualization

You can tune the way your structure is viewed by selecting View -> Atom type... and by choosing in the upcoming window Licorice with parameters Cyl.rad = 0.1; Sph.rad = 0.3 followed by the <Apply> button.

6

Example 1 – Benzene: creating an input (step 1)

Call an interactive module define from the directory my.benzene:

define

7

```
DATA WILL BE WRITTEN TO THE NEW FILE control
IF YOU WANT TO READ DEFAULT-DATA FROM ANOTHER control-TYPE FILE,
THEN ENTER ITS LOCATION/NAME OR OTHERWISE HIT >return<.
```

Hit <Enter> for the name of input file

```
INPUT TITLE OR
ENTER & TO REPEAT DEFINITION OF DEFAULT INPUT FILE
Type e.g. benzene for the title, followed by <Enter>
```

You will get the "molecular geometry" menu

```
SPECIFICATION OF MOLECULAR GEOMETRY ( #ATOMS=0 SYMMETRY=c1 )
YOU MAY USE ONE OF THE FOLLOWING COMMAND
sy <group> <eps> : DEFINE MOLECULAR SYMMETRY (default for eps=3d-1)
desy <eps> : DETERMINE MOLECULAR SYMMETRY AND ADJUST
COORDINATES (default for eps=1d-6)
susy : ADJUST COORDINATES FOR SUBGROUPS
ai : ADD ATOMIC COORDINATES INTERACTIVELY
a <file> : ADD ATOMIC COORDINATES FROM FILE <file>
....
```

Type a coord <Enter> to append your structure

Example 1 – Benzene: creating an input (step 2)

You will see that 12 atoms have been added:

CARTESIAN COORDINATES FOR 12 ATOMS HAVE SUCCESSFULLY BEEN ADDED.

 SPECIFICATION OF MOLECULAR GEOMETRY (#ATOMS=12 SYMMETRY=c1)

 YOU MAY USE ONE OF THE FOLLOWING COMMAND

 sy <group> <eps> : DEFINE MOLECULAR SYMMETRY (default for eps=3d-1)

 desy <eps> : DETERMINE MOLECULAR SYMMETRY AND ADJUST

 COORDINATES (default for eps=1d-6)

 susy
 : ADJUST COORDINATES FOR SUBGROUPS

Switch on the symmetry detection by entering

desy <Enter>

. . . .

... symmetry detection will print out Schönflies symbol, group generators and the main menu with correct symmetry D_{6h}

SPECIFICATION OF MOLECULAR GEOMETRY (#ATOMS=12 SYMMETRY=d6h) YOU MAY USE ONE OF THE FOLLOWING COMMANDS :

. . .

8

Example 1 – Benzene: creating an input (step 3)

Next step is to provide internal coordinates (bonds, angles, etc...) required for a geometry optimization; type

```
ired <Enter>
JUST FOUND ISOLATED RING OF SIZE 6 :
                     5
   1
       2
            3
                4
                          6
                       2 NDEGR:
                                      2
   GEOSPY: NBDIM:
    Lowest Eigenvalue of BmBt is:
                                         0.3819660113
    GEOSPY: ATTENTION!
    natural internals not linearly independent?
                                 0.9999999999000000
     Decoupling with "globtry"=
    Lowest Eigenvalue of projected BBt
                                              0.3819660113 No:
    Quotient of Eigenvalues
                                    1.000000000
   OCCUPATION OF BLOCKS:
                           2
                               0
                                    0
                                         0
                                              0
```

SPECIFICATION OF MOLECULAR GEOMETRY (#ATOMS=12 SYMMETRY=d6h) YOU MAY USE ONE OF THE FOLLOWING COMMANDS :

. . . .

We are done with the molecular geometry menu; to proceed, type

* <Enter>

9

2

Example 1 – Benzene: creating an input (step 4)

)

Next is the "atomic attributes" menu:

ATOMIC ATTRIBUTE DEFINITION MENU (#atoms=12 #bas=12 #ecp=0

```
b : ASSIGN ATOMIC BASIS SETS
```

bb : b RESTRICTED TO BASIS SET LIBRARY

bl : LIST ATOMIC BASIS SETS ASSIGNED

• • • •

You may check that a default basis set def-SV(P) is assigned: bl <Enter> INDEX | BASIS SET NICKNAME

 $1 \mid c def-SV(P)$

 $2 \mid h def-SV(P)$

You may switch to other basis (e.g. def-TZVP, of triple-ζ quality):
 b all def-TZVP <Enter>

- To proceed for the next menu, type
 - * <Enter>

Example 1 – Benzene: creating an input (step 5)

The next menu is the one where define determines initial molecular orbitals with, e.g., an extended Hückel guess.

OCCUPATION NUMBER & MOLECULAR ORBITAL DEFINITION MENU

CHOOSE COMMAND infsao : OUTPUT SAO INFORMATION eht : PROVIDE MOS && OCCUPATION NUMBERS FROM EXTENDED HUECKEL GUESS use <file> : SUPPLY MO INFORMATION USING DATA FROM <file> man : MANUAL SPECIFICATION OF OCCUPATION NUMBERS hcore : HAMILTON CORE GUESS FOR MOS & : MOVE BACK TO THE ATOMIC ATTRIBUTES MENU THE COMMANDS use OR eht OR * OR q(uit) TERMINATE THIS MENU !!! FOR EXPLANATIONS APPEND A QUESTION MARK (?) TO ANY COMMAND

To choose the Hückel guess, type eht <Enter>

• You will be asked a lot questions: accept all defaults

Example 1 – Benzene: creating an input (step 6)

• There are **two important** questions during that procedure:

ENTER THE MOLECULAR CHARGE (DEFAULT=0)

If you have a charged system, you have to tell that **define** at this point. For now, we accept a neutral molecule by hitting <<u>Enter</u>>

The second question is about occupation numbers

AUTOMATI	C OCCUPATION	NUMBER ASSI	GNMENT ESTAE	BLISHED !
FOUND CL	OSED SHELL ST	YSTEM !		
HOMO/LUM	O-SEPARATION	: 0.167139		
ORBITAL	SYMMETRY	ENERGY	DEFAULT	
(SHELL)	TYPE		OCCUPATION	
11	3elu	-0.51863	4	
12	1b1u	-0.50821	2	
13	1e1g	-0.48203	4	
14	3e2g	-0.43095	4	
15	le2u	-0.26381	0	
16	1b1g	-0.08611	0	
17	4e1u	0.39013	0	

DO YOU ACCEPT THIS OCCUPATION ? DEFAULT=y

For our case, the restricted single occupation is OK, press <Enter>

Example 1 – Benzene: creating an input (step 7)

We will get the last "general menu":

GENERAL MENU : SELECT YOUR TOPIC scf : SELECT NON-DEFAULT SCF PARAMETER mp2/cc2: OPTIONS AND DATA GROUPS FOR MP2, CC2, ETC. : EXCITED STATE AND RESPONSE OPTIONS ex : SELECT TOOLS FOR SCF-ORBITAL ANALYSIS prop drv : SELECT NON-DEFAULT INPUT PARAMETER FOR EVALUATION OF ANALYTICAL ENERGY DERIVATIVES (GRADIENTS, FORCE CONSTANTS) : SELECT OPTIONS FOR GEOMETRY UPDATES USING RELAX rex stp : SELECT NON-DEFAULT STRUCTURE OPTIMIZATION PARAMETER : DEFINE EXTERNAL ELECTROSTATIC FIELD е dft : DFT Parameters

• • •

Choose DFT, by entering dft <Enter>, and then on <Enter>

STATUS OF DFT_OPTIONS: DFT is used functional b-p Just <ENTER>, q or '*' terminate this menu.

Type q <Enter> to quit and go back to the general menu

Example 1 – Benzene: creating an input (step 8)

General menu allows further options to control over the calculation

GENERAL MENU : SELECT YOUR TOPIC

• • •	•	
ri	:	RI Parameters
rijk	:	RI-JK-HF Parameters
trunc	:	USE TRUNCATED AUXBASIS DURING ITERATIONS
marij	:	MULTIPOLE ACCELERATED RI-J
dis	:	DISPLAY MOLECULAR GEOMETRY
list	:	LIST OF CONTROL FILE
&	:	GO BACK TO OCCUPATION/ORBITAL ASSIGNMENT
* or q	:	END OF DEFINE SESSION

Calculations for larger molecules can be substantially accelerated if one employs a so-called resolution of the identity (RI) approximation for the evaluation of Coulomb energy integral, where the charge density is expanded over the auxiliary basis set.

MENU

Example 1 – Benzene: creating an input (step 9)

To activate RI approximation, type ri <Enter>, followed by on <Enter> in the upcoming sub-menu.

After done so, you will find

STATUS OF RI-OPTIONS: RI IS USED Memory for RI: 200 Mb Filename for auxbasis: auxbasis Use <ENTER>, q, end, or '*' to leave this menu

Type q <Enter> to go back to the general menu, followed by q <Enter> to finish define session.

Example 1 – Benzene: creating an input (remarks)

- After define session is finished, you'll find following files in your directory: control, basis, auxbasis, mos.
- File **control** contains all settings to control over your calculation.
- Files basis & auxbasis contain information about basis functions (contracted Gaussian type orbitals) and auxiliary basis set to be used for wave functions (molecular orbitals = MOs) and charge density expansions, respectively.
- File mos contains MO energies and expansion coefficients of MOs over the basis functions.
- Files control and mos will be updated during the calculation.

Example 1 – Benzene: running calculation

- To run a DFT calculation, call from the current directory ridft > ridft.out &
- After a minute, scroll up the output file: you'll find the energy diminishes within the self-consistent cycle, and is converged after 9 iterations:

ITER	ATION	ENERGY	1e-ENERGY	2e-ENERGY	NORM[dD(SAO)] TOL
4	-232.	 06592645088	-715.02052527	278.59415462	0.000D+00 0.327D-09
5	-232.	07193048496	-715.42066923	278.98829454	0.000D+00 0.327D-09
6	-232.	07269666729	-715.66752979	279.23438892	0.000D+00 0.327D-09
7	-232.	 07272816194	-715.63626449	279.20309213	0.000D+00 0.327D-09
8	-232.	 07273547481	-715.68122603	279.24804636	0.000D+00 0.327D-09
ENERGY CONVERGED !			Reason for a slig a denser grid for	ghtly different v a numerical in	alue: tegration is used !
9	-232.	07253692230	-715.67741588	279.24443476	0.000D+00 0.327D-09
co	 nverge	 nce criteria s	satisfied after	9 iterations	

Example 1 – Benzene: checking convergence

To check convergence of the energy, you can use script cgnce, which exports output info to gnuplot. Type

cnqce ridft.out

The window on the right will show up (press < Enter> to quit)

The converged ground state energy (in Hartree units) is appended to file energy (first column):

SCFPOT SCFKIN 229.7317088723 -461.8042457946

Carlsruhe Institute or

Example 1 – Benzene: data post-processing

Data post-processing script eiger provides information about orbital energies and occupations. Type eiger > molecular.levels.dat and afterwards cat molecular.levels.dat

Example 1 – Benzene: structure optimization

To perform geometry optimization of benzene, make a new directory:
 cd ~/ABC_of_DFT/hands-on-

sessions/session.2/example.1.benzene

cp -r my.benzene my.benzene.relaxed

cd my.benzene.relaxed

Call from the current directory jobex script:

jobex -ri -grad -c 25

- -ri tells the script to use modules with RI implementation;
- -grad tells to perform a gradient evaluation as the first step;
- -c <number> accounts for a maximum amount of relaxation steps
- Further information can be obtained via jobex -h

Example 1 – Benzene: structure optimization

At each step of optimization procedure, information on the energy is appended to the file energy; type: cat energy

\$energy	SCF	SCFKIN	SCFPOT
1	-232.0725369223	229.7317088723	-461.8042457946
2	-232.0764088838	229.3325106808	-461.4089195645
3	-232.0765621000	229.3004492613	-461.3770113613
4	-232.0765632300	229.2972414010	-461.3738046309
5	-232.0765631460	229.2967217448	-461.3732848908
6	-232.0765631243	229.2965858552	-461.3731489795

\$end

Information on gradient and new coordinates is appended to the file gradient; type: grep cycle gradient

cycle	=	1	SCF energy =	-232.0725369223	dE/dxyz =	0.042942
cycle	=	2	SCF energy =	-232.0764088838	dE/dxyz =	0.016091
cycle	=	3	SCF energy =	-232.0765621000	dE/dxyz =	0.001375
cycle	=	4	SCF energy =	-232.0765632300	dE/dxyz =	0.000194
cycle	=	5	SCF energy =	-232.0765631460	dE/dxyz =	0.000021

Question: what are the C-C and C-H bond lengths that you've got? How well do these values compare with experimental data?

- Go to your directory with the calculation for benzene, e.g.
 cd ~/ABC_of_DFT/hands-on sessions/session.2/example.1.benzene/my.benzene.relaxed
- Call eiger script to get info about orbital energies
- You'll see HOMO is orbital #14, LUMO is #15, etc ...
- To plot frontier orbitals, add to control file a line (before \$end)

```
$pointval mo 13-16
```

and call: ridft -proper

- You'll see four *.plt files on output. Each file name is associated with one orbital
- To plot a charge density, a line \$pointval dens is required in control file

23 ABC of DFT, Hands-on session 2: Molecules: structure optimization,

Example 1 – Benzene: visualization of orbitals

- *.plt files can be visualized with gOpenMol.
- Call it from a command line: rungOpenMol coord.xyz &
- Go to the menu: Plot -> Contour...
- You will get the window where you can load in the *.plt files: first click on **Browse**, load the file, then press Import

- The Contour Control Window will expand, writing out the minimum and maximum value of the wave function amplitude (or density) that has been read in.
- For each of the 10 fields, called Value 1 till Value 10, you can now enter a value that will define the iso-surface of the wave function's amplitude (or density iso-surface, if charge density is plotted).
- With Colour... and Details... you can change the color and the opacity of each contour.
- Do not forget to click on the Apply button.

Example shows one of the antibonding (π^* -like) LUMOs of benzene

Eile Edit View Calculate Plot Irajectory Run I GOpenMol version 3.00 % Contour Control File: C:/Users/Alexej/Teaching/ABC_of_DFT/I E Contours
gOpenMol version 3.00 74 Contour Control File: C:/Users/Alexej/Teaching/ABC_of_DFT/I Contours
74 Contour Control File: C:/Users/Alexej/Teaching/ABC_of_DFT/I Contours
File: C:/Users/Alexej/Teaching/ABC_of_DFT/I
File name: Min: Max:
● 1: 1e2u2.plt -0.215 0.215 Details
Delete all contours Edit material properties
Value 1: -0.029999993294 Colour Details
Value 2: 0.029999993294 Colour Details
Colour 1, level 2
State
Contour type: 💿 Solid O Mesh O Line 🛛 🚺 Colour
Display state: O On O Off Colour
Smooth state: O On O Off
Cullface state: O On O Off
Opacity [Colour
0.70 [<u>Colour</u>
Colour
0.00 0.20 0.40 0.60 0.80 1.00 Colour
0.6995
Plane

 Exercise: plot two degenerate HOMOs of benzene.
 Convince yourself that these two orbitals form an aromatic π-electron system, delocalized over the entire ring.

 Userful remark: your pictures can be exported to graphics files. For that, use the menu of gOpenMol

File -> Hardcopy ...

where an upcoming window allows to choose among graphics formats.

Example 2 – Pyridine (exercise)

- Consider a pyridine molecule, C₅H₅N, which is structurally related to benzene, with one CH group replaced by N atom. Look at ~/ABC_of_DFT/hands-onsessions/session.2/example.2.pyridine/structure.pyridine
- Visualize atomic structure of the molecule.
- Compute electronic structure of pyridine, assuming a default C_{2v} symmetry.
- Perform atomic structure relaxation.

Example 2 – Pyridine (exercise)

Visualize frontier molecular orbitals of pyridine (few occupied and few unoccupied ones).

Questions:

- 1. N atom has a single "lone pair" pointing outwards the ring. One of the σ -type molecular orbitals resembles this lone pair. Which orbital is that?
- Due to a structural similarity, the some frontier molecular orbitals of pyridine resemble double degenerate HOMO (π) and LUMO (π*) of benzene. Can you show, which are these orbitals? Why degeneracy is lifted in case of pyridine?

Example 3 – Cobaltocene (open shell: step 1)

- Structure of Co(C₅H₅)₂ can be found at ~/ABC_of_DFT/hands-on-sessions/session.2/example.3.openshell.cobaltocene.d5d/structure.cobaltocene
- When creating an input with define, impose a high D_{5d} symmetry (desy 0.3)
- Due to orbital energies degeneracy, automatic occupation of Hückel's orbitals will fail.
- Help define by choosing an open shell occupation for a charge neutral complex with 7 unpaired spins as a starting guess (please, look at the next slide ...)

Example 3 – Cobaltocene (open shell: step 2)

After you've specified a zero charge on the complex, you'll get ...

NUMBER OF ELECTRONS IN YOUR MOLECULE IS 97

YOU HAVE TO ASSIGN OCCUPATION NUMBERS MANUALLY >> UHF << : ALPHA AND BETA SHELLS (a,b) >> RHF << : CLOSED AND OPEN SHELLS (c,o)

OCCUPATION NUMBER ASSIGNMENT MENU (#e=97 #c=0 #o=0)

s : CHOOSE UHF SINGLET OCCUPATION

- t : CHOOSE UHF TRIPLET OCCUPATION
- u <int> : CHOOSE UHF WITH <int> UNPAIRED ELECTRONS

. . .

ENTER COMMAND

Type u 7 <Enter>

(1, 3, or 5 unpaired spins will not be accepted)

Proceed further with define, setting up DFT, RI, MARI-J options

Example 3 – Cobaltocene (open shell: step 3)

- After define session is finished, you'll find two files, alpha and beta, accounting for MOs with α ("up") and β ("down") spins
- Open shell systems (and, also, large systems) require electronic temperature smearing of occupation numbers within first steps of selfconsistent cycle to encourage convergence.
- That is done with help of mkfermi script, which modifies your control file by adding (among others) the following line:
 \$fermi tmstrt=300 tmend=10 tmfac=0.8 hlcrt=0.5 stop=1.0E-3
 The initial temperature 300 K is reduced at each cycle by the factor
 0.8 until it reaches the value 10 K
- To run calculation, type mkfermi ridft | tee cobaltocene.out

Example 3 – Cobaltocene (open shell: step 4)

After single-point energy calculation is finished, scroll up the output file. You'll find the DFT ground state with one unpaired spin:


```
End of SCF iterations
```

convergence criteria satisfied after 60 iterations

Proceed further with geometry optimization: set electronic temperature to 10 K by modifying (red) one line in control file to \$fermi tmstrt=10 tmend=10 tmfac=1.0 hlcrt=0.5 stop=1.0E-3

```
Perform structure relaxation:
nohup jobex -ri -grad -c 50 > jobex.out &
```

Example 3 – Cobaltocene (open shell: step 5)

Get information of the cobaltocene de Total energy =	tion about orbita 15a -1769.65970505	al energies (<mark>eige</mark> 10 н = -48154.9	er script) 180980 ev
HOMO-LUMO Sep	aration		
HOMO: 63	.a 5 e2g -0	.09829840 H =	-2.67484 eV
LUMO: 64	. b 5 e2g -0	.06691752 H =	-1.82092 eV
Gap :	+0	.03138089 H =	+0.85392 eV
Number of MOs=	226, Electro	ns= 97.00, Sym	metry: d5d
Nr. Orbit	al Occupation	Energy	
65.a 4e	2u	+0.021386 H =	+0.582 eV
64.b 5e	2g	-0.066918 H =	-1.821 eV
63.a 5e	2g 1.000	-0.098298 H =	-2.675 eV
62.b 4e	lg 2.000	-0.162209 H =	-4.414 eV
61.b 8a	lg 1.000	-0.174730 H =	-4.755 eV
60.a 4e	lg 2.000	-0.179628 H =	-4.888 eV
59.a 8a	.1g 1.000	-0.187986 H =	-5.115 eV

HOMO : double degenerate α level (E_{2g} symmetry) is occupied by one electron

Example 4 – Cobaltocene (Jahn-Teller effect)

In nature, orbital energies degeneracy is lifted due to Jahn-Teller distortions: a non-linear molecule with a degenerate electronic ground state will undergo a geometrical distortion, which removes that degeneracy, because the distortion lowers the overall energy of the complex.

Example 4 – Cobaltocene (Jahn-Teller effect)

- Exercise: illustrate Jahn-Teller effect with your calculation
- Take a structure of Co(C₅H₅)₂ at ~/ABC_of_DFT/hands-on-sessions/session.2/example.4.openshell.cobaltocene.c2h/structure.cobaltocene
- Within define session, choose C_{2h} symmetry.
- For a charge neutral complex, approve an open shell occupation with one unpaired spin.
- Perform a DFT calculation, and a subsequent structural relaxation: do not forget about the Fermi smearing (mkfermi script) !

Example 4 – Cobaltocene (Jahn-Teller effect)

- Estimate energy difference for structures with D_{5d} and C_{2h} symmetry. Answer: GS DFT energy for the C_{2h} structure is lower by ~ 0.11 eV (value is given for the def-SV(P) basis, "b-p" BP86 functional)
- Compare KS spectrum of complexes with different symmetries. You'll find, the "HOMO doublet" splits to HOMO (occupied) and LUMO (unoccupied) levels. What is the splitting? Answer: ~ 0.4 eV (def-SV(P) basis, "b-p" BP86 functional)
- Hint: you can compare output of your calculations for the two cases with those at
 - D_{5d} : .../session.2/example.3.open-

shell.cobaltocene.d5d/output.cobaltocene/output.jobex

 $C_{2h}: \dots / session.2 / example.4.open$ shell.cobaltocene.c2h/output.cobaltocene/output.jobex

Example 4 – Cobaltocene: charge & spin densities

Exercise: Plot charge and spin densities of cobaltocene: show that unpaired spin is localized mainly on Co atom. That may look like ...

