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1. Introduction

Confluence of two established materials or technologies often leads to the emergence of
qualitatively new phenomena. One of the best known examples is the resonant circuit. It
consists of an inductor and a capacitor and has properties that neither of its parts has by
itself. Or as Aristoteles put it: ”The whole is more than the sum of its parts.”

Two of the most exciting classes of materials are semiconductors and superconductors.
Semiconductors are the foundation of all our modern technology. They are the raw mate-
rial for transistors, diodes, MOSFETs and many other ingredients of modern technology.
Computers, mobile phones, remote controls and uncountable other devices require these
semiconductor based building blocks. A basic building block of semiconductor electronics
is a p-n junction or diode. It consists of a heterostructure of a electron-doped semicon-
ductor and a hole-doped semiconductor. If the bandstructure of a diode has a direct band
gap in the vicinity of the interface, an electron that tunnels from the conduction band
of the electron-doped side to the valence band of the hole doped-side releases its excess
energy via emission of a photon [Rou07]. (This process can also happen in reverse which
is the principle of a solar cell.) Therefore light emitting diodes (LEDs) provide a beautiful
man made electron-photon coupling. Superconductors, while currently less visible in our
everyday life (mostly because they need extensive cooling), are often considered a foun-
dation for future technologies. In medicine they are the key element to build ultra strong
magnets which are needed for magnetic resonance imaging. And there is more to them
than zero resistivity. They exhibit quantum mechanical properties on a macroscopic scale.
The ground state of a superconductor, first described by Bardeen, Cooper, and Schrieffer
in 1957 [BCS57], is a macroscopic coherent state extending over the entire sample size and
has a well defined phase. It consists of a superposition of entangled electron pairs, called
Cooper pairs. One of the most remarkable effects in superconductor-non superconductor
heterostructures is that, under certain circumstances, Cooper pairs can tunnel into the non
superconducting materials and survive there long enough to induce superconductivity by
proximity. As a consequence, these materials become a superconductor themselves, while
at the same time keeping some of their original properties.

Naturally, this remarkable injection property of superconductors has triggered a plethora of
experiments and theoretical considerations that investigated a large variety of superconductor-
non superconductor heterostructures. Arguably the most important of these are Josephson
junctions [Jos62] consisting of two superconductors separated by an insulating layer. They
are the basis for superconducting quantum interference devices (SQUIDs).

1



2 1. Introduction

Over a long time all systems that where investigated were solely based on electric charge
and current. However, about ten years ago, people started to wonder what happens if one
brings superconductivity together with light emitting structures such as a light emitting
diode. If the Cooper pairs can tunnel deep enough and survive long enough in the LED,
would they couple to the emitted photons? And if this is indeed the case, which unusual
properties would the emerging light have? A first guess would be coherent light, which
is well known from lasers, since a superconductor is described by state. However, laser
light is described by coherent single photon states and superconductors by coherent two
electron states. In quantum optics literature one finds that the concept of two photon
coherent states is known under the term squeezed light. The idea of squeezing dates back
to Schrödinger [Sch26]. If one considers a pair of conjugated variables, than the product of
their variances satisfies Heisenberg’s uncertainty principle. If this uncertainty is not equally
distributed between the two variables, the system is in a squeezed state. In analogy to
position and momentum in an oscillator the electric field of light can be described by a
pair of conjugated variables, called quadrature amplitudes. Their choice is not unique. If
there exists at least one pair of quadrature amplitudes for which the uncertainty is not
equally distributed, we talk about squeezed light. The first extensive discussion of squeezed
light didn’t take place before 1968 [KS68]. The interest in squeezed light increased about
two decades ago, when high precission measurement devices, such as interferometers, had
reached a precission where reducing quantum fluctuations became an important issue.
This can be achieved using squeezed light. The idea has caused great interested in the
field, and triggered the search for a suitable source. However, to our knowledge, so far
there exist no generic source capable of direct production of squeezed light. The most
popular method is spontaneous parametric down conversion (SPDC) [BW70] and relies on
the conversion of an existing light beam into squeezed light. Unfortunately the efficiency
rate of SPDC is very low.

In this thesis we propose that a superconductor-LED-superconductor heterostructure may
be such a generic source of squeezed light. In 2002 Eiichi Hanamura suggested a similar
heterostructure for an increased photon emission rate [Han02], and conjectured that it
might be a source of entangled photon pairs. Experimentally a light emitting diode with
a superconductor attached to one side was first realized a couple of years later [HTA+08],
and supported Hanamura’s idea of increased photon emission rate. This experiment in
turn triggered subsequent theoretical investigations [ASTH09], [RNK10], [HNK09] and
[GHN11]. In this work we consider a LED with two superconducting contacts, and focus

Figure 1.1.: Superconductor-Light Emitting Diode-Superconductor heterostructure

on the properties of the emitted light. Since we want to investigate if the presence of
the superconductors leads to the emission of squeezed light, we treat the phases of the
superconducting leads accurately. We show that the relative phase between the supercon-
ductors is inherited by the emitted photon pairs. We derive an effective photon description
that exhibits a photon-photon coupling with a rotating phase. Such a coupling is known
as parametric amplifier [GM65] and causes the squeezing of light. We explicitly calculate
the variance in the quadrature amplitudes to show that a high degree of squeezing can

2



1.1. Outline 3

be achieved. Finally we conclude by demonstrating that we can utilize the relative phase
to control how the uncertainty ellipse is orientated in a diagram where the x- and y-axes
display the magnitudes of a pair of quadrature amplitudes.

1.1. Outline

This work is structured as follows: We begin with a review of experimental work to
demonstrate that Cooper pairs can probe deeply into a light emitting diode, reach the
region where the photon production takes place, and has an impact on the photon emission.
We then discuss previous theoretical work on similar problems to give an overview about
the state of the art and in what respect our work is different and new. In chapter 3 we
introduce and discuss the fundamental concepts that are relevant for our analysis. In the
subsequent chapter we explain how a light emitting diode is modeled and how we include
the superconducting leads. Chapter 5 is the main part of this work. We first discuss the
spontaneous photon emission of a normal light emitting diode and investigate which effect
higher order corrections have. Then we derive an expression from which the properties of
the emitted photons become obvious. Due to the superconductivity it contains a term that
acts as a parametric amplifier, which is responsible for the squeezing of light. In the last
section we show that the emitted light is squeezed and that we can control the orientation
of the uncertainty ellipse with respect to a particular pair of quadrature amplitudes.

3





2. Review

2.1. Experiments

In this section we review experimental work that investigates superconductor- semicon-
ductor junctions. We focus on two sets of consecutive papers [ITA+10], [TIA+10] and
[SKH+11], [HTA+08], [SHK+10]. Before we start the discussion we present some ex-
perimental results regarding a superconductor-semiconductor-superconductor Josephson
junction from [SAT+06]. Subsequently we review the first set of papers, which is centered
around the investigation of the proximity effect in a p-n-junction. In the third part of this
section we focus on the second set. It investigates the photon emission rather than just
electric currents.

2.1.1. Proximity Effect in Semiconductors

When a superconductor is attached to a non-superconductor with mobile charge carri-
ers, including semiconductors, Cooper pairs can tunnel from the superconductor into the
non-superconductor. The characteristic length scale on which the Cooper pairs leak into
an attached material is proportional to the third root of the electron density in the non-
superconducting material ξ ≈ (nel)

1/3 [SKH+11]. Therefore, if one wants to induce super-
conductivity into semiconductors the latter should be highly doped. Below we summarize
an experiment in which the electron density exceeds 3 ·1019cm−3. Another very important
factor is that the lattices of the superconducting and the non-superconducting materials
have to match in order to ensure a good ohmic contact. For this reason, as of today,
no experiments where a superconductor was attached to a p-doped semiconductor have
been reported. In the experiment that was reviewed in [SAT+06] a n-doped layer is in-
serted between two Niobium contacts. Niobium becomes a superconductor below 9 Kelvin.
Naively we would expect a roughly linear I-V curve, for not too high voltages, because the
semiconductor is a limiting factor for the current. At room temperature this is true. At
temperatures somewhat below the critical temperature of Niobium however the I-V curve
exhibits a jump at zero bias voltage. This is because the induced Cooper pairs make the
semiconductor superconducting. In the experiment this is shown in figure 2.1, where the
temperature was 0.7 Kelvin. This experiment shows that superconductivity can indeed be
induced into a semiconductor.

2.1.2. Proximity Effect in a p-n junction with bias voltage

In this subsection we discuss two more or less equivalent papers [TIA+10] and [ITA+10]
that report experimental findings about a hybrid of Josephson junction and pn junction.

5



6 2. Review

Figure 2.1.: Proximity Effect - Source [SAT+06]

Two niobium electrodes are attached to the n-side of a highly doped p-n junction (see figure
2.3). The niobium electrodes together with the n-doped semiconductor form a Josephson
junction and the presence of the p-doped semiconductor creates a depletion layer at the
p-n interface. Together with a bias voltage this allows to control the effective width of
the n-doped side and thus the current in the Josephson junction. There are two different

Figure 2.2.: Measurement Setup - Source
[TIA+10]

Figure 2.3.: Schematic Sample Structure-
Source [TIA+10]

currents that can be measured in this setup. The Josephson current between supercon-
ducting leads and the current which is injected by a bias voltage applied between gold-
and the superconducting lead. A schematic picture of the setup is shown in figure 2.2.
Well below the superconducting temperature of niobium the system exhibits a supercur-
rent. In figure 2.4 ”Shapiro steps (AC Josephson effect) indicate that the Nb-InGaAs-Nb
junction is a Josephson junction and the supercurrent depends on the phase difference of
the superconductors.” [TIA+10]

A particularly important question for the realization of Cooper pair based LEDs is, whether
Cooper pairs can tunnel deep enough into the semiconductor and reach the p-n interface.

6



2.1. Experiments 7

Figure 2.4.: Supercurrent with and without microwave irradiation - Source [TIA+10]

This is important because the photon production takes place in the region around the
interface. Experimental evidence [ITA+10] and [TIA+10] suggest that they in fact do so.
The logic is the following: The width of the depletion layer dependents on the bias voltage.
Forward bias reduces the width of the depletion layer, thereby increasing the widths of the
non depleted regions. Since the proximity effect is proportional to the third root of the
electron density, a supercurrent can not exist in the carrier depletion region of a diode.
Therefore, if the critical supercurrent is increasing under the application of a forward bias,
it is direct evidence that Cooper pairs are present in the vicinity of the depletion layer. In
figure 2.5 the critical current between the two superconducting leads is plotted over the
bias voltage. In region I the current induced by the bias voltage is negligible (∼ 0.1nA).
Hence the bias voltage results in a field effect, that changes the width of the depletion layer.
In this region the critical current increases almost linearly with bias voltage. This is direct
evidence, that the proximity effect probes the semiconductor up to the depletion layer.
Another nice plot from a different paper [SKH+11] with the same conclusion is shown in

Figure 2.5.: Critical current - Source [TIA+10]

Fig. 2.6. The physics in the other two regions at higher bias voltage is less thoroughly
understood. What is known is that in region II the injected current increases by about two
orders of magnitude. Why this leads results in a bias voltage independent critical current
is not fully understood. A possible explanation is that for a bias that corresponds to the
gap of the p-n junction the width of the depletion layer has shrunken to zero. In region III
the injected current is a finite fraction of the critical current (∼ 0.5%). In figure 2.5 we see
that the critical current decreases rapidly in this region. H. Takayanagi et al argue that this
is due to the injected nonequilibrium carriers. But the issue more subtle. Injected holes

7



8 2. Review

Figure 2.6.: Proximity Effect - Source [SKH+11]

from the p-side diffuse to the p-n junction where they recombine with electrons from the
n-side which often results in the emission of photons. These photons have energies much
higher than the binding energy of Cooper pairs. Therefore photons break Cooper pairs.
The real damage to the Cooper pairs however is done by the resulting ’hot’ electrons which
break many other Cooper pairs. (see figure 2.7). H. Takayanagi et al [SKH+11] named

Figure 2.7.: Injected current due to bias voltage - Source [SKH+11]

the ratio of injected holes to break Cooper pairs the recombination efficiency (RE). Based
on the assumption that without the photon production the critical current would continue
to increase linearly with the forward bias voltage (see figure 2.9), they extrapolate the
recombination efficiently to be as high as 700 in region II. With even higher bias voltages
it decreases rapidly to the steep increase of injected holes.

2.1.3. Superluminescence

In this subsection we discuss a slightly more complicated experiment. The sample is almost
the same as in [TIA+10], [ITA+10] but this time the measurement setup includes photon
detectors (see figure 2.10). A schematic sketch of the recombination process of Cooper
pairs with normal holes as well as an effective band structure is shown in figure 2.14.
There are three major processes happening, when the n-side of a LED is attached to a
superconductor. Non-radiative recombination, radiative recombination of normal carriers
with normal holes and radiative recombination of Cooper pairs with normal holes. Each

8



2.1. Experiments 9

Figure 2.8.: Critical current II - Source
[TIA+10]

Figure 2.9.: Recombination efficiency - Source
[TIA+10]

process has a specific rate τ−1. The total recombination time is given by 1/τLED =
1/τrad + 1/τnonrad. The radiative recombination time has a normal and a superadiative
component that is phenomenologically described by

1

τrad
=

1

τnormalrad

+A
∆2(T )

T
exp

(
− 2L

ξ(T )

)
, (2.1)

which we cited from [ASTH09]. Here ∆ is the gap of the superconductor, L is the width
of the n-doped layer and ξ is the correlation length of the Cooper pairs. From the ex-
perimental data (fig. 2.13) we see that the recombination time rapidly decreases if the
temperature is lowered below the critical temperature of the superconducting lead. This
means two things. First, the Cooper pairs actually do contribute to a significant percent-
age of the recombinative current and second the recombination time of the Cooper pairs
is much shorter than the usual recombination times in a LED. In [SKH+11] the ratio of
Cooper pair to normal electron recombination is estimated to be almost 1:2 at 3K. This
is also known by the term ’superluminescence’. In order to understand this term it is
important to know that all the measurements where made at a fixed current through the
junction. Therefore there exists an upper limit on the luminescence given by the number of
electrons passing the junction. Therefore, the relevant term in this section is the efficiency,
rather than the luminescence. In [HTA+08] an increase in the luminescence as a function
of the temperature was observed below the critical temperature of the superconducting

9



10 2. Review

Figure 2.10.: Experimental setup - Source [SKH+11]

lead (fig. 2.15). In a follow up paper [SHK+10] this is explained by an increase of the
quantum efficiency. This makes sense if the non-radiative recombination dominates over
the radiative recombination. Namely, if the efficiency of the normal conducting state is
well below 50 percent. If it were at 80 percent or higher, there would be little room for
improvement. Thus, since the recombination time of Cooper pairs with normal holes is
much shorter than the recombination time of normal electrons with holes, the efficiency

η =
1/τrad

1/τrad + 1/τnonrad
≈ τnonrad

τrad
(for τrad � τnonrad) (2.2)

increases below the critical temperature. In contrast to this observation in [SKH+11],
published by the same group, there is no sign of the superluminescence observed in the
earlier two papers (fig. 2.16). Nevertheless the recombination time still decreases as
discussed in the previous section. The authors of [SKH+11] explain this by claiming
that the quantum efficiency η of the LED used in the last paper is already very high at
temperatures above the critical temperature. This implies that the efficiency

η =
1/τrad

1/τrad + 1/τnonrad
≈ 1 (for τrad � τnonrad) (2.3)

can’t be increased very much anymore. Summarizing the experimental data shows that it
is in general possible to build a Cooper pair based light emitting diode using the proximity
effect. It has been shown that the Cooper pairs can tunnel all the way into the p-n interface
and that they participate in the photon production. In fact the data suggest that the
recombination rate of Cooper pairs with normal holes is about twice as high as for normal
electrons. The only experimental challenge that remains is to induce superconductivity
to the p side of the junction. This challenge lies in precise matching of lattices and is no
fundamental obstacle.

10



2.2. Theory 11

Figure 2.11.: Schematic sketch of sample - Source
[HTA+08]

Figure 2.12.: Photo of sample - Source
[SKH+11]

2.2. Theory

In this section we review theoretical work on setups that are similar to ours. The initial
idea to a superconducting light emitting diode was put forward by Eiichi Hanamura in
2002 [Han02]. In response to this paper seven years later Asano et.al. published a pa-
per to explain first experiments with proximity induced superconducting light emitting
diodes. They considered the situation where the n-side of a LED is coupled to a super-
conductor [ASTH09] and the p-side to a normal conductor. Around the same time Leo
P. Kouwenhoven et al started a set of three consecutive papers which they call Josephson
light-emitting diode [RNK10], [HNK09], and [GHN11].

2.2.1. The initial idea by Eiichi Hanamura

In 2002 Hanamura proposed a superconducting p-i-n junction (see figure 2.17). Specifically
he suggested for the p-type superconductor (La2−xSrxCuO4), for the n-type superconduc-
tor (Nd2−xCexCuO4) and (La2CuO4 or Nd2CuO4) for the insulating layer. When a voltage
is applied to such a sp-i-sn junction as shown in figure 2.17 electron Cooper pairs from
the n-type superconductor and hole Cooper pairs from the p-type superconductor tunnel
balistically into the insulating layer. In this layer they recombine with each other. A
schematic band structure is given in figure 2.18. Both radiative and non-radiative pro-
cesses possible. The paper only discusses the radiative processes. There are two distinct
processes how an electron Cooper pair recombines with an hole Cooper pair. In one case
the Cooper pair split up in two electrons and two holes. One of the electron recombines
with one of the holes by emitting a photon. The remaining unpaired electron and hole can
carry away both energy and momentum. Therefore the frequency of the emitted photon
can take any value below the difference in chemical potentials of the n- and p-Cooper pair
level. Also the emission angle is arbitrary. The other process, in which an electron Cooper
pair recombines with a hole Cooper pair, is quite distinct. First, all photons have exactly
the energy of the chemical potential difference and second the momentum of the two emit-
ted photons sum up to zero. Together with the conservation of angular momentum this

11



12 2. Review

Figure 2.13.: Recombination times - Source [SKH+11]

Figure 2.14.: Schematic bandstructure - Source [SKH+11]

means that the two photons of such a pair have the same chirality. Hence, the emitted
photon-pair is strongly entangled with respect to a single photon basis. The sharp peak at
the resonance frequency in the photon spectrum is a clear signature of the pair emission
process that is accessible experimentally. The paper also discusses the realization of a
laser that emits pulses of entangled photons and technical problems in the experimental
realization but this is beyond the scope of this thesis.

2.2.2. Next to leading order contributions to the luminescence

In 2009 Asano and collaborators theoretically investigated the emission spectrum of a
forward biased p-n junction which has a superconductor coupled to the n-doped side
[ASTH09]. The bandstructure of such a setup is schematically shown in figure 2.19. The
study is done in a second order (fourth order in the coupling constant) perturbation theory
in the electron-photon interaction. Their approach to calculate the luminescence, i.e. the
photon emission rate, is to calculate the short time average of the photon number

Nph =
∑
q

a†qaq (2.4)

in a zero photon state

|χ0〉 = |0〉 ⊗ |N〉 ⊗ |P 〉. (2.5)

12



2.2. Theory 13

Figure 2.15.: Superluminescense - Source [HTA+08] and [SHK+10]

In this product state |N〉 describes the n-type superconductor and |P 〉 the p-type super-
conductor. We denote the time average of the expectation value of the luminescence by
〈Nph(1)〉. Therefore it is comparable to calculate the luminescence in a stationary state
and then setting the photon number in the system to zero to get rid of the absorption
process as it is done in this thesis. In leading order perturbation theory they get

〈Nph(1)〉 = 2π
∑
k,q,σ

|Bk,q|2fpk−q
(
u2
kf

n
k δ(w̃ − Ek) + v2

k(1− fnk )δ(w̃ + Ek)
)
, (2.6)

as we do, too. B is the electron-photon coupling constant, fx are the Fermi distribution
functions, Ek the Bogoliubov quasi particle energies and w̃ the photon frequency minus
the gap. In order to allow energy from the perturbation to leave the system they introduce
an artificial relaxation time τ . In next to leading order they obtain

〈Nph(2)〉 =∼ |B|4
∑
k

(
fnk (1− fnk )

(Ek − i/τ)2
+
fnk (1− fnk )

(Ek + i/τ)2
+

(fnk )2 + (1− fnk )2

E2
k + (1/τ)2

)
|∆|2

E2
k

. (2.7)

When we carry out the last summation by rewriting it as an integral times the density of
states we see that in the limes of vanishing relaxation rate the luminescence is proportional
to the density of states in the superconductor divided by the superconducting gap. There-
fore, since the density of states of a superconductor diverges above and below the gap and
because the superconducting gap is usually one of the smallest scales in a problem the
luminescence is greatly enhanced in comparison to a normal light emitting diode. The fact
that the next to leading order terms dominate over the leading order renders perturbation
theory useless one sums up an infinite series of diagrams to regularize the results. In their
paper Asano et al choose a more physical approach. First they employ elastic impurity

13



14 2. Review

Figure 2.16.: Recombination times and efficiency rate - Source [SKH+11]

Figure 2.17.: Setup - Source [Han02]

scattering and then inelastic scattering. The results are plotted in figure 2.20. Figure a)
shows the elastic case and figure b) the inelastic case. The scattering rate in the inelastic
case depends on temperature and vanishes at zero temperature. Typical mechanisms for
inelastic scattering is electron-phonon or electron-photon scattering. In the elastic case
at high damping they predict a monotonous behavior of the luminescence. However for
low damping the curve acquires a maximum slightly below the critical temperature and
then converges to a finite value as in the high damping cases when the temperature ap-
proaches zero. In the inelastic case the situation is quite different, since the scattering
rate decreases with decreasing temperature, going to zero when the temperature reaches
zero Kelvin. Therefore all curves coincide at zero temperature. At low damping they pre-
dict the same anomalous behavior as in the elastic case. Finally they modify their model
to describe a more realistic situation including the proximity effect and tunneling into a
quantum dot in order to model experimental data. Their final formula (for T < Tc) is

〈Nph(2)〉 ≈ |B|4N0Γ
∑
q,σ

|∆|2τ2e−2Lw/ξT /T

(wq − w0)2 + Γ2
, (2.8)

where Γ = t2wN0 and tw is the transfer integral between the quantum well and the semi-
conductor. This behavior is indeed qualitatively confirmed by experiments [SKH+11].
Summarizing Asano and collaborators found that the presence of Cooper pairs in the n
side of a light emitting diode leads to an enhanced photon emission rate in the next to lead-

14
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Figure 2.18.: Bandstructure - Source [Han02]

Figure 2.19.: Schematic bandstructure - Source [ASTH09]

ing order contribution. Physically they attribute this to the fact that the superconducting
state is almost unaltered if a Cooper pair is removed.

2.2.3. Josephson light emitting diode

In the years 2009-2011 Recher et.al. cooperated on a set of papers [RNK10], [HNK09],
and [GHN11] that investigate an optical quantum dot with two levels. The quantum
dot is embedded into a p-n junction which has superconducting leads are attached to the
conduction band of the n-side and the valence band of the p-side. A bias voltage close to the
band gap of the semiconductors is applied in forward direction to stimulate the emission of
light. A schematic sketch of their model is shown in figure 2.21. They distinguish between
two types of emitted photons which they call blue and red. Blue photon emission is due
to the Cooper pair exchange between the two superconducting leads. This means a single
photon is emitted from the recombination of a Cooper pair. We note that this should be
suppressed, strictly speaking it violates momentum conservation. However blue photons
don’t come in pairs and therefore are of no interest for this thesis. For our considerations
the much more interesting part of their work outlined is the production of what they call
red photons which have a frequency of w ≈ eV, because it allows for the production of
entangled photon pairs. Their Hamiltonian for one isolated level of the quantum dot is

Hc
D = εc

∑
σ

c†σcσ + ∆cc
†
↑c
†
↓ + ∆∗cc↓c↑ + Un↑n↓,

15



16 2. Review

Figure 2.20.: Luminescence intensity - Source [ASTH09]

Figure 2.21.: Schematic bandstructure - Source [RNK10]

where U is the onside Coulomb repulsion. Diagonalization reveals two degenerate doublet
states and two non degenerated singlet sates:

|g〉 = −e−iφ|u||0〉+ |v|c†↑c
†
↓|0〉 ground state

| ↑〉 = c†↑|0〉 degenerated intermediate state

| ↓〉 = c†↓|0〉 degenerated intermediate state

|e〉 = −e−iφ|v||0〉+ |u|c†↑c
†
↓|0〉 excited state

The factors u and v as well as the relative phase φ are the usual factors from the Bogoliubov
transformation. In order to describe the physical processes however it is more convenient
to use the language of occupation number states instead of eigenstates. There are two
major circles of transition between different number states. One in which the total system
has even parity (see figure 2.22) and one where the system has odd parity (figure 2.23).
There are also transitions that change the parity but these are much slower than the two
cycles just mentioned. This is because radiative recombination does not change the parity
of the quantum dot. So in oder to change the parity of the system an photon must be
emitted and at the same time a Bogoliubov quasi-particle must be created in one of the
superconducting leads. The rate r of the parity changing processes,

r = ΓphΓe/|∆e|, (2.9)

is approximately given by the ratio of the recombination rate of electrons with holes Γph
times the tunneling rate between the superconducting leads with the quantum dot Γe di-
vided by the Cooper pair binding energy |∆h|. The different transitions that emit photons

16
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Figure 2.22.: Even parity cycle - Source [HNK09]

Figure 2.23.: Odd parity cycle - Source [HNK09]

result in sharp peaks in the photon spectrum. From the transitions that do not conserve
parity results a continuous spectrum of emitted photons. This is because the Bogoliubov
quasi-particle which is created along the way can carry an arbitrary amount of energy. The
full emission spectrum is shown in figure 2.24. The dotted line depicts the spectrum with
non-superconducting leads. The continuous tail due to the slow second order processes
is separated from the peaked emission spectrum by the energy of the lowest Bogoliubov
quasi-particle in the leads which is the superconducting gap |∆|. It is enlarged in the
inset. At this point it is remarkably that the total intensity of the continuous spectrum
in the non-superconducting case is comparable to the total intensity of the three peeked
lines of the superconducting case. This is surprising, since in other theoretical papers a
tremendous enhancement of the luminescence was predicted [ASTH09]. In order to create

Figure 2.24.: Emission spectrum - Source [RNK10]

a constant electron emission using the cycle shown in figure 2.22, the fully occupied state,
the empty state and one of the transition states have to be close to degeneracy. This can

17



18 2. Review

be achieved by applying on site voltages that are individually tuned for the two levels of
the quantum dot. A schematic experimental setup is shown in figure 2.25. In their paper

Figure 2.25.: Experimental setup for onside energy control - Source [HNK09]

they choose these states to be |0h0e〉,|0h2e〉, and |2h2e〉. Finally they discuss the nature of
entangled two photon emission depicted in figure 2.26. Another remarkable side note is

Figure 2.26.: Entangled two photon emission - Source [HNK09]
The key feature to note here is that the emission time of the second photon is much

shorter than the emission time for the first photon. First from the |2h2e〉 state a photon
with a + or - circular polarization is emitted and forms a temporary intermediate state
with the remaining electron hole pair. Then, before any other processes can alter the

spins of the remaining electron and hole, a second photon with the opposite chirality is
emitted. Thus a pair of fully entangled photons is produced. The predicted emission

spectra is depicted in figure 2.27.

that the two entangled photons have in general different energies. The reason is that in
order to emit the first photon two Cooper pairs have to be split up, resulting in a pho-
ton with an energy that is four times the induced superconducting gap smaller than the
applied voltage. The second photon on the other hand has exactly this amount on top of
the applied voltage. This is depicted in by the two full lines at + and - 4 in figure 2.27.
Note that this does not affect the entanglement of the photon pair, since polarization and
energy are uncorrelated. Summarizing Recher and collaborators have shown that a optical
quantum dot with injected Cooper pairs is capable of emitting entangled photon pairs.
The energy of the photons in such a pair is slightly different by twice the Cooper pair
binding energy. In contrast to Asano and collaborators they do not predict an enhanced
photon emission rate.

To conclude this section we elaborate how our work is different from what has been done
in the theoretical papers discussed in this section. In contrast to Recher and collaborators
we do not investigate a quantum dot but continuous leads. We expect that this widens the

18
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Figure 2.27.: Emission spectrum of coherent two photon production - Source [RNK10]

peaks in the photon spectrum and increases the emission rate. Also it is not clear, why
a quantum dot - an effectively zero dimensional object, should conserve momentum. In
terms of the model our work is more similar to the paper of Asano et. al. but we consider
superconducting leads on both sides of the LED. This leads to qualitatively different
physics, because Cooper pairs can recombine with Cooper holes. Hence, the emitted
photon pairs inherit the coherence of the Cooper pairs and the relative phase of the two
superconducting leads. Also we focus on the qualitative properties of the emitted photons,
such as squeezing, rather instead of the emission rate.
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3. Fundamentals

In this chapter we introduce fundamental concepts that form the backbone of this thesis
and define many of the terms that we use throughout the whole work. We begin with
a section about the formalism of Bardeen-Cooper-Schrieffer (BCS) theory. Subsequently
we discuss the proximity effect that describes how superconductors affect attached non-
superconducting materials. The third chapter is about squeezed light and finally in the
last section we discuss the concept of entanglement.

3.1. BCS Theory

The BCS theory is a mean-field approach to phonon mediated electron-electron interaction.
In this section we closely follow derivation from Bruus and Flensberg ’Many Body Quantum
Theory in Condensed matter physics’ Chapter 18 [BF04]. Starting point of this theory is
a Hamiltonian

H − µN =
∑
kσ

ξkc
†
kσckσ +

∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ (3.1)

with an effective electron-electron interaction which is mediated by phonons. In a su-
perconductor this interaction is attractive and the origin of Cooper pairing. The quartic
electron-electron interaction term makes practical calculations complicated. In the BCS
approach a mean field approximation is chosen to reduce the problem to a quadratic
Hamiltonian

HBCS − µN =
∑
kσ

ξkc
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑, (3.2)

where the mean field

∆k ≡ −
∑
k′

Vkk′〈c−k′↓ck′↑〉 = |∆k|eiφk (3.3)

is called order parameter. Such a quadratic Hamiltonian can always be diagonalized with
a Bogoliubov transformation. Hence, the approximation is to neglect fluctuations in the
order parameter ∆k. This approximation is well justified, because Cooper pairs form a
state with macroscopic occupation number. As we know from statistics the fluctuations
in such a system behave as 1/

√
N which makes this an excellent approximation.
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22 3. Fundamentals

The unique ground state of the BCS Hamiltonian is a state where the number of Cooper
pairs is undetermined. The coefficients uk and vk are called coherence factors. The |vk|2
describe the probability of the state (−k ↓, k ↑) to be occupied and it’s k-dependence is
such that most of the states with k < kF are filled and most of the others empty. The
BCS ground state is

|BCS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉. (3.4)

Minimizing 〈BCS|HBCS|BCS〉 with respect to uk and vk gives the following coefficients:

uk ≡ |uk|eiχk , vk ≡ |vk|eiχk ,

eiχk ≡
√

ei(φk+π), e−iχk ≡
√

e−i(φk+π),

|uk| =

√
1

2

(
1 +

ξk
Ek

)
, |vk| =

√
1

2

(
1− ξk

Ek

)
. (3.5)

The transformation that diagonalizes the BCS Hamiltonian is called Bogoliubov transfor-
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Figure 3.1.: Coherence factors with order parameter ∆=0.01

mation. The easiest way to preform the Bogoliubov transformation is to use the Nambu
notation which we discuss in the appendix A.3. The resulting transformations are

γk↑ = u∗kck↑ + vkc
†
−k↓, ck↑ = ukγk↑ − vkγ†−k↓,

γ†−k↓ = −v∗kck↑ + ukc
†
−k↓, c†−k↓ = v∗kγk↑ + u∗kγ

†
−k↓. (3.6)

The fermionic quasiparticles that are associated with γ†kσ are excitations of the BCS ground
state and are superposition of particles and holes. They are called Bogoliubons or Bogoli-
ubov quasiparticles. There is a excitation gap which is the absolute value of the order
parameter. Below this energy there are no excitation. All these properties become obvi-
ous from the diagonalized form of the Hamiltonian

HBCS − µN =
∑
kσ

Ekγ
†
k,σγk,σ + const, (3.7)

where

Ek ≡
√
ξ2
k + |∆k|2 (3.8)

is the quasiparticle energy. We see that the bogoliubons are free fermions and hence their
distribution function is the Fermi-Dirac distribution.
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3.2. Proximity Effect 23

3.2. Proximity Effect

When a superconductor is brought in good contact with a non superconducting material,
Cooper pairs tunnel into the non superconducting material. In the vicinity of the contact
this leads to a finite density of Cooper pairs in the non superconducting material. If we
write an effective Hamiltonian for the non superconducting material with induced Cooper
pairs unusual correlations will occur resulting in terms like in BCS theory. Therefore the
diagonalized effective Hamiltonian will have a gap in the excitation spectrum, which we
call induced gap. A formal derivation with a microscopic theory is difficult and involved.
There is however a trick that allows for a simple description based on Ginsburg Landau
theory [PF05]. Instead of considering for example a superconductor-normal metal junc-
tion we take a system consisting of two superconductors. Those superconductors have
slightly different critical temperatures T1 and T2. The actual temperature defined to be
right in between those critical temperatures. We label those superconductors and there
corresponding critical temperatures I and II with (TI < T < TII). Hence, before the
contact is established superconductor I is not superconducting while superconductor II is.
Upon contact Cooper pairs diffuse from SCII into SCI and induce an order parameter in
the vicinity of the junction. This induced order parameter is in general much smaller than
the order parameter in SCII but reaches relatively far into SCI (∼ 100nm). The space de-
pendence of the order parameter shown qualitatively by the dotted line in figure 3.2. The
key idea is that we can describe both sides of the setup by the same theory. The Ginsburg
Landau equations (3.9) for a superconductor in 1D are well known and we simply state

ξ2
(

i∂x +
2π

φ0
A
)2
ψ − ψ + ψ|ψ|2 = 0, (3.9)

where ξ is the coherence length, φ0 is the flux quantum and A the vector potential. Choos-
ing an appropriate gauge we can prepare the order parameter ψ to be a real number.
Further, for small fields the term quadratic in the vector potential is negligible, hence

−ξ2∂2
xψ − ψ + ψ3 = 0. (3.10)

First we consider the SCII half space. The boundary at the SCI-SCII interface,

1

Ψ
∂xΨ =

1

b
, (3.11)

is different from the usual Ginsburg-Landau boundary conditions of a superconductor-
vacuum interface. The parameter b is a phenomenological parameter that must be put in
and describes how deep the Cooper pairs penetrate into SCI. Together with the boundary
condition on the other side of the SCII ∂xψ(∞) = 0 and the deep in the bulk condition
Ψ(∞) = 1 the behavior of the order parameter in SCII is

Ψ(x > 0) = tanh

(
x− c√

2ξII

)
with sinh

(−√2c

ξ

)
=

√
2b

ξ
. (3.12)

In SCI the order parameter is much smaller than 1, therefore the Ginsburg Landau equation
simplify to

−ξ2
I∂

2
xψ − ψ = 0. (3.13)

Together with the condition that the induced order parameter vanishes deep inside SCI
Ψ(−∞) = 0 the solution reads

Ψ(x < 0) = ΨN (0)ex/ξn . (3.14)
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Figure 3.2.: Order parameter at a normal conductor - super conductor junction, the full
line is in the Ginsburg Landau approximation and the dotted line the exact
microscopic result

In a more realistic model, we would have to consider a more complicated approach to
model the non superconducting material. The good news is that the only thing that needs
to be done is adjust ξn for a qualitative description. In general there are two limits. The
clean limit,

ξn =
vF

2πT
, (3.15)

and the dirty limit,

ξn =

√
vF l

6πT
, (3.16)

which is applicable in the case of a light emitting diode between superconductors, because
of the doped leads. In equation (3.16) vF is the fermi velocity and l is the mean free path.
The definition of dirty is that the mean free path is shorter than the coherence length.

3.3. Coherent Light

There are many applications for coherent light, commonly known as LASER light. The
nice feature besides the temporal and spatial coherence is the phenomenon of being a
minimal uncertainty state. Let a be a photon annihilation operator. An eigenstate |α〉 of
this operator is called a coherent state and fulfills

a|α〉 = α|α〉 (3.17)

The operator that creates a coherent state with amplitude α from the vacuum is called
unitary displacement operator D(α):

|α〉 = eαa
†−α∗a|0〉 ≡ D(α)|0〉. (3.18)

An important concept are the quadrature components

a ≡ a1 + ia2 ai = a†i ,

α ≡ α1 + iα2 αi ∈ R. (3.19)

The name derives from the fact that the amplitudes associated with this operators having
a phase difference of π/2. They are hermitian. ”The physical significance of the quadrature
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3.4. Squeezed Light 25

phase-amplitudes lies in their close connection to experimental techniques; they are the
complex-amplitude operators for fields -the quadrature phases - that are directly accessible
to measurement and experimental manipulation. The quadrature phases are accessible
because they describe the physical process of putting amplitude and phase modulation on
a carrier signal and because they are the quantities detected by phase-sensitive detection,
techniques such as heterodyning.” [CS85]. Usually quadrature operators are chosen to be
dimensionless, such that [a1, a2] = i/2. For a coherent state such operators have

〈∆a2
1〉 = 〈∆a2

2〉 =
1

4
. (3.20)

Coherent states are suitable to model ideal classical photon sources (such as coherent laser
light). This concept can be generalized from single-mode to multi-mode coherent states.
As an example

a|αβ〉 = α|αβ〉, and b|αβ〉 = β|αβ〉 ⇒ |αβ〉 = D(α)D(β)|0〉. (3.21)

3.4. Squeezed Light

In general light is an electromagnetic wave. The electric field component,

E(x, t) = E(be−iwt + b†eiwt)ε̂, (3.22)

has a positive and a negative frequency part. The photon creation and annihilation oper-
ators can be thought of being in the interaction picture, because the main phase has been
removed. We can now introduce a pair of conjugated hermitian operators

A =
1

2
(b+ b†) B =

1

2i
(b− b†). (3.23)

They are called quadrature amplitudes because they modulate field components that are
orthogonal to each other (have a π/2 phase difference). With this definitions we can rewrite
the electric field

E(x, t) = 2E(A cos(wt) +B sin(wt))ε̂. (3.24)

It is important to notice that this choice of quadrature amplitudes is not unique. Different
choices of quadrature amplitudes,

Ã(ϕ) + iB̃(ϕ) = (A+ iB)e−iϕ/2, (3.25)

can be parametrized by an angle ϕ whose meaning we will discuss later on. Each quadra-
ture amplitudes has an uncertainty. Coherent light is a special case in which the uncer-
tainty is equal in both modes for any choice of ϕ. In case of squeezed light this is by
definition not the case. There exists one angle ϕmax for which the difference in uncertainty
between the two quadrature amplitudes is maximal and another angle ϕ0 the uncertainty
is equally spread. We can understand this best by looking at the quadrature phase dia-
gram in figure 3.3. The left hand side graph shows a coherent state, the right hand side a
squeezed state. The transformation (3.25) into another quadrature basis corresponds to a
rotation of the coordinate system, which is equivalent to a rotation of the ellipse around
it’s center. From this picture we understand why there is a quadrature basis in which the
uncertainty is the same in each phase and one where the difference is maximal. The latter
is the main axis system of the ellipse. If we consider an ideal squeezed state the product
of the uncertainties of any of the two uncertainty modes is the same as for a coherent
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Figure 3.3.: left:coherent state, right: squeezed state

state. Further, if we choose the quadrature modes to fall together with the main axes of
the uncertainty ellipse we can characterize an ideal squeezed state by

〈∆A2〉〈∆B2〉 =
1

16
where 〈∆A2〉 < 1

4
or 〈∆B2〉 < 1

4
. (3.26)

or vice versa. We will now let this intuitive approach behind and deal with squeezed states
in a more mathematical way. For further details we suggest [Yue76] and [CS85], [SC85].
Much of the remainder of this section is based on this papers. Mathematically a squeezed
state is constructed by acting with the so called squeezing operator S(r, ϕ) onto a coherent
state. The coherent state is prepared by the so called displacement operator D(s, θ). For
a single mode the explicit expression reads

|ψ(r, ϕ; s, θ)〉 = S(r, ϕ)D(s, θ)|0〉. (3.27)

The real number s describes the magnitude of displacement. In figure 3.3 this corresponds
to the length of the arrow. The phase angle θ controls how the amplitude of the coher-
ent state is distributed between the two quadrature amplitudes. The squeezing is also
parametrized by two real parameters, the squeezing factor r and the squeezing phase ϕ.
The squeezing factor determines the eccentricity of the ellipse and the squeezing phase its
rotation relative to the quadrature axes.

3.4.1. Squeezed Vacuum

A special case of squeezed light is the so called squeezed vacuum

|0(r, ϕ)〉 ≡ S(r, ϕ)|0〉 (3.28)

It’s created by acting with a squeezing operator,

S(r, ϕ) ≡ e
1
2
r(a2e−2iϕ−(a†)2e2iϕ) (3.29)

on a coherent state that does not contain any photons. By definition this is the same as
the Fock vacuum. As with the coherent states we can readily generalizes this concept to
two modes:

S(r, ϕ) ≡ er(a+a−e−2iϕ−a†+a
†
−e2iϕ)

|0(r, ϕ)〉 ≡ S(r, ϕ)|0+0−〉. (3.30)

Using a text book operator relation, we can factorize the squeezing operator into
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Figure 3.4.: Squeezed Vacuum

S(r, ϕ)|0〉 ≡
(

cosh(r)
)−1

e−a
†
+a
†
−e2iϕ tanh(r)e−(a†+a++a†−a−) ln(cosh(r))ea+a−e−2iϕ tanh(r)

=
(

cosh(r)
)−1

∞∑
n=0

e2inϕ(− tanh(r))n|n+n−〉 ≡ |0(r, ϕ)〉. (3.31)

This will prove helpful later when we investigate the entanglement of the squeezed vacuum
in the next subsection.

3.4.2. Entanglement of squeezed states

This section we discuss the entanglement of pure states of bipartite bosonic systems (H =
H+ + H−). We show that the squeezed vacuum (3.30) is the maximal entangled state at
any given energy and that the entanglement does not depend on the squeezing phase ϕ.
A measure of the entanglement of a state is to calculate the von Neumann entropy,

S = −Tr(ρ+ ln(ρ+)), (3.32)

of the reduced density-matrix of one of the subsystems. For a state which is not entangled,
i.e. which can be written as a product state |n〉+ ⊗ |n〉−, it is zero. A detailed discussion
can be found in [Kha09] chapter 14.5. From (3.31) it is straightforward to show that the
entanglement is independent of ϕ. The density matrix of the squeezed vacuum is

ρ+− = |0(r, ϕ)〉〈0(r, ϕ)|. (3.33)

Tracing over the ”−” subsystem leads to the reduced density matrix of the ”+” subsystem:

ρ+ =
∞∑
k=0

−〈k|ρ+−(r, ϕ)|k〉− =
1

cosh2(r)

∞∑
n=0

tanh2n(r)|n〉++〈n| = ρ+(r). (3.34)

For a pure state of a bipartite system a criterion for maximal entanglement at a given
energy is that the reduced density matrix has the following form:

ρ+ =
1

Z
exp(−τH+), Z = Tr exp(−τH+). (3.35)

For a proof we refer to the literature [Kha09]. And indeed we find that (3.34) can be
brought into this form via the following reparametrization:

ρ+ =
1

Z+(τ)
e−τa

†
+a+ , e−τ/2 ≡ tanh(r), Z+(τ) = Tr(e−τa

†
+a+). (3.36)

Therefore the squeezed vacuum is the maximal entangled state at any given (fixed) energy.
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4. Modeling

In this chapter we motivate and justify the model we use to describe a superconductor-
pn-superconductor heterostructure. We begin with a general discussion of a normal light
emitting diode (LED) which is followed by a section that covers the effect of the attached
superconductors.

4.1. Model of a normal light emitting diode

A pn-junction consists of a p- and a n-doped semiconductor which have a common interface.
There are two energy scales in the problem. First the semiconductor gap which is of the
order of 0.5-4 electron volt. And second, the energy it takes to excite donor electrons to
the conduction band or respectively to excite valence electrons to the acceptor level. This
second energy is much smaller, on the order of 0.01 - 0.1 electron volt which corresponds
to 1-10 kelvin. Thus at small but finite temperatures some of the donor electrons are
excited into the conduction band of the n-doped semiconductor. On the p-side some of
the valence band electrons are excited into the acceptor states which leaves holes in the
valence band. Because of this the chemical potential which is depicted by the dotted line

Figure 4.1.: Unbiased pn-junction

in figure 4.1 is between the donor level energy and the conduction band on the n-side
and in between the valence band and the acceptor levels on the p-side. In a pn-junction
without bias voltage there can only be one uniform chemical potential. Therefore the
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bands bend at the interface. Physically this bending corresponds to a charge separation
which causes a voltage. This voltage is called diffusion voltage Vd and we can understand
it as follows: The electrons in the n-doped side and the holes on the p-doped side are
called majority carriers. Holes in the n-side and electrons in the p-side are called minority
carriers. The majority carriers can move balistically and carry the vast majority current
if the pn-junction is under forward bias. The minority carriers that are much rarer behave
diffusively and recombine with majority carriers quickly. Therefore, by random movement
there is a constant electron based current into the p-side where the electrons annihilate
with holes and and by the same argument also a hole based current going the opposite
way. A a consequence the region of the interface is depleted of carriers and forms an
insulating layer called depletion layer. This depletion layer is usually on the order of
several hundred nanometers. Since the system is an open circuit this causes a positive
charge to accumulate on the n-side and a negative charge in the p-side. (figure 4.2). The

Figure 4.2.: Charge separation in depletion layer

resulting electric field induces currents in the opposite ways that compensate the diffusion
currents. Those currents are mediated by minority carriers which are produced by the
diffusion voltage. Hence, a dynamical equilibrium is established in the vicinity of the pn-
interface. In order to operate a pn-junction a bias voltage is necessary. Either forward
bias, which is positive voltage applied to the p-side and negative voltage applied to the n-
side or backward bias which is the opposite. Backward bias is of no interest to understand
the light emitting diode. Forward bias counteracts the diffusion voltage. If the forward
bias becomes of the order of the diffusion voltage electrons from the n-side flow into the
conduction band of the p-side. There they quickly recombine with holes. At the same time
holes from the p-side flow into the valence band of the n-side where they recombine with
electrons. This leads to a finite overall current that is carried by the majority carriers in
each part of the junction. Due to this dynamical equilibrium understanding the chemical
potential under bias is a non trivial task. The reason is that because the system is out
of equilibrium electrons and holes have separate chemical potentials in each part of the
system. This is schematically shown in figure 4.5 by the dotted lines.

A light emitting diode is a forward biased pn-junction which has two important properties.
The interface between the p- and the n-doped semiconductor allows interband tunneling
without changing the momentum (direct band-gap). And the band-gap is of the order of a
few electron volt. The first property takes into consideration that the dispersion relation of
photons is linear and extremely steep. If there is no direct band-gap phonons are necessary
to fulfill momentum conservation which strongly suppresses the photon emission rate. The
second property is only necessary to ensure that the emitted photons are in or close to the
visible spectrum that ranges from 1.65 to 3.1 eV.
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4.1. Model of a normal light emitting diode 31

The most important thing to note is that the photon production (figure 4.5) takes place in
a narrow layer right at the interface of p- and n-side. This layer is often called active region
or active layer (figure 4.3). It is usually rather thin on the order of 100nm and the carrier
density is low. Therefore we can model the light emitting diode by a model for this layer.
The p- and n-bulk serve as reservoirs that are represented by chemical potentials. Despite

Figure 4.3.: Biased pn-junction, red: active layer of light emitting diode

the fact that the active layer is rather thin we assume that we can model it by two bands.
This means we assume that we can use periodic boundary conditions. As a consequence
our interaction term will fulfill momentum conservation. In a more quantitative calculation
we would have to consider corrections that result form momentum change in the direction
perpendicular to the layer. In comparison to the active layer the p- and n-doped leads are
huge and we can treat them as being semi infinite. They form a electron-, respectively
hole-bath which we can approximate as being in equilibrium at all times, yet at different
chemical potentials. In the model Hamiltonian those leads are used to keep the electron
occupations in the active layer constant and are encoded in the separate conduction and
valence band chemical potentials. The effective model for the active layer is sketched
in figure 4.4. So far we did not talk about the interaction which produces or absorbs

Figure 4.4.: Chemical potentials
in active layer

Figure 4.5.: Photon emission
in active layer

photons. The easiest approach to understand the coupling of electrons to light is via first
quantization using the principle of minimal coupling

pi → pi − qA(xi). (4.1)
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32 4. Modeling

In equation 4.1 pi is the momentum of the ith and electron, q = −e is the electron charge
and A(xi) is the vector potential at the position of this electron. Thus the electron photon
coupling is part of the kinetic energy term in the Hamiltonian. The term quadratic in the
vector potential is small for not too strong radiation fields and we will neglect it. In the
Coulomb gauge ∇ ·A = 0 the electron photon interaction energy is then given by

HT =
e

m
A(xi) · pi. (4.2)

Since the active layer is thin and assuming that it’s area is not too large the long wave
length approximation, also known as dipole approximation, is valid. Essentially this means
that the vector potential is assumed constant over the volume of the device and the individ-
ual coordinates of the electrons do not matter xi → x. The electron photon Hamiltonian
becomes

HT =
e

m
A(x) · pi. (4.3)

Next we rewrite this first order electron-photon Hamiltonian in second quantization. This
is accomplished in two steps. First we quantize the vector potential A in terms of photon
creation and annihilation operators bλq:

A(x) =
∑
q,λ

2π

V |q|

(
bλqε̂λeiq·x + b†λqε̂λe−iq·x

)
. (4.4)

Here λ is the polarization index, q the photon momentum, êλ the unit polarization vectors
and V the macroscopic volume of the system. For clarity we choose a convention to label
the momentum vectors. The letter q is reserved primarily for photon momenta, k for
conduction electron momenta and p for valence electrons momenta. Also, for clarity we
don’t use bold letters but merely note that those letters always have vectorial nature. If
nothing else is mentioned they are usually assumed to be three dimensional. The same
is true for the spatial coordinates x and r. In a second step we introduce the fermionic
creation c†, v† and annihilation operators c, v for the conduction (c) and valence (v)
electrons. We get

ε̂λeiq·x̂ = 〈k|ε̂λeiq·x̂|p〉c†kvp (4.5)

=

∫
ddimr 〈k|r〉~ελeiq·r〈r|p〉c†kvp

= 2πδ(k − p− q)~eλc†kvp. (4.6)

Here make two approximations. We allow only interband scattering because only this type
of scattering involves photons and we allow only energy conserving terms. Terms where a
valence electron goes to the conduction band, which costs energy, and a photon is emitted
rather than absorbed are thus neglected. This is similar to the commonly used rotating
wave approximation. All together the electron-photon interaction in second quantized
form is given by

HT =
−e

m

∑
k,q,λ

2π

V |q|

(
bλqc

†
kvk−q~ελ · (k − q) + b†λqv

†
k−qck~ελ · k

)
, (4.7)

where e
m is the ration between electron charge and electron mass. This model looks very

nice but is much too complicated for analytical techniques. Therefore we use a simplified
version,

HT =
∑
k,q

(
gbqc

†
kvk−q + g∗b†qv

†
k−qck

)
, (4.8)
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4.2. Superconducting leads 33

where g is simply a constant for our further analysis. Despite the total disregard of the
momentum dependency of the coupling constant we can justify this model since the focus
of this thesis is on the qualitative nature of the emitted photons. Firstly, the angular
dependent intensity is of little interest. Secondly, most of the emitted photons have ap-
proximately the energy of the semiconductor gap which confines the length of the photon
momenta to a small interval. And thirdly, in comparison to a metal we have only a low
electron density in the conduction band of the n-side and a only few holes in the valence
band of the p-side. As a consequence only a small range of electron momenta is important.
All together this means that the momentum dependency of the coupling constant is not
very important for the things we are interested in. Now we know everything to write down
our model:

H − µcNc − µvNv =
∑
k

(εc,k − µc)c†kck +
∑
p

(εv,p − µv)v†pvp +
∑
q

wqb
†
qbq

+ g
∑
k,q

bqc
†
kvk−q + g∗

∑
k,q

b†−qv
†
q−kc−k. (4.9)

The conduction and valence band have the usual parabolic shape which is an approximation
for any band structure with an extremum for small momenta k and p, respectively. The
photons have a linear dispersion relation. Thus, we have:

εc,k = εc,0 +
k2

2mc
, εv,p = εv,0 −

p2

2mv
, wq = c|q|, k, p, q ∈ Rdim, (4.10)

with c being the speed of light. Here mc and mv are the effective masses of electrons
in the conduction respectively hole band. For simplicity in the following we assume that
mc = mv = m.

4.2. Superconducting leads

So far our model describes a normal light emitting diode. The exciting new physics however
is caused by putting superconducting leads on both sides of the diode. Then, via proximity
effect, Cooper pairs tunnel into the diode. If the diode is very thin they can tunnel all
the way into the active region where the photon production takes place. In section 3.2
we give a more detailed discussion of this effect which is called proximity effect. For the
purpose of modeling it is sufficient for us to know that the proximity effect induces a gap
in the density of states in the semiconductor which is called induced order parameter.
This means that the leads describing the p- and n-doped sides acquire BCS type order
parameter terms ∆c,k and ∆v,p. For clarity we group the full model Hamiltonian minus
the energy from the chemical potentials in four pieces

H − µcNc − µvNv ≡ (H0,c − µcNc) + (H0,v − µvNv) +H0,ph +HT . (4.11)

In contrast to the non superconducting case the leads are described by

H0,c − µcNc =
∑
m,σ

(εc,m − µc)c†m,σcm,σ −
∑
m

∆c,mc
†
m,↑c

†
−m,↓ −

∑
m

∆∗c,mc−m,↓cm,↑,

H0,v − µvNv =
∑
n,σ

(εv,n − µv)v†n,σvn,σ −
∑
n

∆v,nv
†
n,↑v

†
−n,↓ −

∑
n

∆∗v,nv−n,↓vn,↑, (4.12)

and we need to include spin indices σ. The free photon Hamiltonian

H0,ph =
∑
q

wqb
†
qbq, (4.13)
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34 4. Modeling

remains unchanged. By the inclusion of superconductivity in principle the photon op-
erators should be equipped with a chirality index. However, we neglect effects such as
spin-orbit coupling and hence from spin and momentum conservation it is clear that the
photons in photon pairs have the same chirality. The tunneling or interaction term,

HT = g
∑
k,q,σ

bqc
†
k,σvk−q,σ + g∗

∑
k,q,σ

b†−qv
†
q−k,σ̄c−k,σ̄, (4.14)

also remains unchanged but is now equipped with spin indices σ in a spin conserving way.
The spin index can take the values ±1

2 . A spin index with a bar denotes the opposite spin,
σ̄ = −σ. The order parameters,

∆c,k ≡
∑
k′

Vk,k′〈c−k′↓ck′↑〉 ≈ ∆c, ∆v,k ≡
∑
k′

Vk,k′〈v−k′↓vk′↑〉 ≈ ∆v, (4.15)

do in principle depend on momentum. In what follows we consider s-wave superconductors,
where it is a good approximation to ignore this and replace it by a constant.

We use the following list of (anti-)commutation relations throughout the entire thesis:

{ck, c†k′} = δkk′ {ck, ck′} = 0 {c†k, c
†
k′} = 0

{vp, v†p′} = δpp′ {vp, vp′} = 0 {v†p, v
†
p′} = 0

[bq, b
†
q′ ] = δqq′ [bq, b

†
q′ ] = 0 [bq, b

†
q′ ] = 0

{ck, v†p} = 0 [ck, b
†
q] = 0 [vp, b

†
q] = 0 (4.16)

The first three lines are obvious consequences of the particles being fermions or bosons.
The last line considers how different particle species commute or anti commute with each
other. Fermions do commute with bosons because they are truly different particles which
can not transform into each other one by one. The situation for fermions is less clear. A
nice argument can be found in Landau Lifshitz ’Quantenmechanik’ §64 and §65. Their
argumentation is that it does not matter for theories where the two types of fermions can
not transform into each other. In theories as for example certain relativistic theories where
the two fermions could represent different inner states of a more complex particle, the have
to anticommute.
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5. Evaluation

5.1. Luminescence

In this section we discuss the spontaneous photon emission of a light emitting diode (LED).
We show that it is sufficient to only consider the leading order in the coupling constant |g|.
Before we start explicit calculations we discuss the term luminescence on a general level and
give a relation to experiments. As any diode a light emitting diode needs a forward bias to
be operated. Hence, we deal with a nonequilibrium problem. Therefore we use the Keldysh
formalism [Kel65]. On the same general level we then elaborate the subtle procedure
of introducing stationarity. By stationarity we mean that the luminescence is constant
in time. This requires careful checking of the physics before employing the technical
machinery. In the second part of the section we introduce and justify approximations that
we use throughout all calculations. With this preparation we derive the leading order and
find that the luminescence depends on the chemical potentials and the photon density of
states in an intuitive way. The next to leading order contribution gives a finite contribution
that describes an effective interaction between the conduction and the valence electrons
that is mediated by virtual photons. In a third step we sum up an infinite number of
diagrams in the random phase approximation (RPA). As a result we see that the higher
order corrections only give quantitative corrections of the leading order term. In the last
subsection we discuss the special case where the electron bands are reduced to single levels.

5.1.1. General notes on luminescence

In this subsection we discuss what luminescence is and how it can be calculated using
the Keldysh formalism. In our discussion we follow the arguments in [KRB09]. The key
observable of a light emitting diode is the luminescence L. It is defined as the change in
the photon number of the system

L(t) ≡ d

dt
nph(t). (5.1)

In general it consists of three contributions. Spontaneous photon emission, stimulated
photon emission and photon absorption. A light emitting diode needs a bias voltage
in order to be operated. Hence, we have to deal with a nonequilibrium problem. The
Keldysh formalism is suitable to treat such problems. We begin by deriving a nice working
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36 5. Evaluation

expression. First we rewrite equation 5.1 in a symmetrized way

L(t) ≡
(
∂t1 + ∂t2

)∑
q

〈b†q(t1)bq(t2)〉

∣∣∣∣∣
t2→t1≡t

(5.2)

The nice thing about this slightly more complicated expression is that the expectation value
is precisely the definition of the lesser photon Green’s functionD<

q (t1, t2) ≡ −i〈b†q(t1)bq(t2)〉.
This allows us to rewrite the luminescence in a nifty way that allows us to exploit theo-
retical literature most easily

L(t1) ≡
(
∂t1 + ∂t2

)∑
q

iD<
q (t1, t2)

∣∣∣∣∣
t2→t1

. (5.3)

The calculation of the time derivative of D<
q is still non trivial but now we can do it in

a systematic perturbative way. The equations of motion for the lesser Green’s function,
which we derive below, are known as the Kadanoff-Baym equations and can be found for
instance in [KB62]. The starting points are two versions of the Dyson equation of the
photon propagator in Keldysh formalism

Dq(t1, t2) = dq(t1, t2) +

∫
C

ds1ds2 dq(t1, s1)Πq(s1, s2)Dq(s2, t2),

Dq(t1, t2) = dq(t1, t2) +

∫
C

ds1ds2Dq(t1, s1)Πq(s1, s2)dq(s2, t2), (5.4)

where we denoted the integration over the Keldysh contour by
∫
C . The lower-case dq(t1, t2)

is the photon propagator in the decoupled system. In appendix A.2 we discuss the Keldysh
formalism in more detail. Next we use the Langreth theorem of analytic continuation
[Lan76] to go to real time. In the real time language the lesser photon propagators read

D<
q (t1, t2) = d<q (t1, t2) +

∫ ∞
−∞

dt′1dt′2

[
dTq (t1, t

′
1)ΠT

q (t′1, t
′
2)D<

q (t′2, t2)

− dTq (t1, t
′
1)Π<

q (t′1, t
′
2)DT̃

q (t′2, t2)

− d<q (t1, t
′
1)Π>

q (t′1, t
′
2)D<

q (t′2, t2)

+ d<q (t1, t
′
1)ΠT̃

q (t′1, t
′
2)DT̃

q (t′2, t2)
]
, (5.5)

D<
q (t1, t2) = d<q (t1, t2) +

∫ ∞
−∞

dt′1dt′2

[
DT
q (t1, t

′
1)ΠT

q (t′1, t
′
2)d<q (t′2, t2)

−DT
q (t1, t

′
1)Π<

q (t′1, t
′
2)dT̃q (t′2, t2)

−D<
q (t1, t

′
1)Π>

q (t′1, t
′
2)d<q (t′2, t2)

+D<
q (t1, t

′
1)ΠT̃

q (t′1, t
′
2)dT̃q (t′2, t2)

]
. (5.6)

Equations (5.5) and (5.6) allow us to write down the equations of motion. At this point it
becomes clear why we did the formal trick of symmetrizing the time derivative and why
we did all previous steps for both versions of the Dyson equation. Acting with ∂t1 on the
first equation and with ∂t2 on the second boils down to calculating time derivatives of free
Green’s functions instead of fully dressed ones. This is trivial, since free Green’s function
are the solution to the free Schrödinger equation(

i∂t −H0(−i∇x, x, t)
)
d<(x, t, x′, t′) = 0,(

i∂t −H0(−i∇x, x, t)
)
d>(x, t, x′, t′) = 0,(

i∂t −H0(−i∇x, x, t)
)
dT (x, t, x′, t′) = δ(x− x′)δ(t− t′),(

i∂t −H0(−i∇x, x, t)
)
dT̃ (x, t, x′, t′) = −δ(x− x′)δ(t− t′), (5.7)
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5.1. Luminescence 37

by definition. In case of the time ordered version with a potential of a delta distribution
shape. The Kadanoff-Baym equations read(

i∂t1 − wq
)
D<
q (t1, t2) =

∫ ∞
−∞

dt′2

[
ΠT
q (t1, t

′
2)D<

q (t′2, t2)−Π<
q (t1, t

′
2)DT̃

q (t′2, t2)
]
,(

− i∂t2 − wq
)
D<
q (t1, t2) =

∫ ∞
−∞

dt′1

[
DT
q (t1, t

′
1)Π<

q (t′1, t2)−D<
q (t1, t

′
1)ΠT̃

q (t′1, t2)
]
, (5.8)

where wq denotes the photon mode with momentum q. Subtracting the second from the
first equation gives us exactly the formula we defined as the luminescence. Finally we use
general relations between the time-ordered and the retarded, advanced, lesser and greater
Green’s functions which follow from their definitions. All together we get a very general
expression for the spontaneous photon emission

L(t) =
∑
q

∫ ∞
−∞

dt′
[
ΠR
q (t, t′)D<

q (t′, t) + Π<
q (t, t′)DA

q (t′, t)

−DR
q (t, t′)Π<

q (t′, t)−D<
q (t, t′)ΠA

q (t′, t)
]

and D<
q (t, t′) = 0. (5.9)

So far everything is complete general and we have not made any assumptions. The second
and the third term in equation (5.9) describe the spontaneous emission and the other
two terms contain stimulated emission and absorption. Now comes a subtle step. We
want to assume stationarity in order to Fourier transform. By assuming stationarity we
mean that each component of the Luminescence does only depend on relative but not on
absolute times f(t, t′) = f(t − t′). However, we will show that it is crucial to check if a
stationary state can be reached in the first place. The reason is that as soon as we assume
stationarity and that the system was decoupled in the distant past we can use a set of
simplified Dyson equations (5.11). But once we have done this there is no way to check
whether this stationary state makes sense. Assuming a stationary state exists and the
system is described by this state we Fourier transform the equation for the luminescence:

L = − i

π

∑
q

∫ ∞
−∞

dw
[
Π<
q (w)Im

(
DR
q (w)

)
−D<

q (w)Im
(

ΠR
q (w)

)]
. (5.10)

Let us further assume that in the infinite past the system is decoupled, there are no photons
and that the leads are individually described by equilibrium distribution functions. Then
the Dyson equations for the stationary state simplify to

GA =
1

(gA)−1 −ΠA

GR =
1

(gR)−1 −ΠR
,

G< = g< +GRΠ<GA,

G> = g> +GRΠ>GA. (5.11)

In the following calculation we will omit the photon momentum q and energy arguments
w for clarity,

L = − i

π

∑
q

∫ ∞
−∞

dw
[
Π<Im

(
DR
)
−D<Im

(
ΠR
)]

and focus on the integrand

Π<Im
(
DR
)
−D<Im

(
ΠR
)

= Π<Im
(
DR
)
− d<Im

(
ΠR
)
−DRΠ<DAIm

(
ΠR
)
. (5.12)

37



38 5. Evaluation

Together with the assumption that the uncoupled system does not contain any photons
d< ≡ 0 and because of DR = (DA)∗ we can now show that the integrand is infinitesimal
if ΠR

q (w) has a finite imaginary part:

= Π<

[
Im
(
DR
)
− |DR|2Im

(
ΠR
)]

= Π<|DR|2Im

[
((DR)∗)−1 −ΠR

]

= Π<|DR|2Im

[
((dR)∗)−1 − (ΠR)∗ −ΠR

]

= Π<|DR|2Im

[
((dR)∗)−1

]
= lim

η→0
Π< −η
|w − wq + iη −ΠR

q (w)|2
(5.13)

The final result vanishes if ΠR
q (w) has a finite imaginary part which is the case in any

model that describes a real experiment. Hence, the luminescence vanishes

L = − i

π

∑
q

∫ ∞
−∞

dw
[

lim
η→0

Π<
q (w)

−η
|w − wq + iη −ΠR

q (w)|2
]
. (5.14)

The absorption cancels the spontaneous and the stimulated photon emission. Notice that
this result was obtained without saying anything about the system or the kind of nonequi-
librium situation. We obtain this result whether the system can reach a stationary state
or whether it can not. Generally speaking the system can reach such a stationary state if
its absorption rate A is greater than it’s induced emission rate I. Qualitatively in the limit
of low photon densities the corresponding differential equation with spontaneous emission
E reads

ṅph = E + (I −A)nph. (5.15)

Both I and A are functions of the electron distribution in the bands. A popular example
where it can’t reach a stationary state is a laser in a cavity. The level inversion leads to
a dominating induced emission (I > A). It is therefore crucial that we check whether
a stationary state is possible before using Fourier transform and the simplified Dyson
equations.

In order to ensure stationarity and to make our calculations simpler we introduce spherical
photon detector that encloses the light emitting diode. This detector absorbs all light that
exits the light emitting diode immediately. By light we mean all real - as opposed to
virtual - photons. We model the detector by the boundary condition nph(t) = 0. Since
both stimulated photon emission and photon absorption require real photons, we observe
only spontaneous photon emission. In the following we will continue to use the term
luminescence but from now on imply that it is only the spontaneous photon emission. This
also has the convenient side effect to ensure that the system always reaches a stationary
state. Mathematically having zero photons in the system which is in a stationary state,
corresponds to D<

q (w) = 0. The reason is that because we have a stationary state and
assume that the photons can be described by a distribution function, we can express the
lesser photon propagator as the product of photon occupation number nph(w) and the
photon spectral density Aq(w) [Alt10]:

iD<
q (w) = nph(w)(DA

q (w)−DR
q (w)) = nq(w)Aq(w). (5.16)
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Figure 5.1.: Experimental setup - LED in spherical detector

Both, nph and Aq(w) are positive semidefinite numbers, and therefore D<
q (w) ≥ 0. The

number of photons in the system can be written as

nph =
∑
q

∫
dwnph(w)Aq(w) = i

∑
q

∫
dwD<

q (w) = 0, (5.17)

and hence D<
q (w) = 0. The formula for the luminescence simplifies to

Lem = − i

π

∑
q

∫ ∞
−∞

dwΠ<
q (w)Im

(
DR
q (w)

)
, (5.18)

since it now contains only spontaneous photon emission. We indicate this by the super-
script ”em”.

5.1.2. Model and assumptions

So far all calculations have been on a very general level. In this subsection we analyze
our model (5.19), go to the stationary limit and justify several approximations that we
need throughout the rest of the section. We begin with the model Hamiltonian of a light
emitting diode

H =
∑
k

εc,kc
†
kck +

∑
p

εv,pv
†
pvp +

∑
q

wqb
†
qbq + g

∑
k,q

bqc
†
kvk−q + g∗

∑
k,q

b†qv
†
k−qck, (5.19)

which we derived in section 4.1. Conduction and valence band have a parabolic shape.
The photons have a linear dispersion relation, d is the spatial dimension of the system
and c the speed of light. The difference in chemical potentials is the applied forward bias
µc − µv = eV . It is comparable to the size of the gap between the conduction and the
valence band ∆ε ≡ εc,0 − εv,0. The position of the chemical potentials is chosen so that
they both lie within the bands. A typical semiconductor where the chemical potential lies
in the band is for example PbTe. The coupling constant g is assumed to be small relative
to the energy of the gap. We assume that at some distant time in the past the system was
decoupled and that the interaction was switched on over a time scale η−1. This is encoded
in the coupling ’constant’

g = g(t) = |g|eηt. (5.20)
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We chose the switchon to be adiabatic in order to send the switchon parameter to zero
later in the calculations. In addition we require that the decoupled state the components
of the system where in their individual thermal equilibrium characterized by individual
chemical potentials. For simplicity we set the temperature of the two leads to be the same
and constant at all times. We totally ignore thermal currents. The free Keldysh Green’s
functions which are the main building blocks of all calculations are given by

gTp (w) =
1

w − εp + i0
± 2πinpδ(w − εp),

g<p (w) = ±2πinpδ(w − εp),
g>p (w) = −2πi(1∓ np)δ(w − εp),

gT̃p (w) = − 1

w − εp − i0
± 2πinpδ(w − εp),

gRp (w) =
1

w − εp + i0
,

gAp (w) =
1

w − εp − i0
,

gKp (w) = −2πi(1∓ 2np)δ(w − εp). (5.21)

Their derivation is straightforward and not discussed here. Because the free Green’s func-
tions describe parts of the system that are at equilibrium, Fourier transform is legitimate.
The upper signs are for fermions the lower for bosons.

Before we go into the calculations we discuss the assumptions that we use during the
rest of the section. Whenever one or more assumptions are used this will be denoted
by wavy equal lines. The first assumption is that we write k + q ≈ k. This is justified
because the energy of a photon at a given momentum is much greater than the kinetic
energy of an electron at the same momentum. Photons with the energy of the gap in
the semiconductor have such a small momentum that it is negligible in comparison to the
momenta of electrons even at relatively low kinetic energies. As an example an electron
with same momentum as a photon at 1 eV has a kinetic energy of 10−5 eV or 0, 1K.
This means that the momentum of the electrons going from the conduction to the valence
band k or the other way round is almost conserved. Second, we execute sums over peaked
functions by rewriting them as integrals over the given energy variable and a density of
states. We assume that this density of states does not vary too much in the region where
the integrand is peaked and treat it as a constant. This is legitimate because both electron
and photon density of states usually behave as power laws with no divergences at finite
energies. Finally, where appropriate, we approximate ∆εk ≈ ∆ε, where ∆εk ≡ εc,k − εv,k
and ∆ε = ∆εk=0.

5.1.3. Luminescence to leading order in the coupling |g|

In this subsection we derive the leading contribution to the photon emission. We show
that the spontaneous emission of photons depends on the occupation of the conduction
band and the availability of free states in the valence band. Also emission is only possible
if there is a finite density of states at the energy of the emitted photons. The leading
order is quadratic in the coupling constant |g|. The linear order terms vanish due to an
odd number of operators of each type, e.g. 〈c〉 = 0. For the same reason all odd orders
vanish. We label expressions that are in second order in the coupling by superscript (1)
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5.1. Luminescence 41

and expressions in fourth order by superscript (2). The first order luminescence is

Lem(1) = − i

π

∑
q

∫ ∞
−∞

dwΠ
<(1)
ph,q (w)Im

(
dRq (w)

)
. (5.22)

At the heart of interest is the photon self energy Π<
q (w). We derive it by comparing the

perturbative expression of the photon propagator

Dq(t1, t2) ≡ −i
∑
n=0

(−i)n

n!

∫
C

ds1...ds1

〈
T̂cH

int
H0

(s1)...H int
H0

(sn)bq(t1)b†q(t2)

〉
(5.23)

order by order with the Dyson equation:

D(1)
q (t1, t2) = −i|g|2

∑
k1

∫
C

ds1,2 dq(t1, s1)gck1
(s1, s2)gvk1−q(s2, s1)dq(s2, t2)

≡
∫
C

ds1ds2 dq(t1, s1)Π
(1)
ph,q(s1, s2)dq(s2, t2) (5.24)

The leading order self energy

Π
(1)
ph,q(s1, s2) = −i|g|2

∑
k

gck(s1, s2)gvk−q(s2, s1) = (5.25)

is depicted by a self energy bubble which consists of a conduction band propagator (full
line) and a valence band propagator (dotted line). Physically it describes a particle-
hole excitation and therefore often called polarization operator. In order to calculate the
luminescence we need to evaluate the lesser photon self energy. We do this by going to
a real time matrix notation that is discussed in appendix A.2. The free Green’s function
are translational invariant in time and hence depend only on their relative arguments.
Therefore we can go to Fourier space and use the explicit expressions from equations 5.21
to evaluate

Π
(1)
ph,ab,q(w) = −i|g|2

∑
k

∫
dw1

2π
gcab,k(w1)gvba,k−q(w1 − w). (5.26)

The indices a and b are so called Keldysh indices. For example a = 1 and b = 2 denotes
that the first time argument lies on the forward and the second on the backward contour.
This example a = 1, b = 1 is equivalent with the lesser Green’s function. The explicit
result for the leading order polarization operator is

Π
<(1)
ph,q (w) = −2πi|g|2

∑
k

nc,k(1− nv,k−q)δ(w + εv,k−q − εc,k). (5.27)

With this we can explicitly evaluate the luminescence in leading order

Lem(1) = − i

π

∑
q

∫ ∞
−∞

dwΠ
<(1)
ph,q (w)Im

(
dRq (w)

)
= 2π|g|2

∑
k,q

nc,k(1− nv,k−q)δ(wq + εv,k−q − εc,k)

≈ 2π|g|2
∑
k

Nph(εc,k − εv,k)nc,k(1− nv,k)

≈ 2π|g|2Nph(∆ε)
∑
k

nc,k(1− nv,k) (5.28)
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where Nph(w) is the photon density of states and ∆ε the semiconductor gap. The result
(5.28) satisfies the physical intuition. The photon emission depends on the filling of the
conduction band and the availability of free states in the valence band. Also in order to
emit a photon, photon states must be available at the given energy. This is represented
by the photon density of states. For a free photon gas the density of states is given by

Nph(w) =
( L

2πc

)d
Ωdw

d−1. (5.29)

L is the system size, c the speed of light and Ωd is the surface of a unit sphere in a space
of dimension d.

5.1.4. Next to leading order correction

In this subsection we discuss the next to leading order corrections to the photon emission,
formally given by (5.30)

Lem(2) = − i

π

∑
q

∫ ∞
−∞

dw
[
Π<(1)
q (w)Im

(
DR,(1)
q (w)

)
+ Π<(2)

q (w)Im
(
dRq (w)

)]
. (5.30)

It is crucial to be aware what the delta distributions in the free Green’s functions 5.21
really mean. They all stem from the limit of vanishing convergence factor

lim
η→0+

Im

(
1

w − ε+ iη

)
= −πδ(w − ε), δ(0) ∼ 1

η
. (5.31)

Therefore it is important not to mix terms where the convergence factor is still explicitly
written with terms where it has been send to zero already. After some algebra we find the
following results:

DR,(1)
q (w) = |g|2

( 1

w − wq + i0+

)2∑
k

nv,k−q − nc,k
w + εv,k−q − εc,k + i0+

Π<(1)
q (w) = (−2πi)|g|2

∑
k

nc,k(1− nv,k−q)Im
(

−1/π

w + εv,k−q − εc,k + i0+

)
Π<(2)
q (w) = 0 (5.32)

In appendices B.2 and B.3 we give a detailed derivation. The second term of equation
(5.30), which describes induced emission, vanishes as it should. The term that is left
describes virtual processes where a photon is emitted and immediately reabsorbed. These
lead to an effective interaction between the two electron bathes. Explicitly it is given by

− i

π

∑
q

∫ ∞
−∞

dwΠ<(1)
q (w)Im

(
DR,(1)
q (w)

)
= −2|g|4

∑
q

∫ ∞
−∞

dw
∑
k

nc,k(1− nv,k−q)Im
(

−1/π

w + εv,k−q − εc,k + i0+

)
×

× Im

(( 1

w − wq + i0+

)2∑
k1

nv,k1−q − nc,k1

w + εv,k1−q − εc,k1 + i0+

)
≈ −2π|g|4

Nph(∆ε)

∆ε

∑
k,k1

nc,k(1− nv,k)(nv,k1 − nc,k1)δ(∆εk −∆εk1). (5.33)

Under the assumption that the effective mass of conduction and valence band has the same
absolute value we can simplify this equation a little further into its final form

= −2π|g|4
Nph(∆ε)

∆ε

∫
dε
(
NF (ε)

)2
nF (εc0 + ε− µc)(1− nF (εv0 − ε− µv))×

× (nF (εv0 − ε− µv)− nF (εc0 + ε− µc)). (5.34)
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In the equation above nF are the usual fermi functions and NF (ε) ∼ ε(d−2)/2 is the density
of states of a free fermi gas.

5.1.5. Higher order corrections

In the last two subsections we discussed the spontaneous photon emission of a light emitting
diode in leading and next to leading order. In this subsection we want to investigate if
higher order corrections are important and if so what their effect is. We start from the
full photo emission term

Lem = − i

π

∑
q

∫ ∞
−∞

dwΠ<
ph,q(w)Im

(
DR
ph,q(w)

)
. (5.35)

The lesser photon self energy is particularly easy to calculate. Because we have banished
all photons from the system D< ≡ 0 there are no higher order corrections to the lesser
component of the polarization operator

Π<
ph,q(w) = Π

<(1)
ph,q (w). (5.36)

Details are explained in the appendix B.3. The corrections to the photon propagator
are less trivial because they lead to an infinite hierarchy of equations. Using the general
expressions

ΠR = ΠT −Π<,

GTc G
T
v −G<c G>v = GRc G

A
v +G<c G

A
v +GRc G

>
v , (5.37)

we find

DR =
1

(dR)−1 −ΠR
ph

ΠR
ph ∼

∫
GRc ⊗GAv +G<c ⊗GAv +GRc ⊗G>v , (5.38)

for the photon propagator and photon self energy. Similar relations hold for the electron
propagators. All together this results in a set of coupled equations that only truncates in
very special cases. For clarity we introduced a short hand notation ⊗ to denote convolution∫
A ⊗ B =

∫
dw1A(w1)B(w − w1) and ⊗̃ to denote the correlation integrals

∫
A ⊗ B =∫

dw1A(w1)B(w1 − w). An easy way to truncate these equations is the random phase
approximation

DR,RPA =
1

(dR)−1 −Π
R(1)
ph

. (5.39)

This approximation is good if the particle density if fairly high. Usually the small pa-
rameter is the number of carriers per atomic volume. Since the photon emission takes
place in the depletion layer where the carrier density is not very high the random phase
approximation is far from exact. However, since the main effect that we are interested
in is the resulting level broadening it is safe to say that such an effect is robust against
more sophisticated corrections. The derivation of the lowest order photon self energy is
straightforward, yielding

Π
R(1)
ph,q (w) = −i|g|2

∑
k

∫
dw1

2π

(
gRc,k(w1)gAv,k−q(w1 − w) + g<c,k(w1)gAv,k−q(w1 − w)

+ gRc,k(w1)g>v,k−q(w1 − w)
)

= |g|2
∑
k

nv,k−q − nc,k
w − εc,k + εv,k−q + 2i0+

. (5.40)
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We explain more details in the appendix B.3. The main effect is that the photon propagator
gets a finite imaginary component

DR
q (w) ≡ 1

w − wq − ΣR
ph − iΓRph

. (5.41)

The other effect is a shift in the resonance frequency. Both effects are second order in the
coupling constant and therefore only lead to small contributions

DR
q (w) ≡ 1

w − wq − ΣR
ph − iΓRph

,

Σ
R,(1)
ph ≡ Re

(
Π
R(1)
ph,q (w)

)
∼ |g|2,

Γ
R,(1)
ph (w) ≡ Im

(
Π
R(1)
ph,q (w)

)
∼ |g|2NF (w) ≤ 0. (5.42)

All together the luminescence in random phase approximation is

Lem, (RPA) = −2|g|2
∑
k,q

nc,k(1− nv,k−q)Im
(
DR,RPA
ph,q (εc,k − εv,k−q)

)
≈ −2|g|2

∑
k

nc,k(1− nv,k)×

×
∫ Γ

0
dwqNph(wq)

Γ
R,(1)
ph (∆εk)

(∆εk − wq − Σ
R,(1)
ph (∆εk))2 + (Γ

R,(1)
ph (∆εk))2

≈ 2π|g|2Nph(∆ε)
∑
k

nc,k(1− nv,k). (5.43)

Here Nph(∆ε) refers to the photon density averaged over the interval (∆ε+ ΓR,∆ε−ΓR).
Summarizing our analysis we have shown that higher order corrections to the luminescence
have only a small quantitative effect and that perturbation theory is well justified.

5.1.6. Special case: Two level system

In this subsection we discuss a simplified model

H = εcc
†c+ εvv

†v +
∑
q

wqb
†
qbq + g

∑
q

bqc
†v + g∗

∑
q

b†qv
†c, (5.44)

where the electron bands are replaced by single levels. The absence of a finite level width
generates divergences in the next to leading order terms. By summing up an infinite series
of diagrams and using random phase approximation the photon mediated interaction gives
a finite width to the electron levels and the divergences vanish.

The derivation of the photon emission rate in lowest order is analogous to the derivation in
subsection 5.1.3. Previously the nonequilibrium information was encoded in the chemical
potentials, here it is simply given by fixed electron occupation numbers nc and nv. In fact
the result

Lem(1) = − i

π

∑
q

∫ ∞
−∞

dw Π
<(1)
ph (w)Im

(
dRq (w)

)
= 2π|g|2Nph(εc − εv)

[
nc(1− nv)

]
(5.45)
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looks very much alike, with the exception that the sum over electron momenta is absent.
However, when we go to the next to leading order divergences occur:

Lem(2) = − i

π

∑
q

∫ ∞
−∞

dwΠ<(1)
q (w)Im

(
DR,(1)
q (w)

)
= −2|g|4

∑
q

∫ ∞
−∞

dwnc(1− nv)Im
(

−1/π

w + εv − εc + i0+

)
×

× Im

(( 1

w − wq + i0+

)2 nv − nc
w + εv − εc + i0+

)
≈ 2|g|4Nph(∆ε)nc(1− nv)(nv − nc)×

×
∫ ∞
−∞

dw Im

(
−1/π

w −∆ε+ i0+

)
Im
( 1

w + i0+

1

w −∆ε+ i0+

)
= −|g|

4

0+

Nph(∆ε)

∆ε
nc(1− nv)(nv − nc). (5.46)

Mathematically this results from the degenerated photon propagators that link the electron-
hole bubbles. In order to fix this problem two steps are necessary. First we renormalize
the conduction electron and the valence electron propagators. To do that we sum up an
infinite series of diagrams in random phase approximation. The key result is that both
obtain a finite imaginary self energy contribution, finite level width. During this step
we also introduce a ultraviolet cutoff Λ for the photon spectrum. From now on this will
implicitly be encoded in the photon density of states Nph(ε) ∼ θ(w)θ(Λ − w). We than
use the renormalized electron propagators to calculate electron-hole bubble. In the second
step we renormalize the photon propagator by summing up an infinite series of diagrams
in random phase approximation with the renormalized electron-hole bubble. Both steps
together remove the divergence. We denote the terms with random phase corrections by
”RPA”. Additionally we name terms such as the renormalized photon propagator, that do
contain random phase approximations with self energies that themself have been renor-
malized already by RPA+. The fully renormalized expressions are

Lem, RPA+ = − i

π

∑
q

∫ ∞
−∞

dw
(

Π
<(1)
ph,q (w)

)
Im
(
DR,RPA+
q (w)

)
,

DR,RPA+ =
1

(dR)−1 −ΠR,RPA+
ph

= + . (5.47)

We begin with summing up the geometric series for the RPA corrected electron propagators
Gc and Gv. The derivation of the valence electron-photon and conduction electron - photon
self energy bubbles is analogous the the electron-hole bubble that we discussed earlier and
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we state only the results:

GRPA
c (w) = = +

GR,RPA
c (w) =

1

(w − εc) + |g|2(1− nv)
( ∫

dwq
Nph(wq)
wq−w+εv

+ iπNph(w − εv)
)

GA,RPA
c (w) =

1

(w − εc) + |g|2(1− nv)
( ∫

dwq
Nph(wq)
wq−w+εv

− iπNph(w − εv)
)

G<,RPA
c (w) = g<c (w)

GRPA
v (w) = = +

GR,RPA
v (w) =

1

(w − εv)− |g|2nc
( ∫

dwq
Nph(wq)
wq+w−εc − iπNph(εc − w)

)
GA,RPA
v (w) =

1

(w − εv)− |g|2nc
( ∫

dwq
Nph(wq)
wq+w−εc + iπNph(εc − w)

)
G>,RPA
v (w) = g>v (w) (5.48)

Before we derive the more complicated higher order self energy bubbles we make some
approximations. As before we assume that the photon density of states is sufficiently
smooth around wq = ∆ε. We then exploit that the self energy is proportional to the
square of the coupling constant and therefore small. Hence, it is only relevant if (w −
εc) ≤ |g|2Nph(∆ε). This allows to approximate the self energy as a constant, since the
w-dependence is not important. The imaginary part of the self energy is denoted by
ΓRc = π|g|2(1 − nv)Nph(∆ε) which is in general finite, since nv < 1. Hence, we can
neglect the infinitesimal imaginary part of the inverse free propagator. The real part

of the self energy is ΣR
c ≡ |g|2(1 − nv)

∫
dwq

Nph(wq)
wq−∆ε ∼ |g|

2 and can be absorbed in the

conduction electron level energy ε̃c = εc + ΣR
c . This allows us to write the conduction

electron propagator compact form

GR,RPA
c (w) ≈ 1

(w − ε̃c)− iΓRc
. (5.49)

The very same logic applies to the valence electron propagator. To avoid confusions about
the location of the poles, we introduce positive constants Σc ≡ −ΣR

c = −ΣA
c and Γc ≡

−ΓRc = ΓAc . Here we have exploited the fact that the imaginary parts of the retarded
and advanced propagator have the same absolute value but different signs. Our unified
notation is

GR,RPA
c (w) ≡ 1

w − ε̃c + iΓc
, GA,RPA

c (w) ≡ 1

w − ε̃c − iΓc
,

GR,RPA
v (w) ≡ 1

w − ε̃v + iΓv
, GA,RPA

v (w) ≡ 1

w − ε̃v − iΓv
. (5.50)

In fact, if we require that nc+nv = 1, then the conduction and valence electron self energies
are identical within the approximations we made so far. With this simplified result we
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now derive the photon self energy in random phase approximation

ΠR,RPA+
ph (w) = |g|2

[
1

w + ε̃v − ε̃c + i(Γc + Γv)
+

−nc
w + ε̃v − εc + iΓv

+
−(1− nv)

w + εv − ε̃c + iΓc

]
. (5.51)

Now that we have removed all divergences we can write down the renormalized expression
of the photon propagator

DR,RPA+
q (w) =

1

w − wq − |g|2
[

1
w+ε̃v−ε̃c+i(Γc+Γv) + −nc

w+ε̃v−εc+iΓv
+ −(1−nv)

w+εv−ε̃c+iΓc

]
≈ 1

w − wq − |g|2
[

1
w−∆ε+2iΓ + −1+nv−nc

w−∆ε+iΓ

] . (5.52)

With the full renormalized photon propagator we have all building blocks of the lumines-
cence together and find

Lem, RPA+ = 2|g|2 nc(1− nv)
1

∆ε

∫ Λ

0
dwqNph(wq)

1
2
−nv+nc

π(1−nv) ∆εNph(∆ε)(
1− wq

∆ε

)2
+
( 1

2
−nv+nc

π(1−nv) ∆εNph(∆ε)

)2

≈ 2|g|2 nc(1− nv)Nph(∆ε)

∫ Λ
∆ε

0
dx

1
2
−nv+nc

π(1−nv) ∆εNph(∆ε)

(1− x)2 +
( 1

2
−nv+nc

π(1−nv) ∆εNph(∆ε)

)2

= 2π|g|2 nc(1− nv)Nph(∆ε)

[
1

2
+

1

π
arctan

(
π∆εNph(∆ε)

1− nv
1− nv + nc − 1

2

)]
.

In appendices C.1, C.2 and C.3 we give a more detailed derivations. We see that the
corrections depend on the dimensionless parameter ∆Nph(∆ε) which is the product of the
photon density of states at the resonance frequency times the gap size. We have used
that the ultraviolet cutoff of the photon spectrum is by definition the largest energy in the
problem Λ

∆ε � 1.

Summarizing we have shown that for a two level system one encounters diverging correc-
tions that are due to resonances between the sharp levels. We resolved this problem by
preforming extensive resummation of diagrams in the random phase approximation. In
the end the result for the two level system looks very much alike the result of the model
with finite bandwidth. As a consequence it is sufficient to consider only the leading order
contribution since the higher order terms give only quantitative corrections.
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5.2. Effective Photon Hamiltonian

In this section we derive an effective photon Hamiltonian for a superconductor-light emit-
ting diode-superconductor heterostructure. It’s purpose is to reduce the Hamiltonian in a
way that brings the nature of the photon dynamics to the surface. Also it is an expression
that is tailored to calculate photon properties with minimal effort and maximal clarity.
Technically speaking an effective Hamiltonian is an expression that allows to investigate
the properties of a subsystem without evaluating the full Hamiltonian. In our case the
subsystem of interest are the photons while we want to integrate out the electrons as far
as possible. If a system is at equilibrium the derivation of such an effective Hamiltonian is
straightforward. Here however we deal with a nonequilibrium problem which causes con-
siderable problems. While it is not possible to eliminate the fermionic operators entirely
we show that we can transform the Hamiltonian into a form that reveals all the qualitative
physics of the photon subsystem at a glance. From our final result it is obvious that a
superconductor- pn-superconductor system is a source of squeezed light.

In the first two subsections we explain the general concept and all necessary assumptions
are introduced and justified. In the third and fourth subsection we derive the effective
Hamiltonian of a normal light emitting diode and do some checks. After establishing
the credibility of this concept we derive the more involved effective Hamiltonian of the
superconductor-pn-superconductor heterostructure.

5.2.1. Concept and assumptions

We begin this section with a general discussion about the definition of what we call effective
Hamiltonian. This is followed by an outline of the derivation and the necessary assumptions
on a general level.

We consider a system of n + 1 different types of particles. The operators A and A† be-
long to the species we are interested in and the operators Bi and B†i describe the n other
species. Any of the operators can also have additional quantum numbers such as spin and
momentum (A → Ak,σ). Ultimately we are interested in describing experimental observ-
able quantities. In general these can be expressed by expectation values of observables
O(t). Hence, any property of the A-particles can be described by expectation values of
the following type:

〈O(t)〉 = 〈f(Â(t), Â†(t), t)〉. (5.53)

One way to evaluate such an observable is to use the Heisenberg picture were all time
dependence is included into the operators. Taking the expectation value corresponds to
a trace over the density matrix at a time t0 where Schrödinger and Heisenberg picture
fall together by definition. Formally we can define this time to be in the far distant past.
There, we assume that the individual parts of the system are decoupled and each subsystem
is in its local equilibrium. Therefore at t0 the subsystems can be described by equilibrium
distribution functions nx and the density matrix is well known. Consequently we know
exactly how to evaluate expectation values at this time. All that is left to do is to express
the time dependent Heisenberg operators by operators at t0. Hence, we write down the
Heisenberg equations of motion and formally integrate them,

AH(t) = AH(t0) + i

∫ t

t0

dt′ [HH , AH(t′)]. (5.54)

This is the tricky part because an exact solution is possible in special cases only. If
the coupling between the subsystems is controlled by a small parameter, which we call
coupling constant |g|, we can solve the equations of motion perturbatively. The effective
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Hamiltonian is an object that replaces the original Hamiltonian in the upper equation
(5.54). It can depend explicitly on time and allows us to derive the correct expression for
the A-operators,

AH(t) = AH(t0) + i

∫ t

t0

dt′ [(Heff)H(t′), AH(t′)] +O(|g|3) (5.55)

up to second order in the coupling constant. In addition, we can trace out the Bi operators
in all terms that are of second order in the coupling constant. This formalism is to a
certain extend capable of describing non equilibrium situations. Formally we introduce
nonequilibrium by adjusting the distribution functions at t0. The only formal limitation
is the time scale of the interaction switchon procedure. Non equilibrium phenomena that
live on a longer time scale, such as stationary states, are fully accessible. The most general
Hamiltonian we can treat by this method is

H = wA†A+
∑
i

εiB
†
iBi + gf(A,B1, B2, ..., Bn) + h.c. +O(|g|2). (5.56)

The real numbers w and εi are the particle energies of the decoupled system (g = 0). The
function f describes the coupling between the various species. There are no restrictions
necessary since the only requirement we need to derive the effective Hamiltonian is that all
couplings are at least linear in the small coupling constant g. The technical foundation of
the following derivation are the Heisenberg equations of motion. The only approximation
we make is to ignore terms of third and higher order in the coupling constant. Technically
speaking the effective Hamiltonian is the original Hamiltonian H without all terms that do
not contain any operators of the desired species R and with all operators of the species Bi
replaced by their expression at time t0. In addition we can evaluate all expectation values
of Bi operators if they appear in second order terms. An important subtlety is that the
latter is not possible in linear terms without losing vital information about the system. In
these terms the fermionic operators at t0 must remain operators and can’t be traced out.

In this subsection we have discussed the definition and limitations of the effective Hamil-
tonian in a very general language. In the following we will be more concrete. The species
of interest are the photons A→ b and the other species the electrons B1 → c and B2 → v.

5.2.2. Technical subtleties due to non-equilibrium

In this subsection we deal with the subtleties of a system out of equilibrium. We show how
it is possible to measure the energy of each subsystem from it’s chemical potential and
maintain the information about the relative position of the chemical potentials. This will
be very useful when we introduce superconductivity later on. The two key concepts are
dynamics and statistics. The dynamics of the system are determined by the Hamiltonian
H of the system and do not contain any information of the equilibrium or nonequilibrium
situation. The information about nonequilibrium is entirely in the statistics. In the eas-
iest case, such as a stationary current between two or more subsystems that are in local
equilibrium, the statistics are determined by individual chemical potentials for each sub-
systems. In equilibrium physics there is only one chemical potential. Since we can always
add an absolute energy to the Hamiltonian, in equilibrium the two expressions coincide,

[O,H] = [O,H − µNi]. (5.57)

Because in equilibrium physics the dynamics are often calculated using H−µNi to evaluate
the Heisenberg equations of motion. This is however just accidentally right and out of
equilibrium it is crucial that we are very careful. A useful discussion of this topic can
be found in [Mah90] in the chapter about superconductivity and electron tunneling. Our
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discussion will be in close analogy to what is discussed there an can be found in many
other textbooks as well. The conventions we use in this subsection are defined by

H̃ ≡ H − µcNc − µvNv H ≡ H0 +HT

Nc ≡
∑
k,σ

c†k,σck,σ Nv ≡
∑
k,σ

v†k,σvk,σ. (5.58)

In this thesis we deal with superconducting leads, hence Bogoliubov transformation is a
key technique. Therefore, it is useful to rewrite the Hamiltonian in such a way that it
is in the generic form ready for Bogoliubov transformation. This means that the energy
in each lead is measured from it’s chemical potential. Therefore it is much nicer to work
with H̃ instead of H. Since the system is out of equilibrium it is important that we
ensure that the equations of motion stay unaltered. Technically this means that we must
assign an additional phase to the fermionic creation and annihilation operators in the
Heisenberg picture. Formally we can absorb this phases into the coupling ’constant’, since
the interaction terms are the only terms where these phases do not chancel out. This
means:

H → H̃ ⇒ c(t)→ c(t)e−iµct v(t)→ v(t)e−iµvt or g → g(t) ∼ ei(µc−µv)t. (5.59)

The formal reason for this technique is based on the linearity of the commutator [A +
B,C] = [A,C] + [B,C]. If we know the solution of a linear differential equation and we
then add a term to it’s derivative that is proportional to the function this simply gives a
multiplicative phase

d

dt

(
ck,σ

)
H

(t) = i[H, ck,σ]H(t)

= i[H̃, ck,σ]H(t) + i
[
µcNc + µvNv, ck,σ

]
(t)

= i[H̃, ck,σ]H(t)− iµc
(
ck,σ

)
H

(t),

⇒
(
ck,σ(t)

)
H

=
(
ck,σ(t)

)
H̃

e−iµct. (5.60)

For the valence electrons we find an equivalent result(
vk,σ(t)

)
H

=
(
vk,σ(t)

)
H̃

e−iµvt. (5.61)

In the case of superconducting leads there is a small subtlety. In a BCS type Hamiltonian
there are terms such as ∆cc

†
↑c
†
↓. On first sight we might assume that this means that in

the Heisenberg picture such terms acquire a phase of e2iµc . However, the order parameter
which is defined as ∆c = 〈c↓c↑〉 acquires the opposite phase so that the total phase chancels.
Summarizing we have shown how to reformulate the Heisenberg equations of motion in
terms of H̃ without losing the information about the relative energy of the different types
of particles.

5.2.3. Discussion of times scales

Our effective model lives and dies with the correct usage of the various limits and scales.
We devote this subsection to the investigation and understanding of those scales and limits.
There are four time scales in the problem. Three are obvious and one is quite subtle.

The first question that arises is if the system can reach a stationary nonequilibrium state
once we set nonequilibrium initial conditions and then let the system evolve. This seems
to be a contradiction by itself because we would exspect either that the system oscillates
or that it converges to an equilibrium state. Strictly speaking the system does indeed
oscillate. However the period of the oscillation is inverse proportional to the energy spacing
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in the density of states in the leads. This time scale goes to infinity with the size of the
leads and is the largest of all four time scales in the system. The second largest time
scale is the switchon time of the interaction 1/η which we choose in such a way that
the interaction is turned off at the time t0 where Heisenberg and Schrödinger picture
coincide. In the adiabatic limit this scale goes to infinity. As a consequence it is crucial
that we take the time limits in the right order to ensure the oscillation time of the system
remains large in comparison to the switchon time. The third largest time scale is the scale
on which measurements take place ∆t. It is the scale over which we must time-average
observables to describe the measurable quantities. Finally the shortest time scale is the
inverse semiconductor gap which is of the order of femto seconds. In the rest of this section
we give evidence that we can indeed switched on the interaction adiabatically, starting from
a nonequilibrium initial situation, and reach a stationary nonequilibrium state. The key
observable is the luminescence L(t). A time independent constant and finite luminescence
is only possible if the system is in a nonequilibrium stationary state. As a demonstration
model we choose the light emitting diode without superconductivity (5.19). We start form
the general expression of the luminescence,

L(t) =

(
d

dt1
+

d

dt2

)∑
q

〈b†H,q(t1)bH,q(t2)〉
∣∣∣
t2→t1=t

, (5.62)

that we have introduced in section 5.1. Since we derive the explicit expressions of the
photon creation and annihilation operators in the Heisenberg picture up to second order
in the coupling constant later on (5.81) we immediately write

〈b†q(t1)bq(t2)〉 = npk,q − |g|2npk,q
∑
k

(nv,k−q − nc,k)(Bq,k,k−q(t2) +B∗q,k,k−q(t1))

+ |g|2
∑
k

nc,k(1− nv,k−q)A∗q,k,k−q(t1)Aq,k,k−q(t2), (5.63)

where we introduced

Aq,k,p(t) ≡
∫ t

t0

dt′ ei(wq−εc,k+εv,p−iη)t′ ,

Bq1,k,p,q2(t) ≡
∫ t

t0

dt′
∫ t′

t0

dt′′ e−i(wq1−εc,k+εv,p+iη)t′′ei(wq2−εc,k+εv,p−iη)t′ . (5.64)

At the initial time t0 where Heisenberg and Schrödinger picture coincide the interaction
is switched of by definition (eηt0 ≈ 0). This simplifies the evaluation of the coefficients A
and B which fulfill

d

dt
Bq,k,p(t) =

ie2ηt

wq − εc,k + εv,p + iη
= A∗q,k,p(t)

d

dt
Aq,k,p(t) ≡ Xq,k,p(t). (5.65)

We notice if t1 = t2, then 〈b†q(t)bq(t)〉 = 〈b†H,q(t)bH,q(t)〉 which completes the calculation of
the time dependent photon number. Finally we plug this result into the definition of the
luminescence (5.62) and make use of the fact that the switchon time is much longer than
the measurement time (eηt ≈ 1). We then readily get

L = 2|g|2
∑
k,q

(
nc,k(1− nv,k−q)− npk,q(nv,k−q − nc,k)

) η

(wq − εc,k + εv,k−q)2 + η2
. (5.66)

From equation (5.66) the most important result is already obvious: The luminescence is
independent of time and the system accordingly in a stationary state. It remains to show
that the luminescence is finite, i.e. that this stationary state is a nonequilibrium state.
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In the adiabatic limit, i.e. when we assume that the switchon speed η is much smaller
than the energy scale on with the prefactor varies, we can approximate the Lorentzian in
equation (5.66) by a delta distribution and obtain

L ≈ 2|g|2
∑
k,q

(
nc,k(1− nv,k−q)− npk,q(nv,k−q − nc,k)

)
δ(wq − εc,k + εv,k−q). (5.67)

This is also where the subtle oscillation time hits in. We can evaluate the delta function
only if we have a continuous spectrum of energies. The next physical idea that makes the
calculation easier is that the energy of a photon at a given momentum is much greater
than the kinetic energy of an electron at the same momentum. Also photons with the
energy of the gap in the semiconductor have such a small momentum that it is negligible
in comparison to the momenta of electrons even at relatively low energies. This means
that the momentum of the electrons going from the conduction to the valence band or the
other way round is almost conserved k2/(2m)� c|k| where c is the speed of light. To keep
the notation compact we now define ∆ε ≡ εc,0 − εv,0, and write

L ≈ 2|g|2Nph(∆ε)
∑
k

(
nc,k(1− nv,k)− npk(∆ε)

(
nv,k − nc,k

))
, (5.68)

where Nph is the photon density of states. This concludes the calculation of the lumines-
cence. We see that the luminescence described by formula (5.68) is in general finite and
vanishes only if the initial conditions are chosen in a specific way. If we set the initial
number of photons in the system to zero npk(∆ε) = 0 we recover the same result that
we derived using the Keldysh formalism (5.28). Summarizing, we have shown that using
an effective model and by choosing the limits in the appropriate way it is indeed possible
to describe a stationary nonequilibrium problem by Heisenberg equations of motion with
initial conditions. We will use this order of time scale that we introduced in this section
throughout this thesis.

5.2.4. Effective photon Hamiltonian for a light emitting diode

To flesh out the ideas of subsection 5.2.1 we discuss the explicit example of a normal light
emitting diode. The photons are the species of interest and the conduction and valence
electrons are the other two species in the problem. We show that the effect of the bias
leads is similar to a parametric photon pump field. The full Hamiltonian is given by

H =
∑
k

(εc,k − µc)c†kck +
∑
p

(εv,p − µv)v†pvp +
∑
q

wqb
†
qbq

+ g
∑
k,q

bqc
†
kvk−q + g∗

∑
k,q

b†qv
†
k−qck, (5.69)

and is discussed in detail in section 4.1. The first step is to neglect all terms that do
commute with the photon operators b and b†. We denote these terms R and the reduced
Hamiltonian

H̃ = H −R =
∑
q

wqb
†
qbq + g

∑
k,q

bqc
†
kvk−q + g∗

∑
k,q

b†qv
†
k−qck. (5.70)

Next we formally transform this Hamiltonian to the Heisenberg picture:

H̃H(t) =
∑
q

wqb
†
H,q(t)bH,q(t) + gei(µc−µv)teηt

∑
k,q

bH,q(t)c
†
H,k(t)vH,k−q(t) + h.c.. (5.71)

In a third step we replace all fermionic operators such as for example cH,k(t) by expressions
in which all fermionic operators are at t0 where the system is decoupled. We choose this
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point as the time where Schrödinger and Heisenberg picture fall together OH(t0) ≡ OS .
Now we easily find the explicit expression using basic commutation relations. They do
however contain a term that is of zeroth order in the coupling which prevents us from
doing a perturbative expansion right away. An example is given in equation (5.72) for the
conduction band electrons, which evolve according to

ċH,k = −i(εc,k − µc)cH,k − ige(µc−µv)t
∑
q

bH,qvH,k−q. (5.72)

We can resolve this problem by defining new operators which we label by an ’I’ and that
have a different phase such that the zeroth order terms cancel with the time derivative of
this phases:

cH,k ≡ cI,ke−i(εc,k−µc)t, vH,p ≡ vI,pe−i(εv,p−µv)t, bH,q ≡ bI,qe−iwqt. (5.73)

Now these new operators,

ċI,k = −ig
∑
q

bI,qvI,k−qe
−i(wq−εc,k+εv,k−q)t,

v̇I,p = −ig∗
∑
q

b†I,qcI,p+qe
i(wq−εc,p+q+εv,p)t,

ḃI,q = −ig∗
∑
k

v†I,k−qcI,ke
i(wq−εc,k+εv,k−q)t, (5.74)

have the desired property that each time derivative will increase the order in the coupling
constant. In a next step we integrate these differential equations. We assume that the
tunneling was switched on g(t) ∼ eηt in such a way that the system is decoupled at eηt0 ≈ 0
and fully turned on at t = 0. Also we assume that the scale on which the measurement
takes place is much shorter than the switchon time, so that the tunneling is constant during
the experiment. The experiment takes place around t = 0. For we drop the ’I’ index in
the following. We also introduce a short notation OI(t0) ≡ O0 for operators at t0. The
solutions of (5.74) are then given by

ck(t) = ck,0 − ig
∑
q

∫ t

t0

dt′ bq(t
′)vk−q(t

′)e−i(wq−εc,k+εv,k−q+iη)t′ ,

vp(t) = vp,0 − ig∗
∑
q

∫ t

t0

dt′ b†q(t
′)cp+q(t

′)ei(wq−εc,p+q+εv,k−iη)t′ ,

bq(t) = bq,0 − ig∗
∑
k

∫ t

t0

dt′ v†k−q(t
′)ck(t

′)ei(wq−εc,k+εv,k−q−iη)t′ . (5.75)

It is sufficient to focus on the tunneling terms, since they are the only ones that do not
commute with the photon operators and contain fermionic operators. These terms are
already linear in the coupling constant and therefore it is sufficient if we expand the
fermionic operators in linear order. We obtain

ck(t) = ck,0 + g
∑
q

bq,0vk−q,0
e−i(wq−εc,k+εv,k−q+iη)t

wq − εc,k + εv,k−q + iη
+O(|g|2),

vp(t) = vp,0 − g∗
∑
q

b†q,0cp+q,0
ei(wq−εc,p+q+εv,p−iη)t

wq − εc,p+q + εv,p − iη
+O(|g|2). (5.76)

Plugging this into the interaction terms gives the fundamental ingredients of the effective
Hamiltonian. Therefore, it is enough if we calculate one of the interaction terms since the
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other one is its hermitian conjugate

g∗(t)
∑
k,q

b†H,q(t)v
†
H,k−q(t)cH,k(t)

= g∗eηt
∑
k,q

ei(wq−εc,k+εv,k−q)tb†q(t)v
†
k−q(t)ck(t)

= g∗eηt
∑
k,q

ei(wq−εc,k+εv,k−q)tb†q(t)v
†
k−q,0ck,0

+ |g|2e2ηt
∑
k,q1,q2

ei(wq1−wq2 )tei(εv,k−q1−εv,k−q2 )t

wq2 − εc,k + εv,k−q2 + iη
v†k−q1,0vk−q2,0b

†
q1(t)bq2,0

− |g|2e2ηt
∑
k,q1,q2

ei(wq1−wq2 )te−i(εc,k−εc,k−q1+q2
)t

wq2 − εc,k−q1+q2 + εv,k−q1 + iη
c†k−q1+q2,0

ck,0b
†
q1(t)bq2,0. (5.77)

To simplify further we can exploit two things. First, bq(t) = bq(t0)+O(|g|) and second that
the distribution functions are known for the decoupled system at t0. The latter permits
us to trace out the fermionic operators in all second order terms, which yields

g∗(t)
∑
k,q

b†H,q(t)v
†
H,k−q(t)cH,k(t) = g∗eηt

∑
k,q

b†H,q(t)e
−i(εc,k−εv,k−q)tv†k−q,0ck,0

+ |g|2e2ηt
∑
k,q

nv,k−q − nc,k
wq − εc,k + εv,k−q + iη

b†H,q(t)bH,q(t). (5.78)

With this we have all building blocks for the effective Hamiltonian(
Heff

)
H

(t) =
∑
q

(
wq + |g|2e2ηtXq

)
b†H,q(t)bH,q(t)

+
∑
q

(
geηtYq(t)bH,q(t) + g∗eηteieVtb†H,q(t)e

−ieVtY †q

)
, (5.79)

where we introduced

Xq =
∑
k

(nv,k−q − nc,k)
( 1

wq − εc,k + εv,k−q − iη
+

1

wq − εc,k + εv,k−q + iη

)
= 2

∑
k

(nv,k−q − nc,k)
wq − εc,k + εv,k−q

(wq − εc,k + εv,k−q)2 + η2
,

Yq(t) =
∑
k

ei((εc,k−µc)−(εv,k−q−µv))tc†k,0vk−q,0. (5.80)

Notice that Y (t) has still fermionic operators inside. This is a necessary evil and there is no
way around it. Nevertheless the effective Hamiltonian allows for a natural understanding
of the photon physics and it is immediately obvious that the system works as a photon
pump - as a light emitting diode should. I.e. it has the form of an external pump field
that pumps photons into the system. In the next subsection we will verify the validity of
the expression we have derived here.

5.2.5. Comparison with results from the full Hamiltonian

In order to verify the results from the last subsection we proof in this subsection that
we can derive the correct expression for the photon operators in second order using the
effective Hamiltonian. First we derive the Heisenberg photon annihilation operator by
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recursive iteration of the equations of motion of the fermion operators (5.74) and adding
the phase that we separated earlier. The explicit expression is

bH,q(t) = bq,0e−iwqt − g∗
∑
k

e−i(εc,k−εv,k−q+iη)t

wq − εc,k + εv,k−q − iη
v†k−q,0ck,0

− i|g|2 e2ηt

2η

∑
k

(nv,k−q − nc,k)
1

wq − εc,k + εv,k−q + iη
e−iwqtbq,0 +O(|g|3). (5.81)

Second we derive the same result using the effective Hamiltonian. We begin with the
Heisenberg equations of motion,

ḃH,q(t) = i[
(
Heff

)
H

(t), bH,q(t)]

= −i
(
wq + |g|2e2ηtXq

)
bH,q(t)− ig∗eηtY †q (t)

+ igeηt
∑
q1

[Yq1(t), bH,q(t)]bH,q1(t) + ig∗eηt
∑
q1

b†H,q1(t)[Y †q1(t), bH,q(t)], (5.82)

and separate a phase from the photon operators bH,k(t) ≡ e−iwktbk(t). Formal integration
of the differential equation gives

bq(t) = bq,0 − i|g|2Xq

∫ t

t0

dt′ e2ηt′bH,q(t
′)eiwqt′ + ig

∫ t

t0

dt′ eηt
′∑
q1

[Yq1(t′), bH,q(t
′)]bH,q1(t′)eiwqt′

+ ig∗
∫ t

t0

dt′ eηt
′∑
q1

b†H,q1(t′)[Y †q1(t′), bH,q(t
′)]eiwqt′ − ig∗

∫ t

t0

dt′ eηt
′
Y †q (t′)eiwqt′

= bq,0 − ig∗
∫ t

t0

dt′ eηt
′
Y †q (t′)eiwqt′ +O(|g|)2. (5.83)

The terms linear in the coupling do contain commutators of the type [Yq1(t), bH,q(t)]. In
order to evaluate them we consider the first order expansion of bH,q(t). When we plug it
in the expression from equation (5.83) we get terms such as∑

q1

[Yq1(t), bH,q(t)]

= −ig∗
∫ t

t0

dt′eηt
′
eiwqt′

∑
q1

[Yq1(t), Y †q (t′)]e−iwqt +O(|g|2)

= −g∗eηt
∑
k

nc,k − nv,k−q
wq − εc,k + εv,k−q − iη

. (5.84)

We put these results back in the previous expression and doing some algebra and indeed we
find the same result (5.81) as obtained by the full Hamiltonian. Hence, we conclude that
all expectation values of observables that contain only photon operators can be calculated
in second order in the coupling constant using the effective Hamiltonian.

5.2.6. Superconductor-pn-superconductor heterostructure

In this subsection we derive the key result of this thesis, the effective photon Hamiltonian
for the full superconductor-pn-superconductor heterostructure. We find that it has one
term that can be interpreted as a pump field, similar to the effective Hamiltonian of the
normal light emitting diode. In addition it has another term that has the form of a
parametric amplifier which leads to squeezing.
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Starting point is the full model Hamiltonian

H − µcNc − µvNv ≡ (H0,c − µcNc) + (H0,v − µvNv) +H0,ph +HT . (5.85)

A justification of this model can be found in section 4.2. This Hamiltonian consist of four
components. Two leads, a free photon Hamiltonian and a tunneling term. The latter
describe electron tunneling between the leads and is chosen in a way that each tunneling
event is accompanied by either the absorption or the emission of a photon. The explicit
expression for the building blocks of the Hamiltonian are

H0,c − µcNc =
∑
k,σ

(εc,k − µc)c†k,σck,σ −
∑
k

∆c,kc
†
k,↑c
†
−k,↓ −

∑
k

∆∗c,kc−k,↓ck,↑,

H0,v − µvNv =
∑
p,σ

(εv,p − µv)v†p,σvp,σ −
∑
p

∆v,pv
†
p,↑v

†
−p,↓ −

∑
p

∆∗v,pv−p,↓vp,↑,

H0,ph =
∑
q

wqb
†
qbq,

HT = g
∑
k,q,σ

bqc
†
k,σvk−q,σ + g∗

∑
k,q,σ

b†qv
†
k−q,σck,σ. (5.86)

The first two equations in (5.86) describe the superconducting leads. The third equation
is a free photon Hamiltonian and the tunneling term is shown in the last equation. To
make this model accessible to analysis we start with Bogoliubov transformations of the
leads. The expressions 3.6 can be found in standard textbooks, for example [BF04]. Next
we preform the Bogoliubov transformation

ck,σ = uc,σkγk,σ + σ̄vc,σkγ
†
−k,σ̄,

c†k,σ = u∗c,σkγ
†
k,σ + σ̄v∗c,σkγ−k,σ̄,

vp,σ = uv,σpγp,σ + σ̄vv,σpγ
†
−p,σ̄,

v†p,σ = u∗v,σpγ
†
p,σ + σ̄v∗v,σpγ−p,σ̄. (5.87)

The new operators γ which are defined in equations (5.87) fulfill the usual fermionic anti-
commutation relations. Hence, the transformed Hamiltonian of the leads,

H0,c − µcNc =
∑
k,σ

Ec,kγ
†
c,k,σγc,k,σ + const,

H0,v − µvNv =
∑
p,σ

Ev,pγ
†
v,p,σγv,p,σ + const, (5.88)

have the structure of free Fermi gases. The quasiparticle energies

Ec,k =
√

(εc,k − µc)2 + |∆c,k|2,

Ev,p =
√

(εv,p − µv)2 + |∆v,p|2, (5.89)

are on the order of the superconducting gap and above. The most important property
of the resulting quasiparticles is that all commutation relations between the two types of
fermions and the boson (4.16) remain invariant with the new fermions. The interaction on
the other hand needs to be rewritten in terms of the Bogoliubov quasiparticle operators,
too. Each term of the interaction leads to four new terms in the transformed picture.
With the index convention that we have chosen we can add pairs of terms from the photon
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absorption and photon emission part together. The result is

gbqc
†
k,σvk−q,σ

= gbqu
∗
c,σkuv,σ(k−q)γ

†
c,k,σγv,k−q,σ + gbqv

∗
c,σkvv,σ(k−q)γc,−k,σ̄γ

†
v,q−k,σ̄

+ gbqσ̄u
∗
c,σkvv,σ(k−q)γ

†
c,k,σγ

†
v,q−k,σ̄ + gbqσ̄v

∗
c,σkuv,σ(k−q)γc,−k,σ̄γv,k−q,σ, (5.90)

g∗b†−qv
†
q−k,σ̄c−k,σ̄

= −g∗b†−qvc,σkv∗v,σ(k−q)γ
†
c,k,σγv,k−q,σ − g

∗b†−quc,σku
∗
v,σ(k−q)γc,−k,σ̄γ

†
v,q−k,σ̄

− g∗b†−qσvc,σku∗v,σ(k−q)γ
†
c,k,σγ

†
v,q−k,σ̄ − g

∗b†−qσuc,σkv
∗
v,σ(k−q)γc,−k,σ̄γv,k−q,σ. (5.91)

The fully transformed Hamiltonian is now ready to be addressed by perturbation theory.
The only terms which are not diagonal are the interaction terms and those are proportional
to the coupling constant.

H =
∑
k,σ

Ec,kγ
†
c,k,σγc,k,σ +

∑
p,σ

Ev,pγ
†
v,p,σγv,p,σ +

∑
q

wqb
†
qbq + const

+
∑
k,q,σ

Aq,k,σγ
†
c,k,σγv,k−q,σ +

∑
k,q,σ

Bq,k,σγc,k,σγv,q−k,σ̄ + h.c. (5.92)

The prefactors,

Aq,k,σ = gbqu
∗
c,σkuv,σ(k−q) − g∗b

†
−qvc,σkv

∗
v,σ(k−q),

Bq,k,σ = σgb−qv
∗
c,σkuv,σ(k−q) + σg∗b†quc,σkv

∗
v,σ(k−q), (5.93)

contain the coefficients from the Bogoliubov transformations, the coupling constant and
most importantly the photon operators. Hence, this prefactors are operators which do in
general not commute with other operators. Most importantly this Hamiltonian is in the
form discussed in the general part of section 5.2.1. Hence, it is now possible to calculate
an effective photon Hamiltonian. The Heisenberg equations of motion of the quasiparticles
follow immediately from the commutation with the transformed Hamiltonian,

γ̇H,c,k,σ(t) = −iEc,kγH,c,k,σ(t)

− i
∑
q

AH,q,k,σ(t)γH,v,k−q,σ(t) + i
∑
q

B†H,q,k,σ(t)γ†H,v,q−k,σ̄(t),

γ̇H,v,p,σ(t) = −iEv,pγH,v,p,σ(t)

− i
∑
q

A†H,q,q+p,σ(t)γH,c,q+p,σ(t)− i
∑
q

B†H,q,q−p,σ̄(t)γ†H,c,q−p,σ̄(t). (5.94)

As we have discussed in subsection 5.2.4, a phases,

γc,k,σ(t) ≡ eiEc,ktγH,c,k,σ,

γv,p,σ(t) ≡ eiEv,ptγH,v,p,σ,

bq(t) ≡ eiwqtbH,q, (5.95)

have to be separated from the Heisenberg operators in order to do recursive integration.
With this newly defined operators the time derivative of the annihilation and creation
operators is linear in the coupling constant. This allows us to do the same analysis as in
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the case without superconductivity and we get

γc,k,σ(t) = γc,k,σ,0 − i
∑
q

γv,k−q,σ,0

∫ t

t0

dt′Aq,k,σ(t′)ei(Ec,k−Ev,k−q)t′

+ i
∑
q

γ†v,q−k,σ̄,0

∫ t

t0

dt′B†q,k,σ(t′)ei(Ec,k+Ev,q−k)t′ +O(|g|2),

γv,k,σ(t) = γv,k,σ,0 − i
∑
q

γc,q+k,σ,0

∫ t

t0

dt′A†q,q+k,σ(t′)ei(Ev,k−Ec,q+k)t′

− i
∑
q

γ†c,q−k,σ̄,0

∫ t

t0

dt′B†q,q−k,σ̄(t′)ei(Ev,k+Ec,q−k)t′ +O(|g|2). (5.96)

The interaction is already linear in the coupling, therefore it is sufficient if we abort the
recursion after the leading order, yielding∑

q,k,σ

AH,q,k,σ(t)γ†H,c,k,σγH,v,k−q,σ

=
∑
q,k,σ

Ãq,k,σ(t)γ†c,k,σ,0γv,k−q,σ,0

+ i
∑
q,k,σ

(
nv,k−q,σ − nc,k,σ

)
Ãq,k,σ(t)

∫ t

t0

dt′ Ã†q,k,σ(t′),

∑
q,k,σ

BH,q,k,σ(t)γH,c,k,σ(t)γH,v,q−k,σ̄(t)

=
∑
q,k,σ

B̃q,k,σ(t)γc,k,σ,0γv,q−k,σ̄,0

+ i
∑
q,k,σ

(nc,k,σ + nv,q−k,σ̄ − 1)B̃q,k,σ(t)

∫ t

t0

dt′ B̃†q,k,σ(t′). (5.97)

In this notation we have absorbed all time-dependence into the operator valued coefficients
Ãq,k,σ(t) and B̃q,k,σ(t), which are explicitly given by

Ãq,k,σ(t) = gu∗c,σkuv,σ(k−q)e
−i(w̃q−Ec,k+Ev,k−q)tbq(t)

− g∗vc,σkv∗v,σ(k−q)e
i(w̃−q+Ec,k−Ev,k−q)tb†−q(t),

B̃q,k,σ(t) = σgv∗c,σkuv,σ(k−q)e
−i(w̃−q+Ec,k+Ev,q−k)tb−q(t)

+ σg∗uc,σkv
∗
v,σ(k−q)e

i(w̃q−Ec,k−Ev,q−k)tb†q(t). (5.98)

To make the notation more compact we also introduce a new variable that is the difference
of photon frequency and bias voltage w̃ ≡ w − µc + µv = w − eV. Putting it all together
we can write the effective Hamiltonian in the compact form(

Heff

)
H
≡
∑
q

(wq + |g|e2ηtXq)b
†
H,qbH,q

+
∑
q

(
geηteieVtYq(t)bH,q + g∗eηte−ieVtb†H,qY

†
q (t)

)
+
∑
q

(
g2e2ηte2ieVtZqbH,−qbH,q + (g∗)2e2ηte−2ieVtZ†qb

†
H,qb

†
H,−q

)
, (5.99)

that highlights the general structure and qualitative behavior. The details are encoded
in the coefficients Xl, Yl and Zl we discuss later on. We can see all the qualitative pho-
ton physics from equation (5.99). The effective Hamiltonian consist of three parts that
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correspond to different aspects of the superconductor-ph-superconductor junction. The
first part, which is diagonal, is just the photon energy renormalized by the interaction
and of little interest. The second term describes the effect of the device being a source
of normal, non entangled photons. It has the same structure as the light emitting diode
without superconductivity. The effect of the leads is described as the effect of an external
field producing single photons at a constant rate. Most exciting and promising is the third
term. It has the form of a an ideal parametric amplifier and produces entangled photon
pairs. Entanglement is meant in the sense that the emitted photon pairs have opposite
momentum and same chirality. In fact, if the linear terms would not contain fermionic op-
erators it would be immediately clear that such a system produces squeezed light [Yue76].
In section 5.3 we will show that the system is indeed a source of squeezed light. In the
remainder of this section we discuss the coefficients that appear in the effective Hamilto-
nian. We have abbreviated the parameters from the Bogoliubov transformation with the
Greek letters

αq,k,σ ≡ |uc,σk|2|uv,σ(k−q)|2,
βq,k,σ ≡ |vc,σk|2|vv,σ(k−q)|2,
χq,k,σ ≡ u∗c,σkv∗c,σkuv,σ(k−q)vv,σ(k−q),

δq,k,σ ≡ |vc,σk|2|uv,σ(k−q)|2,
ζq,k,σ ≡ |uc,σk|2|vv,σ(k−q)|2. (5.100)

The correction to the frequency wq → wq + |g|2e2ηtXq is a real number, as it should for
the effective Hamiltonian to be hermitian. This correction therefore is only of quantitative
interest and does not lead to any interesting physical properties. For sake of completeness
we state the explicit expression for the coefficient Xq that results from the execution of
the time integrals

Xq =
∑
k,σ

(
nv,k−q,σ − nc,k,σ

)( αq,k,σ
w̃q − Ec,k + Ev,k−q − iη

+
αq,k,σ

w̃q − Ec,k + Ev,k−q + iη

−
β−q,k,σ

w̃q + Ec,k − Ev,k+q + iη
−

β−q,k,σ
w̃q + Ec,k − Ev,k+q − iη

)

+
∑
k,σ

(1− nv,q−k,σ̄ − nc,k,σ)

(
ζq,k,σ

w̃q − Ec,k − Ev,q−k + iη
+

ζq,k,σ
w̃q − Ec,k − Ev,q−k − iη

−
δ−q,k,σ

w̃q + Ec,k + Ev,−q−k − iη
−

δ−q,k,σ
w̃q + Ec,k + Ev,−q−k + iη

)
. (5.101)

The operator valued coefficient geηteieVtYq(t) is the most troublesome of the three coef-
ficients. It does have an explicit time dependence and contains fermionic quasiparticle
operators. The time dependence is however very weak compared to eieVt since the en-
ergy of the quasiparticles is several orders of magnitude smaller than the bias voltage eV.
Physically this coefficient controls the amplitude of single photon emission and is only of

60



5.2. Effective Photon Hamiltonian 61

quantitative interest. In explicit form it is

Yq(t) ≡
∑
k,σ

(
u∗c,σkuv,σ(k−q)e

i(Ec,k−Ev,k−q)tγ†c,k,σ,0γv,k−q,σ,0

− v∗c,σkvv,σk+qe
−i(Ec,k−Ev,k+q)tγ†v,k+q,σ,0γc,k,σ,0

+ σv∗c,σkuv,σk+qe
−i(Ec,k+Ev,−k−q)tγc,k,σ,0γv,−q−k,σ̄,0

+ σu∗c,σkvv,σ(k−q)e
i(Ec,k+Ev,q−k)tγ†v,q−k,σ̄,0γ

†
c,k,σ,0

)
. (5.102)

Finally the coefficient

Zq ≡
∑
k,σ

χq,k,σ

(
nv,k−q,σ − nc,k,σ

w̃−q + Ec,k − Ev,k−q + iη
+

nv,k−q,σ − nc,k,σ
w̃q − Ec,k + Ev,k−q + iη

+
1− nv,q−k,σ̄ − nc,k,σ

w̃q − Ec,k − Ev,k−q + iη
+

1− nv,q−k,σ̄ − nc,k,σ
w̃−q + Ec,k + Ev,k−q + iη

)
(5.103)

controls the emission of entangled photon pairs and is therefore in the center of inter-
est. There are four nearby resonances which describe four physical transitions. They are
schematically depicted in figure 5.6. In process number one an unpaired electron in the
conduction band makes a transition to the valence band where it stays unpaired. The
second process describes a Cooper pair being split up in the conduction band, then one of
the electrons goes to the valence band under photon emission and recombines to a Cooper
pair with another unpaired valence electron. The third process is like the second process
with the difference that the electron that goes to the valence band stays unpaired (Fig.
5.2). Finally, the fourth process is an unpaired conduction electron going to the valence
band where it pairs. This process leads to an emission of a photon with the highest energy
compared to the other four processes, because in addition to the gap it contains the energy
of two times the Cooper pair binding energy (Fig. 5.3). At zero temperature there are no
excitations present in the system. Therefore we can understand the photon pair produc-
tion process as a combination of process three and four. This effectively corresponds to a
transition of a Cooper pair from the conduction to the valence band under the emission of
a photon pair. The intermediate state an excited quasiparticle in each band can be consid-
ered as a virtual intermediate state with an extremely short lifetime. Maybe this explains
why the observed recombination time is reduced by a factor of two in the experiments we
discussed in section 2.1.3. Another consequence is that the energy of the two photons in
a pair is not the same but slightly different. The difference is roughly 4 times the induced
order parameter. This however is a very small effect compared to the total photon energy
which is of the order of the gap in the semiconductor. In numbers this means a frequency
mismatch of 0.001%. The various recombination processes have also been discussed in a
related context by Recher et.al. [RNK10] who came to similar conclusions.

Wrapping it up we have shown that due to induced superconductivity the effective Hamil-
tonian looks similar to a superposition of a photon pump and a parametric amplifier. This
allows to speculate that the system is a source of squeezed light which we will investigate
further in section 5.3. In addition we have discussed how a Cooper pair emits a photon
pair and found that the frequencies of the emitted photons are slightly different.

5.2.7. Zero temperature limit

The coefficients Xq, Yq(t) and Zq are quite complicated. To gain more physical insight we
discuss the zero temperature, T = 0, limit. We also assume an isotropic superconducting
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Figure 5.2.: Conduction band Cooper
pair is split up

Figure 5.3.: Valence band Cooper pair
is formed

gap and and that we can neglect the photon momentum compared to the electron mo-
mentum. We find that all the coefficients of the Bogoliubov transforms that appear in X,
Y and Z come in products of u and v. Hence, we can exploit that u and v only have a
small overlap in the vicinity of the fermi surface which allows the evaluation of the sums
over electron momenta if we assume that the momentum dependence of all functions are
smooth on the scale of the overlap. By kF we denote the Fermi momentum, at which
ξkF = 0. Finally we assume that the induced order parameters are roughly equal in the
conduction and in the valence band |∆c| ≈ |∆v| ≡ |∆|. Using all those approximations
and executing the momentum summations we find

Xq = 2π|∆|

(
1

w̃q − 2|∆|+ iη
+

1

w̃q − 2|∆| − iη
− 1

w̃q + 2|∆| − iη
− 1

w̃q + 2|∆|+ iη

)
,

Y (t) = 2π|∆|
∑
σ

σ

(
e−2i|∆|tγc,kF ,0γv,−kF ,σ̄,0 + e2i|∆|tγ†v,−kF ,σ̄,0γ

†
c,kF ,σ,0

)
,

Zq = 2π|∆|

(
1

w̃q − 2|∆|+ iη
+

1

w̃q + 2|∆|+ iη

)
. (5.104)

From this simplified coefficients we can read of that only processes that involve Cooper
pairs are allowed at zero temperature. Quasiparticles occur only in pairs in virtual inter-
mediate states which is natural, since there are no excitations in a superconductor at zero
temperature. We will make use of these simplified coefficients later in the next section,
when we investigate the squeezing of the emitted light.

5.3. Source of squeezed light

The goal of this section is to show that a superconductor-light emitting diode-superconductor
heterostructure is a source of squeezed light. We restrict ourself to two mode squeezed
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Figure 5.4.: The four resonances of the effective photon Hamiltonian

light for simplicity and note that the generalization to multi-mode squeezing is possible.
In analogy to [SZ97] we introduce collective creation and annihilation operators aq and a†q
with

aq(t) ≡
1√
2

(
bq(t) + b−q(t)

)
, a†q(t) ≡

1√
2

(
b†q(t) + b†−q(t)

)
. (5.105)

All operators are in the rotated frame bH(t) = e−iwtb(t) since we are interested in the
properties of the quadrature amplitudes Aq and Bq. For brevity we drop the time argu-
ments. Next we define the quadrature amplitudes for these operators that we introduced
in section 3.4 and get

Aq =
1

2

(
a†q + aq

)
, Bq =

1

2i

(
a†q − aq

)
. (5.106)

As discussed in section 3.4 squeezing is, if the variance of one of one of the quadrature
amplitudes is smaller than the other one. For minimal uncertainty states this would mean
(∆Aq)

2 < 1/4 or (∆Bq)
2 < 1/4. In the rest of this section we proof that our model leads

to such squeezed light. We begin by calculating the variances

(∆Aq)
2 ≡ 〈A2

q〉 − 〈Aq〉2

=
1

4

〈
a†qaq + aqa

†
q + a†qa

†
q + aqaq

〉
−
〈
aq + a†q

〉
. (5.107)

Assuming we are in a number state which is truncated at a finite number the second
term vanishes (not so in a coherent state). From the general structure of the effective

Hamiltonian we see that terms such as b†qb−q or bqbq can not have a finite expectation
value for q 6= 0 (momentum conservation). Hence,

(∆Aq)
2 =

1

4

〈
b†qbq + b†−qb−q + 1 + bqb−q + b†qb

†
−q
〉
. (5.108)

Since we assume that all (real) photons are absorbed by our detector the first two terms
vanish since they count the number of photons in the system. The derivation of (∆Bq)

2

goes along the same line of arguments and we only state the final result:

(∆Aq)
2 =

1

4

(
1 + 2Re

〈
bqb−q

〉)
, (∆Bq)

2 =
1

4

(
1− 2Re

〈
bqb−q

〉)
. (5.109)
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We immediately see two things. First, the system without squeezing would be in a min-
imal uncertainty state and second that if Re

〈
bqb−q

〉
6= 0 there is squeezing. It is easily

understood that the unsqueezed system is in a minimal uncertainty state, since all pho-
tons exit the system immediately and the unsqueezed vacuum is a coherent state with
zero amplitude. What is left to show is that the real part of the anomalous expectation
value

〈
bqb−q

〉
is non zero. To do that we calculate the Heisenberg photon operator in the

rotating frame using the effective Hamiltonian. The Heisenberg equation of motion reads

ḃH,q(t) = i
[(
Heff

)
H
, bH,q

]
= −i

(
wq + |g|2e2ηtXq

)
bH,q(t)− ig∗eηte−ieVtY †q (t)

+ ig
∑
q1

eηteieVt[Yq1(t), bH,q(t)]bH,q1(t)

+ ig∗eηte−ieVt
∑
q1

b†H,q1(t)[Y †q1(t), bH,q(t)]

+ (g∗)2e2ηte−2ieVt(Z∗q + Z∗−q)b
†
H,−q(t). (5.110)

Next we go to the rotating frame bH,q(t) ≡ e−iwqtbq(t). Formal integration
∫ t
t0

dt′ and
recursive substitution lead to

bq(t) = bq,0 − g∗Y†q (t) + i|g|2 e2ηt

2η
Mq(t)bq,0 − (g∗)2Z∗q

e2i(w̃q−iη)t

w̃q − iη
b†−q,0 +O(|g|3), (5.111)

where w̃q ≡ wq − eV. As before we used the approximation |k + q| ≈ |k|. The coefficients

Mq(t) ≡
∑
k

[
αk

nc,k − nv,k
w̃q − Ec,k + Ev,k + iη

− βk
nc,k − nv,k

w̃q + Ec,k − Ev,k + iη

+ δk
1− nc,k − nv,k

w̃q + Ec,k + Ev,k + iη
− ζk

1− nc,k − nv,k
w̃q − Ec,k − Ev,k + iη

]
(5.112)

and

Z∗q ≡
∑
k,σ

χ∗q,k,σ

(
nv,k−q,σ − nc,k,σ

w̃−q + Ec,k − Ev,k−q − iη
+

nv,k−q,σ − nc,k,σ
w̃q − Ec,k + Ev,k−q − iη

+
1− nv,q−k,σ̄ − nc,k,σ

w̃q − Ec,k − Ev,k−q − iη
+

1− nv,q−k,σ̄ − nc,k,σ
w̃−q + Ec,k + Ev,k−q − iη

)
(5.113)

are simple c-numbers. On the other hand

Y†q (t) ≡
∑
k,σ

(
uc,ku

∗
v,k

ei(w̃q−Ec,k+Ev,k−iη)t

w̃q − Ec,k + Ev,k − iη
γ†v,k−q,σ,0γc,k,σ,0

− vc,kv∗v,k
ei(w̃q+Ec,k−Ev,k−iη)t

w̃q + Ec,k − Ev,k − iη
γ†c,k,σ,0γv,k+q,σ,0

+ σvc,ku
∗
v,k

ei(w̃q+Ec,k+Ev,k−iη)t

w̃q + Ec,k + Ev,k − iη
γv,−q−k,σ̄,0γc,k,σ,0

+ σuc,kv
∗
v,k

ei(w̃q−Ec,k−Ev,k−iη)t

w̃q − Ec,k − Ev,k − iη
γ†c,k,σ,0γ

†
v,q−k,σ̄,0 (5.114)

does contain fermionic operators. With this preparation we are in the position to calculate
the anomalous expectation value in the rotating frame. We find〈

bqb−q

〉
= (g∗)2

〈
Y†q (t)Y

†
−q(t)

〉
− (g∗)2Z∗q

e2i(w̃q−iη)t

w̃q − iη
, (5.115)
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where〈
Y†q (t)Y

†
−q(t)

〉
=
∑
k,σ

(
− χ∗k(nv,k−q,σ − nc,k,σ)

e2i(w̃q−iη)t

(w̃q − iη)2 − (Ec,k − Ev,k)2

+ χ∗k(1− nv,k,σ̄ − nc,k,σ)
e2i(w̃q−iη)t

(w̃q − iη)2 − (Ec,k + Ev,k)2

)
. (5.116)

We find that the two terms in (5.115) look alike but with opposite signs. The contribution
from the term containing Z∗ is twice as large as from the other one, so they do not cancel.
We note at this place, that even if they would cancel, squeezing survives. The reason is that
the latter term in (5.115) is proportional to (1+nph) while the first term is independent
of the number of photons in the system. Therefore, if we modify the detector and lift the
constraint of zero photons in the system, the two terms can’t cancel and there must be
squeezing. In the zero temperature limit and with the same approximations as in section
5.2.7 we can write down a simple analytic expression for the anomalous expectation value〈

bqb−q

〉
=

2π|g|2|∆| e2i(w̃q−iη)t

(2|∆|)2 − (w̃q − iη)2
NF e−iϕ. (5.117)

Here ϕ is the initial time-independent phase difference between the superconducting. For
simplicity the phase of the coupling constant has also been absorbed into ϕ. The most
interesting case is the resonant case. At resonance the rotating AC-Josephson phase due
to the bias voltage compensates the combined dynamical phase of both photon modes. In-
vestigating the resonance requires some care, since otherwise, one gets the false impression
that the squeezing increases with decreasing order parameters. At this point we use our
results from section 5.1.5 where we found that higher order corrections give the photons
a finite lifetime (2Γ)−1 ∼ (2|g|2NF )−1 and lead to a small frequency shift Σ. Though
we have not explicitly done this calculations with superconductors we are confident that
there will be a similar effect. The reason is, that the virtual photons have the energy of the
semiconductor gap and are thus not suppressed by the induced superconductor gaps |∆|.
We introduce an effective density of states ρ and write for the superconductor Γ ∼ ρ|g|2.
In the limit of |∆| → 0 we know ρ→ NF . Presumably ρ will be larger than NF , since the
density of states in the vicinity, but outside of the superconductor gap is larger than NF .
Hence, our resonance condition is w̃q − Σ = 0 and we find

Re
〈
bqb−q

〉
=

2π|g|2

(2|∆|)2 + (ρ|g|2)2
|∆| NF cos(ϕ). (5.118)

On first sight it looks as if the squeezing could be controlled by the relative phase e−i arg(χ)

between the superconductors at initial time t0. And in fact the squeezing of a particular
choice of quadrature amplitudes can be controlled in such a way, but not the squeezing in
general. If we picture the squeezing as an uncertainty ellipse (Fig. 5.5), this phase simply
rotates it. Hence, if we choose pair of quadrature amplitudes in such a way that the axes of
the ellipse fall together with the quadrature axes the squeezing is independent of e−i arg(χ).
We also notice, that off resonance the squeezing ellipse would rotate with time. Assuming
the quadrature amplitudes correspond to the main axes the result at resonance is

(∆Aq)
2 =

1

4

(
1 +

4π|∆|NF
(2|∆|/|g|)2 + (ρ|g|)2

)
>

1

4
,

(∆Bq)
2 =

1

4

(
1− 4π|∆|NF

(2|∆|/|g|)2 + (ρ|g|)2

)
<

1

4
. (5.119)

It is encouraging that the squeezing is robust against the variation of individual parameters
and remains finite as long as there is a finite induced order parameter |∆|. There are
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Figure 5.5.: Squeezing ellipse

two competing effects that are controlled by the coupling strength. On the one hand the
creation of photon pairs and on the other hand the level broadening of the photons. Hence,
there exist a value for the coupling constant gmax =

√
2|∆|/ρ for which the squeezing

reaches it’s maximal value NF /ρ. Changing the density of states or the induced gap only
shifts the position of the maximum. To conclude our discussion we make an estimate of

Figure 5.6.: Amount of squeezing for realistic set of parameters

the squeezing efficiency. As a system size we assume a cube of edge length L = 100nm.

• semiconductor gap Eg ∼ 104K

• induced gap |∆| ∼ 1K

• dipole coupling g ∼ 1K

• electron density of states NF ∼ 50/K , 10−3/(eVa3
0)

• photon level broadening Γ ∼ |g|2NF ∼ 104K

The maximum is at a very weak coupling of 0.2K. At a more realistic dipole coupling
strength of 1K the squeezing effect is still at about 8%.
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Summarizing we have studied the variance in the quadrature amplitudes of the light that
is emitted from our setup. We found that there is squeezing and that this effect is robust.
We also showed that the relative phase between the superconductors can be used to rotate
the orientation of the uncertainty ellipse in quadrature amplitude space.
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6. Summary and conclusion

In this thesis we investigated photon emission from a superconductor-light emitting diode-
superconductor heterostructure. We modeled the light emitting diode with a direct band
gap model. The bias voltage was included by introducing separate chemical potentials
to the conduction- and valence band electrons. We accounted for the proximity induced
superconductivity by BCS type leads and used Bogoliubov transformation to diagonalize
the non-interacting part of the problem. To simplify the analysis and focus on the salient
new features, we placed our setup in a detector that absorbs all photons. Hence, we didn’t
have to consider induced photon emission and photon absorption. In addition, this also
guaranteed that the system reaches a stationary state.

We began the analysis of the model in section 5.1, by calculating the spontaneous photon
emission, or luminescence Lem, of a normal light emitting diode without superconductivity.
To do that we used the Keldysh formalism, which is suitable to describe nonequilibrium
problems in a consistent diagrammatic way. We calculated the leading and the next to
leading order in the coupling constant and finally summed up an infinite series of diagrams
in the random phase approximation (PRA). We found that the higher order corrections
gave a finite lifetime to the photons and lead to a small frequency shift. The luminescence
that we calculated in RPA is

Lem, (RPA) ≈ 2π|g|2Nph(∆ε)
∑
k

nc,k(1− nv,k), (6.1)

which is similar in structure to the leading order contribution. Instead of the photon
density of states at the semiconductor gap ∆ε, what enters is a smeared density of states.
This is a consequence of the finite photon lifetime. We concluded the section by a toy
calculation where we replaced the two band model by a two level model. The next to
leading order contribution to the luminescence diverged, and we solved this via extensive
resummations of diagrams in RPA. This corrections in turn lead to a finite photon life-time
and hence finite level width. The final result turned out to be qualitatively similar to the
photon emission in the two band model.

In section 5.2 we used Heisenberg’s equations of motion to derive an expression that we call
effective photon Hamiltonian. It is strictly speaking not a Hamiltonian in the true sense
of the word. It is however an expression that allows to calculate the photon operators in
the Heisenberg picture up to second order in the coupling constant. The advantage of the
effective Hamiltonian is that one immediately sees clearly the properties of the emitted
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photons. We found that the effective photon Hamiltonian(
Heff

)
H
≡
∑
q

(wq + |g|e2ηtXq)b
†
H,qbH,q

+
∑
q

(
geηteieVtYq(t)bH,q + g∗eηte−ieVtb†H,qY

†
q (t)

)
+
∑
q

(
g2e2ηte2ieVtZqbH,−qbH,q + (g∗)2e2ηte−2ieVtZ†qb

†
H,qb

†
H,−q

)
, (6.2)

consists of three parts, each with distinct physical meaning. The first part is the free
photon Hamiltonian with a real valued frequency correction that is second order in the
coupling constant. The second part has the structure of a photon pump. Unlike X and
Z the coefficient Y does contain fermionic quasiparticle operators, which is a necessary
evil. In principle it is possible to integrate out fermionic operators completely using the
Keldysh technique, but the nonequilibrium nature leads to terms that contain photon
operators at different times and on different branches of the Keldysh contour. These
terms can not be interpreted in the framework of an effective Hamiltonian and therefore
are non-intuitive. The last term in equation (6.2) couples two photon modes with a rotating
phase. Such an expression suggests, that the system acts as a parametric amplifier, and
hence leads to squeezing of the photon states. The coefficient Z is a number that is
proportional to the squared induced order parameter, and therefore this term is entirely
due to superconductivity. It vanishes in the normal conducting state.

A detailed analysis of the coefficient Z at zero temperature gave us further insight into
the nature of the microscopic processes which lead to the production of photon pairs. We
concluded that the photon pair emission consists of two steps. First a Cooper pair is broken
into two quasiparticles. One of them goes to the valence band and emits a photon. The
system is now in a virtual intermediate state. The remaining quasiparticle follows quickly,
and tunnels to the valence band, where it forms a Cooper pairs with the other quasiparticle.
There are two consequences. First, the emitted photons have a slightly different energy.
The energy of the first photon is slightly smaller than the energy of the second photon.
This might cause dephasing, but we note that the ratio of induced order parameter to the
semiconductor gap is very small, about 10−5. And second, it might explain, why the time
for luminescent electron-hole recombination doubled in the experiment which we discussed
in section 2.1.3. Due to superconductivity two electrons now recombine with two holes in
the same time in which there was only one recombination in the normal conducting case.

Finally, in section 5.3, we used the effective Hamiltonian to calculate the variance in the
quadrature amplitudes A and B. We found that the squeezing is given by

(∆Aq)
2 =

1

4

(
1 + 2Re

〈
bqb−q

〉)
, (∆Bq)

2 =
1

4

(
1− 2Re

〈
bqb−q

〉)
. (6.3)

We gave arguments as to why the squeezing is robust against variation of parameters such
as the electron density of states NF or the size of the induced oder parameter |∆|. It is
given by

Re〈bqb−q〉 =
2|∆| NF cos(ϕ)(

2|∆|/|g|)2 + (ρ|g|)2
. (6.4)

The denominator combines two competing effects, the production of photons and the finite
photon lifetime (2Γ)−1 = (2ρ|g|2)−1, that is due to the coupling to the leads. Hence, as
long as there is induced superconductivity, there exists a critical value of the coupling
constant gmax =

√
2|∆|/ρ where the squeezing is maximal and given by NF /ρ.
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We conclude that a superconductor-light emitting diode-superconductor heterostructure
is indeed a strong candidate for a generic source of squeezed light. Especially the high
efficiency, which we estimate to be around 8%, makes this setup very interesting. As a
next step we propose to study how the system behaves in a resonator and how squeezed
light can be extracted from the whole system for actual applications. The conceptual
framework we laid out in this thesis forms the foundation for this investigations.
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7. Deutsche Zusammenfassung

7.1. Motivation

Wenn zwei gut verstandene Materialien oder Technologien zusammenkommen, entstehen
oft ganz neue Eigenschaften und Phänomene. Eines der bekanntesten Beispiele ist der
elektrische Schwingkreis. Er besteht aus einem Kondensator und einer Spule und besitzt
Eigenschaften, welche keines der beiden Teile einzeln aufweisen kann. Oder, um es mit
Aristoteles zu sagen: ”Das Ganze ist mehr als die Summe seiner Teile.”

Zwei der interessantesten Materialien sind Halbleiter und Supraleiter. Halbleiter sind die
Grundlage unserer modernen Informationstechnologie. Sie sind das Rohmaterial für Tran-
sistoren, Dioden, MOSFETs und vieler andere elementare Bausteine moderner Elektronik.
Computer, Handys, Fernbedienungen und unzählige andere elektrische Geräte sind aus
diesen Bausteinen zusammengesetzt. Einer der grundlegendsten Bausteine ist die Diode.
Sie besteht aus einem n-dotiertem und einem p-dotiertem Halbleiter. Wenn die Band-
struktur im Bereich der Kontaktfläche einen direkten Bandübergang hat, dann kann ein
Elektron das vom Leitungsband der n-dotierten Seite in das Valenzband der p-dotierten
Seite tunnelt, ein Photon aussenden [Rou07]. (Der umgekehrte Prozess ist die Grundlage
von Solarzellen.) Eine Leuchtdiode ist also eine künstliche Kopplung zwischen Elektronen
und Photonen. Im Gegensatz zu Halbleitern sind Supraleiter im Alltag (noch) nicht sehr
präsent. Sie werden jedoch schon heute als Grundlage vieler zukünftiger Technologien
gehandelt. In der Medizin sind sie schon heute unverzichtbarer Bestandteil von Magne-
tresonanztomographen. Supraleiter haben viele faszinierende Eigenschaften, von denen
die widerstandsfreie Leitung nur die bekannteste ist. Sie schirmen Magnetfelder ab, und
zeigen quantenmechanisches Verhalten auf makroskopischen Längenskalen. Der Grundzu-
stand eines Supraleiters wurde 1957 durch Bardeen, Cooper, und Schrieffer beschrieben
[BCS57]. Es ist ein makroskopischer, kohärenter Zustand, der sich über den gesamten
Supraleiter erstreckt. Er besteht aus einer Überlagerung gebundener Elektronenpaare,
die Cooper-Paare genannt werden. Einer der beeindruckendsten Effekte ist, dass diese
Cooper-Paare unter günstigen Umständen aus dem Supraleiter in ein nicht supraleiten-
des Material tunneln können. Dort haben sie eine endliche Lebensdauer, die lang genug
sein kann, sodass das zuvor nicht supraleitende Material ebenfalls supraleitend wird. Man
nennt dieses Phänomen Proximity-Effekt. Diese Materialien besitzen dann eine Mischung
aus ihren ursprünglichen Eigenschaften und den Eigenschaften des Supraleiters.

Die Entdeckung des Proximity-Effekts hat einen wahren Goldrausch auf die Suche von
interessanten Supraleiter-Nicht Supraleiter Heterostrukturen ausgelöst. Die vermutlich
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74 7. Deutsche Zusammenfassung

wichtigste Erfindung in diesem Zusammenhang sind Josephson-Kontakte [Jos62]. Sie
bestehen aus zwei Supraleitern, die durch eine dünne Isolationsschicht voneinander ge-
trennt sind. Josephson-Kontakte sind die Grundlage von hochpräzisen Magnetfeldmess-
geräten, genannt SQUID.

Lange Zeit wurden ausschließlich rein elektrische Systeme untersucht. Vor ungefähr zehn
Jahren kamen dann erste Überlegungen auf, was passieren würde, wenn man Supraleiter
mit Leuchtdioden zusammen bringt. Angenommen die Cooper-Paare können tief genug
in die Leuchtdiode tunneln und dort lange genug überleben, koppeln sie dann an die
ausgesendeten Photonen und falls ja, in welcher Weise? Welche außergewöhnlichen Eigen-
schaften würde das so entstehende Licht haben? Auf den ersten Blick würde man vielleicht
kohärentes Licht erwarten, ähnlich wie das eines Lasers, weil Supraleiter auch durch einen
kohärenten Zustand beschrieben werden. Allerdings ist Laserlicht ein kohärenter Ein-
Photonenzustand während Supraleiter durch einen kohärenten Zwei -Elektronenzustand
beschrieben werden. In der Literatur über Quantenoptik findet sich das Konzept eines ko-
härenten Zwei-Photonenzustandes unter dem Namen ”Squeezed Light” oder gequetschtes
Licht. Das Konzept von gequetschten Zuständen geht auf Schrödinger [Sch26] zurück.
Betrachtet man ein Paar konjugierter Variablen, dann muss das Produkt ihrer Varianzen
der Heisenbergschen Unschärferelation genügen. Ist die Unschärfe nicht gleichmäßig auf
beide Variablen verteilt, so sagt man das System befindet sich bezüglich dieser Variablen in
einem gequetschtem Zustand. In Analogie zu Ort- und Impulsvariable in einem Oszillator
kann man das elektrische Feld von Licht durch ein Paar von konjugierten Variablen, die so-
genannten Quadratur Amplituden, beschreiben. Diese sind nicht eindeutig festgelegt und
können durch einen Winkel parametrisiert werden. Wenn nun bei wenigstens einer Wahl
dieser Quadratur Amplituden die Unschärfe nicht gleichmäßig verteilt ist, dann spricht
man von gequetschtem Licht. Man kann das Ganze veranschaulichen, indem man den Zu-
stand in einem Diagramm aufträgt, in dem ein Paar von Quadratur Amplituden die Achsen
bildet. Bei ungequetschtem Licht stellt die Varianz in diesem zweidimensionalen Raum
einen Kreis dar, bei gequetschtem Licht eine Ellipse. Die erste ausführliche Behandlung
von gequetschtem Licht stammt von Klauder aus dem Jahr 1968 [KS68]. Das große Inter-
esse setzte jedoch erste zwanzig Jahre später ein, als Hochpräzisions Messgeräte, wie zum
Beispiel Interferometer, eine Auflösung von der Größenordnung der Quantenfluktuationen
erreicht hatten. Die Reduktion dieser Fluktuationen wurde damit zum Schlüsselelement,
um noch bessere Auflösungen zu erreichen. Genau diese Reduktion kann mit gequetschtem
Licht erreicht werden. Das Problem ist jedoch, dass es bis zum heutigen Tag unseres Wis-
sens nach keine direkte Quelle für gequetschtes Licht gibt. Die populärste Methode um
gequetschtes Licht herzustellen is die sogenannte spontane parametrische Abwärtskon-
version. Bei dieser wird ein nichtlineares optisches Medium verwendet, um aus einem
gewöhnlichen Laserstrahl gequetschtes Licht zu erzeugen. Leider ist der Wirkungsgrad
der parametrische Abwärtskonversion extrem gering.

In dieser Arbeit schlagen wir vor, dass eine Leuchtdiode mit zwei supraleitenden Kontak-
ten eine Quelle für gequetschtes Licht sein könnte. Eiich Hanamura hat 2002 ein ähn-
liches Setup im Zusammenhang mit einer erhöhten Leuchteffizienz vorgeschlagen [Han02].
Außerdem vermutete er, dass solch ein System eine Quelle verschränkter Photonenpaare
sein könnte. Die erste experimentelle Realisierung einer Leuchtdiode mit einem supralei-
tendem Kontakt [HTA+08] bestätigte die von Hanamura vorhergesagte erhöhte Leucht-
effizienz und zeigte damit, dass die Anwesenheit von Cooper-Paaren sich tatsächlich auf
die Photonenproduktion auswirkt. Dieses Experiment wiederum hat weitere theoretische
Arbeiten motiviert [ASTH09], [RNK10], [HNK09] und [GHN11]. Das von uns untersuchte
Setup haben wir in Abbildung 7.1 skizziert.
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Figure 7.1.: Leuchtdiode mit zwei supraleitenden Kontakten

7.2. Modell

Da wir uns vor Allem für die Photonen interessieren, genügt es die Region in der Mitte
der Leuchtdiode zu beschreiben, denn nur dort entstehen Photonen. Dieser Bereich kann
durch ein effektives zwei Bändermodell mit direktem Bandübergang beschrieben werden.
Den Kopplungsterm haben wir so gewählt, dass ausschließlich Prozesse erlaubt sind, die
mit Photonenemission oder Photonenabsorption einhergehen. Die angelegte Vorspannung
V , die zum Betreiben einer Leuchtdiode notwendig ist, beschreiben wir durch individu-
elle chemische Potentiale für Leitungs- und Valenzelektronen. Die Differenz der Beiden
entspricht der Vorspannung. Durch die supraleitenden Kontakte werden Ordnungsparam-
eter in beide Bänder induziert. Das führt zu Termen, wie sie aus der BCS Theorie bekannt
sind. Als nächstes Diagonalisieren wir den nicht wechselwirkenden Teil des Systems mit
Hilfe von Bogoliubov Transformationen. Zusätzlich versetzen wir unser Setup zu in einen
Photonendetektor der alle Photonen, die die Leuchtdiode aussendet, sofort absorbiert.
Als Folge dessen findet keine induzierte Photonenemission und keine Photonenabsorption
statt. Dadurch vereinfachen sich die Rechnungen und es ist garantiert, dass das System
einen stationären Zustand einnehmen kann.

7.3. Auswertung

Zunächst berechnen wir die spontane Photonenemissionsrate einer normalen Leuchtdiode
störungstheoretisch. Dazu verwenden wir den Keldysh Formalismus, der eine diagram-
matische Beschreibung von nichtgleichgewichts Physik erlaubt. Wir untersuchen die Rel-
evanz von Korrekturen über die führenden Ordnung hinaus. Dazu summieren wir eine
unendliche Folge von Diagrammen in der randome phase approximation (RPA) auf. Wir
finden, dass die Photonen dadurch eine kleine Frequenzverschiebung Σ erfahren und eine
endliche Lebensdauer (2Γ)−1 erhalten. Die Photonenemissionsrate

Lem, (RPA) ≈ 2π|g|2Nph(∆ε)
∑
k

nc,k(1− nv,k) (7.1)

ändert sich im Vergleich zur führenden Ordnung nur darin, dass die ursprüngliche Zus-
tandsdichte der Photonen Nph etwas ausgeschmiert wird. Wir beenden die Untersuchung
der normalen LED mit einer Vergleichsrechnung, in der wir das zwei Bändermodell durch
ein zwei Niveau System ersetzen. In führender Ordnung ist die Photonenemissionsrate
qualitativ wie beim Bändermodell, jedoch treten in der nächst höheren Ordnung Diver-
genzen auf. Wir lösen dieses Problem durch aufwändiges Summieren von Diagrammen in
der randome phase approximation. Schlussendlich finden wir eine effektive Verbreiterung
der Elektron Level, was die Divergenzen aufhebt. Das Endergebnis ist dann wieder dem
des zwei Bändermodells ähnlich.

Im zweiten Teil der Auswertung benutzen wir die Heisenbergschen Bewegungsgleichungen,
um einen Ausdruck herzuleiten, den wir effektiven Photon-Hamiltonian nennen. Streng
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genommen handelt es sich dabei zwar um keinen Hamiltonian, aber er ermöglicht es uns
die Photonenoperatoren im Heisenberg Bild störungstheoretisch bis zur zweiten Ordnung
in der Kopplungskonstante abzuleiten. Der Vorteil dieses effektiven Photon Hamiltonian
liegt darin, dass man an ihm direkt ablesen kann, welche Eigenschaften die Photonen
besitzen. Der effektive Photon-Hamiltonian(

Heff

)
H
≡
∑
q

(wq + |g|e2ηtXq)b
†
H,qbH,q

+
∑
q

(
geηteieVtYq(t)bH,q + g∗eηte−ieVtb†H,qY

†
q (t)

)
+
∑
q

(
g2e2ηte2ieVtZqbH,−qbH,q + (g∗)2e2ηte−2ieVtZ†qb

†
H,qb

†
H,−q

)
, (7.2)

besteht aus drei Teilen. Der erste Teil ist das freie Photonenbad zusammen mit einer
kleinen Frequenzverschiebung. Der Koeffizient Xq ist eine reale Zahl. Der zweite Term
hat die Form einer Photonenpumpe. Im Gegensatz zu Xq und Zq enthält der Koeffizient
Yq noch fermionische Operatoren. Dies ist ein notwendiges Übel. Zwar ist es im Prinzip
möglich die Fermionen - zum Beispiel mit dem Keldysh Pfadintegral Formalismus - kom-
plett auszuintegrieren. Allerdings resultiert daraus ein Ausdruck, bei dem Photon Opera-
toren an unterschiedlichen Orten auf der Keldysh Zeitkontur liegen. Ein solcher Ausdruck
kann nicht mehr als effektiver Photon Hamiltonian interpretiert werden. Der letzte Term
ist der interessanteste. Er existiert ausschließlich wegen der induzierten Supraleitung. Er
koppelt zwei Photon Moden mit einer rotierenden Phase. In der Literatur ist das als
parametrischer Verstärker bekannt, und führt zur Produktion von gequetschtem Licht.

Im dritten Teil der Auswertung benutzen wir den effektiven Hamiltonian um die Varianz
in den Quadratur Amplituden, die wir A und B nennen, herzuleiten. Wir finden

(∆Aq)
2 =

1

4

(
1 + 2Re

〈
bqb−q

〉)
, (∆Bq)

2 =
1

4

(
1− 2Re

〈
bqb−q

〉)
. (7.3)

Das bedeutet, dass das ausgesendete Licht gequetscht ist, falls Re
〈
bqb−q

〉
6= 0. Unsere

Rechnung ergibt, dass dies der Fall ist, solange die induzierte Supraleitung nicht ver-
schwindet |∆| 6= 0. Die Stärke der Quetschung ist durch

Re〈bqb−q〉 =
2|∆| NF cos(ϕ)(

2|∆|/|g|)2 + (ρ|g|)2
(7.4)

gegeben. Im Nenner konkurrieren zwei Prozesse, die beide von der Größe der Kop-
plungskonstante g abhängen. Zum einen die Produktion von Photonenpaaren und zum
anderen die endliche Lebensdauer der Photonen. Als Folge dessen gibt es einen Wert der
Kopplungskonstante gmax =

√
2|∆|/ρ bei der das emittierte Licht maximal, mit NF /ρ,

gequetscht wird.

7.4. Schlussfolgerungen und Ausblick

Zusammenfassend schlussfolgern wir, dass eine Leuchtdiode mit supraleitenden Kontak-
ten ein heißer Kandidat für eine Quelle gequetschten Lichtes ist. Insbesondere die hohe
Effizienz, die wir im Bereich von bis zu 8% sehen, macht diesen Vorschlag besonders in-
teressant. Als nächsten Schritt möchten wir untersuchen, wie sich das Setup in einen
Resonator verhält und wie gequetschtes Licht aus diesem Resonator extrahiert werden
kann. Die in dieser Arbeit vorgestellten theoretischen Überlegungen und Techniken bilden
die Grundlage für diese weiteren Studien.
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Appendix

A. Formalism

A.1. Nambu Formalism

The BCS ground state state mixes electrons and holes. Hence, a natural way to reformulate
the BCS theory is the so called particle-hole or Nambu formalism [Alt10] p271f and [BF04]
p335f. We follow the convention in this books and define

Ψ̂k ≡

(
ck↑
c†−k↓

)
, Ψ̂†k ≡

(
c†k↑ c−k↓

)
. (A.1)

In this formalism the Hamiltonian is a two by two matrix

HBCS − µN =
∑
k

Ψ̂†k

(
ξk −∆k

−∆∗k −ξ−k

)
Ψk +

∑
k

ξk. (A.2)

In the following we will ignore the additive constant
∑

k ξk. In addition we assume that
the dispersion relation is isotropic in momentum space ξk = ξ|k| = ξk. The generic way
to introduce superconductivity to systems which are well understood in the non supercon-
ducting case is therefore to introduce a matrix structure for the Green’s functions [BF04]
p336 and [Ram07] p226f. If this formalism is applied carefully the structure of the non
superconducting equations carries over to the superconducting case. We have to take great
care when doing this step since unlike scalars matrices do not commute and hence in all
previous derivations no commutations must have occurred. In addition, anomalous ex-
pectation values can become finite. Specifically we mean expectation values that contain
a product of two annihilation or creation operators of the same species. We choose the
following convention for the matrix structure of the Nambu Green’s functions:

ĜT
k (t, t′) ≡ −iτ̂3〈T Ψ̂k(t)Ψ̂†k(t′)〉 (A.3)

= −iτ̂3

(
〈T ĉk↑(t)c†k↑(t

′)〉 〈T ĉk↑(t)c−k↓(t′)〉
〈T ĉ†−k↓(t)c

†
k↑(t

′)〉 〈T ĉ†−k↓(t)c−k↓(t
′)〉

)

=

(
GTk (k, t, t′) F Tk (k, t, t′)

−F̃ Tk (k, t, t′) −G̃Tk (k, t, t′)

)
The two anomalous Green’s functions F T and F̃ T are often called Gorkov Green’s func-
tions. The appear due to superconductivity and vanish in a normal conductor. Next we
derive the explicit expressions for the free Green’s functions using the equations of motion
technique. First we calculate a set of commutators

[c†k′σ′ck′σ′ , ckσ] = −δkk′δσσ′ckσ [c†k′σ′ck′σ′ , c
†
kσ] = +δkk′δσσ′c

†
kσ

[c†k′↑c
†
−k′↓, ck↑] = −δkk′c†−k↓ [c†k′↑c

†
−k′↓, c−k↓] = +δkk′c

†
k↑

[c−k′↓ck′↑, c
†
k↑] = +δkk′c−k↓ [c−k′↓ck′↑, c

†
−k↓] = −δkk′ck↑, (A.4)
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and note that all other commutators are either not needed or vanish. By taking the time
derivative with respect to one of the time variables the equations we find the equations of
motion which are coupled equations that can easily be decoupled and solved in the case
of a homogeneous state:

∂tg
T
k (t) = −iδ(t)− iξkg

T
k (t) + i∆kg̃

T
k (t),

∂tg̃
T
k (t) = +iξkg̃

T
k (t) + i∆∗kf

T
k (t). (A.5)

We find the solution of these coupled differential equations systematically by going to
frequency space and solving the resulting algebraic system of equations:

gT
k (w) =

w + ξk
w2 − (ξ2

k + |∆k|2)
,

f̃T
k (w) =

−∆∗k
w2 − (ξ2

k + |∆k|2)
. (A.6)

An analogous calculation leads to the other two Green’s functions that appear in the
Nambu formalism. See for example [BF04] p336. These equations are lacking the boundary
conditions that are usually described by shifting the poles of the Green’s functions slightly
into the upper or lower imaginary plane. However, there is a straight forward way to
fix this. From the Lehmann representation we can see that the time-ordered Green’s
function can be composed of the retarded and the advanced Green’s function GT(w) =
GA(w)θ(−w) +GR(w)θ(w). The poles of the advanced Green’s function are by definition
all in the upper half of the complex plane and the poles of the retarded in the lower
half plane. Summarizing these results and noting that in a finite gap superconductor

Ek =
√
ξ2
k + |∆k|2 > 0, we find

ĜT
k (, w) =

1

(w − Ek + i0+)(w + Ek − i0+)

(
w + ξk −∆k

∆∗k −w + ξk

)
. (A.7)

([GZ99] p25) the following relations hold:

ĜR(1, 1′) = θ(t− t′)
(
Ĝ>(1, 1′)− Ĝ<(1, 1′)

)
,

ĜA(1, 1′) = −θ(t′ − t)
(
Ĝ>(1, 1′)− Ĝ<(1, 1′)

)
,

ĜK(1, 1′) = Ĝ>(1, 1′) + Ĝ<(1, 1′). (A.8)

To sharpen the physical understanding is worth mentioning the following representation:

GT
k (w) =

|uk|2

w − Ek + i0+
+

|vk|2

w + Ek − i0+
. (A.9)

Here uk and vk are the parameters of the BCS ground state giving a direct connection to
physical quantities [Zag98] p174. All results generalize to the finite temperature case. The
derivation is not given here but straightforward. In fact it is in some way easier than the
zero temperature case, since it avoids the poles on the real axis. To make the connection
between the Green’s function derived in the finite temperature Matsubara formalism and
the real time Green’s function the concept of analytic continuation is applied. This leads
to the retarded and advanced real time Green’s functions. In a final step we find the
time-ordered Green’s function. Further details can for example be found in [Zag98]. The
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Green’s functions read

GT
k (w, T ) = P

( |uk|2
w − Ek

+
|vk|2

w + Ek

)
− iπ

(
1− 2nF (Ek, T )

)(
|uk|2δ(w − Ek)− |vk|2δ(w + Ek)

)
= GT

k (w, T = 0) + 2πinF (Ek, T )
(
|uk|2δ(w − Ek)− |vk|2δ(w + Ek)

)
,

F̃T
k (w, T ) = F̃T

k (w, T = 0)

−
∆∗k(T )

w + ξk
2πinF (Ek, T )

(
|uk|2δ(w − Ek)− |vk|2δ(w + Ek)

)
. (A.10)

The derivation of the retarded, advanced, lesser and greater Green’s functions for super-
conductors in equilibrium is straightforward and follows directly from the expression of
the time ordered Green’s function, by shifting both poles to the lower complex half-space.
We find

GRk (w) =
|uk|2

w − Ek + i0+
+

|vk|2

w + Ek + i0+
,

GAk (w) =
|uk|2

w − Ek − i0+
+

|vk|2

w + Ek − i0+
. (A.11)

From these three Green’s functions we obtain the lesser and greater Green’s function:

G<k (w) = GT
k (w)−GRk (w) = 2πi |vk|2δ(w + Ek),

G>k (w) = GT
k (w)−GAk (w) = −2πi |uk|2δ(w − Ek). (A.12)

By the same procedure we can derive the anomalous Green’s functions:

F̃T
k (w) =

−2Ekukv
∗
k

(w − Ek + i0+)(w + Ek − i0+)
,

F̃Rk (w) =
−2Ekukv

∗
k

(w − Ek + i0+)(w + Ek + i0+)
,

F̃Ak (w) =
−2Ekukv

∗
k

(w − Ek − i0+)(w + Ek − i0+)
,

F̃<k (w) = 2πiukv
∗
kδ(w − Ek),

F̃>k (w) = 2πiukv
∗
kδ(w + Ek). (A.13)

A.2. Keldysh-Schwinger formalism

Neither the T = 0 nor the Matsubara formalism can describe non-equilibrium physics. To
see that we consider an external potential, which depends on time. Such a perturbation
pumps energy into or sucks energy out of the system. Therefore the state at t → ∞ is
generally qualitatively different from the initial state, regardless whether the perturbation
is turned off after a while or not. Linear response theory is an option to describe such
non-equilibrium physics, but only in linear order of perturbation theory [Zag98]. In 1965
Keldysh introduced what he called ”A graph technique analogous to the usual Feynman
technique in field theory [...] for calculating Green’s functions for particles in a statistical
system which under the action of an external field deviates to any arbitrary extent from
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the state of thermodynamic equilibrium.” [Kel65]. With this technique we can evaluate
arbitrary non-equilibrium situations at both zero and finite temperature. The power of
the Keldysh technique is that it is topological equivalent to the usual zero temperature
and finite temperature equilibrium formalisms. This means that the structure of all equa-
tions and therefore the Feynman diagrams are equivalent. The core idea of the Keldysh
formalism is to promote all integrations over the time axis to integrations over a time
contour which starts a certain point in time t0 where the system is noninteracting and in
equilibrium. Then it goes sufficiently into the future and then returns to the very same
point it started from. By sufficiently we mean past all times of interest. If initial condi-
tions are not important the starting point can be sent to the infinite past. Assuming a

Figure A.1.: Keldysh contour slightly altered from [KL09]

general Hamiltonian H = H+Vex = H0 +Hint +Vex with interaction Hint and an external
perturbation Vex, the equilibrium statistical operator ρ at the initial time t0 is given by

ρ(t0) =
e−βH0

Tr(e−βH0)
. (A.14)

It’s time evolution can be described by a unitary operator where T denotes the time
ordering operator:

ρ(t > t0) = U(t, t0)ρ(t0)U †(t, t0), U(t, t′) = T exp

(
−i

∫ t

t′
dt̃H(t̃)

)
. (A.15)

In the following we denote the Heisenberg picture with a subindex H and the interaction
picture - which is the Heisenberg picture with respect to H0 by subindex H0. Further we
choose the point where Heisenberg, Schrödinger and the interaction picture coincide to be
t0. Now we can express average values of operators by

〈A〉(t) = Tr(ρ(t)AS) = Tr(ρ(t0)AH(t)). (A.16)

It can be shown that an analogous expression of the conversion between Heisenberg and
interaction picture as in the equilibrium situation is given by

OH(t) = TC

[
exp

(
−i

∫
C

ds (Hint + Vex)H0(s)

)
OH0(t)

]
, (A.17)

where TC denote time order along the contour. For a proof of the relation shown above
we refer for example to [Ram07]. The Green’s function generalizes to

GC(1, 1′) = −i〈TC(ψH(1)ψ†H(1′))〉 = −i
Tr
(
e−βH TC(ψH(1)ψ†H(1′))

)
Tr(e−βH)

= −i
Tr
(
e−βHTC

(
exp

[
−i
∫
C ds (Hint + Vex)H0(s)

]
(ψH0(1)ψ†H0

(1′))
))

Tr(e−βH)
, (A.18)

where 1 is a set of quantum numbers and time t. From this expression of the Green’s
function the topological equivalence to the equilibrium formalism is obvious. If we are not
interested in transient phenomena or physics on times scales as short as the collision time,
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which are due to interaction, we can sent t0 to minus infinity and the statistical operator
reduces to the free, unperturbed version. For a detailed discussion see for example [Ram07]
page 91ff. The Green’s function then simplifies to

GC(1, 1′) = −iTr
(
e−βH0TC

(
exp

[
−i

∫
C

ds (Hint + Vex)H0(s)

]
(ψH0(1)ψ†H0

(1′))
))

. (A.19)

In this expression all the weighting factors are quadratic in the fields. Now we can employ
straightforward perturbation theory and use Wick’s theorem to break strings of opera-
tors down to statistical averages over pairs of operators, averaged over the free system
(Gaussian products). This leads to Dyson equations that are structurally equivalent to
the equilibrium case. However, the two Dyson equations

G = G0 +G0 ⊗Π⊗G,
G = G0 +G⊗Π⊗G0, (A.20)

which are equivalent in the equilibrium case aren’t equivalent in the non-equilibrium case.
From their difference we can derive the quantum kinetic equation. In principle this is all
that we need to describe non-equilibrium systems. However, often it is desirable to use real
time instead of complex time to allow for physical insight. We can achieve this by splitting
the contour integral into a forward and a backward time integral. Since the operators can
lie either on the forward or on the backward contour we have to introduce so called Keldysh
indices that label the time arguments. The index 1 stands for operators on the forward
part of the time contour and 2 for operators on the backward part of the contour. The
natural way to write Keldysh Green’s functions in the real time formalism is therefore a
two by two matrix structure. Hence, summations over Keldysh indices naturally translates
into matrix multiplications. The minus signs in the second row of the Green’s function
matrix

GC(s, s′)→ G(t, t′) ≡
(

G11(t, t′) G12(t, t′)
−G21(t, t′) −G22(t, t′)

)
(A.21)

account for the minus sign associated with the backwards contour. With this convention
the structure of the Dyson equations

G = G0 +G0 ΠG,

G = G0 +GΠG0, (A.22)

remains unaltered. Note that each matrix multiplication implies a convolution over the
time and space variables. In the matrix structure Gij the line index i refers to the first
and the column index j to the second time argument. The usual names related with these
matrix elements are time-ordered, anti-time-ordered, lesser and greater Green’s function

G11(1, 1′) = GT(1, 1′) = −i〈Tψ(1)ψ†(1′)〉,
G21(1, 1′) = G>(1, 1′) = −i〈ψ(1)ψ†(1′)〉,
G12(1, 1′) = G<(1, 1′) = ±i〈ψ†(1′)ψ(1)〉,

G22(1, 1′) = GT̃(1, 1′) = −i〈T̃ψ(1)ψ†(1′)〉. (A.23)

Here, the upper signs are for fermions and the lower signs for bosons. Since matrices do in
general not commute, it is clear the the two Dyson equations are in general not equivalent.
Often it is convenient to rotate the above representation in Keldysh space by π/4, such
that it can be represented by the more intuitive retarded, advanced and one new, the so
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called Keldysh Green’s function GK . This representation is sometimes called the RAK or
real representation

GRAK ≡ UGU †, GRAK =

(
GR GK

0 GA

)
, U ≡ 1√

2

(
1 −1
1 1

)
. (A.24)

Since the retarded and the advanced Green’s function do not contain any information
about the statistics, it follows that all information related to non-equilibrium must be
encoded in the Keldysh Green’s function

GR(1, 2) = GT(1, 2)−G<(1, 2) = G>(1, 2)−GT̃(1, 2),

GA(1, 2) = GT(1, 2)−G>(1, 2) = G<(1, 2)−GT̃(1, 2),

GK(1, 2) = G<(1, 2) +G>(1, 2) = GT(1, 2) +GT̃(1, 2). (A.25)

Here R stands for retarded, A for advanced and K for Keldysh. This Keldysh Green’s
function contains all information about the non equilibrium. In the rotated Keldysh space
the Dyson equations has the same structure:

GRAK = gRAKΠRAKGRAK,

GRAK = GRAKΠRAKgRAK. (A.26)

As before each matrix multiplication implies a convolution over the time and space vari-
ables. A nice property about the RAK representation is that all matrices are in triangular
shape:

ΠRAK =

(
ΠR ΠK

0 ΠA

)
. (A.27)

This is inherited by the self energy matrix. Another advantage is the particular simple
form of the Dyson equations for the retarded and advanced Green’s function

GR = GR0 +GR0 ΠRGR,

GA = GA0 +GA0 ΠAGA,

GK = GK0 +GR0 ΠRGK +GR0 ΠKGA +GK0 ΠAGA. (A.28)

In the case of a stationary homogeneous system which can be described by a non-equilibrium
distribution function, the free Green’s functions are given by the following equations.
The common abbreviation to denote the infinitesimal imaginary part of the propagators
is 0+ ≡ limη→0+ η. The delta distributions have also to be interpreted in this fashion
πδ(x) = limη→0+ η/(x2 + η2). As a simplification to the eye we denote the free Green’s
functions by lower-case letters gk. Below we show a collection:

gT
k (w) =

1

w − (εk − µ) + i0+
± 2πinkδ(w − (εk − µ)),

g<k (w) = ±2πinkδ(w − (εk − µ)),

g>k (w) = −2πi(1∓ nk)δ(w − (εk − µ)),

gT̃
k (w) = − 1

w − (εk − µ)− i0+
± 2πinkδ(w − (εk − µ)),

gRk (w) =
1

w − (εk − µ) + i0+
,

gAk (w) =
1

w − (εk − µ)− i0+
,

gKk (w) = −2πi(1∓ 2nk)δ(w − (εk − µ)). (A.29)
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A.3. Nambu and Keldysh formalisms combined

The Nambu and the Keldysh formalism can be combined to describe non-equilibrium
superconducting systems. This is done by a tensorial product between the two matrix
spaces. Namely each component of the Keldysh space becomes a two by two matrix. The
total dimension of the Green’s function is therefore 4x4. We choose the book by Jorgen
Rammer [Ram07] p225-230 to provide the formal basis. In all equations convolution that
goes along with matrix multiplications is implicitly assumed:

Ĝc(1, 1
′) = −iτ̂3〈Tc Ψ̂(1)Ψ̂†(1′)〉,

ĜT(1, 1′) = −iτ̂3〈T Ψ̂(1)Ψ̂†(1′)〉,
Ĝ<(1, 1′) = +iτ̂3〈Ψ̂†(1′)Ψ̂(1)〉,
Ĝ>(1, 1′) = −iτ̂3〈Ψ̂(1)Ψ̂†(1′)〉,

ĜT̃(1, 1′) = −iτ̂3〈T̃ Ψ̂(1)Ψ̂†(1′)〉,

ĜR(1, 1′) = −iθ(t− t′)τ̂3

〈{
Ψ̂(1), Ψ̂†(1′)

}〉
,

ĜA(1, 1′) = +iθ(t′ − t)τ̂3

〈{
Ψ̂(1), Ψ̂†(1′)

}〉
,

ĜK(1, 1′) = −iτ̂3

〈[
Ψ̂(1), Ψ̂†(1′)

]〉
. (A.30)

Here τ̂3 denotes the third Pauli matrix acting on the Nambu space. Introducing the Pauli
matrix leads to Dyson equations with the same structure as in the non-superconducting
case:

(Ĝ0
−1
Ĝ)(1, 1′) = δ(1− 1′) + (Σ̂ Ĝ)(1, 1′),

(Ĝ Ĝ0
−1

)(1, 1′) = δ(1− 1′) + (Σ̂ Ĝ)(1, 1′),

(G−1
0 GR/A)(1, 1′) = δ(1− 1′) + (ΣR/AGR/A)(1, 1′),

(G−1
0 GK)(1, 1′) = (ΣRGK)(1, 1′) + (ΣK GA)(1, 1′). (A.31)

The pairing interaction leads to off-diagonal elements in the Nambu space:

Ĥ0 =

(
H0 0
0 H∗0

)
, Σ̂BCS =

(
0 −∆

∆∗ 0

)
. (A.32)

In a homogeneous system which is in a stationary state the derivation of the free Green’s
functions is straightforward. First we calculate the equations of motion for the Bogoliubon
creation and destruction operators γ† and γ:

γ̇k↑(t) = i[HBCS, γk↑](t) = −iEk(γk↑)S ,

γ̇†k↑(t) = i[HBCS, γ
†
k↑](t) = iEk(γ†k↑)S ,

γk↑(t) = e−iEkt(γk↑)S ,

γ†k↑(t) = eiEkt(γ†k↑)S . (A.33)

The time where the Heisenberg and the Schrödinger picture coincide shall be t = 0. With
this and the Bogoliubov transformation we obtain all the free Green’s functions by equation
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of motion technique:

igT
k↑↑(t) = 〈Tck↑(t)c†k↑(0)〉,

= 〈T(ukγk↑(t)− vkγ†−k↓(t))(u
∗
kγ
†
k↑(0)− v∗kγ−k↓(0))〉,

= θ(t)
(
|uk|2e−iEkt(1− nk) + |vk|2eiEktn−k

)
− θ(−t)

(
|uk|2e−iEktnk + |vk|2eiEkt(1− n−k)

)

gT
k↑↑(w) = |uk|2

{
nk↑

w − Ek − i0+
+

1− nk↑
w − Ek + i0+

}

+ |vk|2
{

n−k↓
w + Ek + i0+

+
1− n−k↓

w + Ek − i0+

}
,

g̃T
k↓↓(w) = |uk|2

{
n−k↓

w + Ek + i0+
+

1− n−k↓
w + Ek − i0+

}

+ |vk|2
{

nk↑
w − Ek − i0+

+
1− nk↑

w − Ek + i0+

}
. (A.34)

Form this two equations we see that the particle and hole Green’s functions only differ by
an interchanging of |uk|2 and |vk|2. By the same method we obtain the retarded and the
advanced Green’s function:

gRk↑↑(w) =
|uk|2

w − Ek + i0+
+

|vk|2

w + Ek + i0+
,

gAk↑↑(w) =
|uk|2

w − Ek − i0+
+

|vk|2

w + Ek − i0+
. (A.35)

There are several ways to derive the lesser and greater Green’s functions. One is analogous
to the calculations shown above. The most elegant way is probably to extract them directly
from the time ordered Green’s function by spectral decomposition:

GT
k (w) =

∫ ∞
−∞

dw

2πi

{
G<k (w′)

w − w′ − i0+
−

G>k (w′)

w − w′ + i0+

}
. (A.36)

This idea is from [GZ99] p86f.. Comparison gives the desired functions:

g<k (w) = +2πi
(
|uk|2nkδ(w − Ek),

+ |vk|2(1− n−k)δ(w + Ek)
)
,

g>k (w) = −2πi
(
|uk|2(1− nk)δ(w − Ek) + |vk|2n−kδ(w + Ek)

)
. (A.37)

To conclude, we state the anomalous Green’s functions:

fT
k (w) = ukvk

{
(1− nk)

w − Ek + i0+
− (n−k)

w + Ek + i0+
+

nk
w − Ek − i0+

− (1− n−k)

w + Ek − i0+

}
,

f̃T
k (w) = u∗kv

∗
k

{
(1− nk)

w − Ek + i0+
− (n−k)

w + Ek + i0+
+

nk
w − Ek − i0+

− (1− n−k)

w + Ek − i0+

}
,
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fRk (w) = ukvk

{
1

w − Ek + i0+
− 1

w + Ek + i0+

}
,

f̃Rk (w) = u∗kv
∗
k

{
1

w − Ek + i0+
− 1

w + Ek + i0+

}
,

fAk (w) = ukvk

{
1

w − Ek − i0+
− 1

w + Ek − i0+

}
,

f̃Ak (w) = u∗kv
∗
k

{
1

w − Ek − i0+
− 1

w + Ek − i0+

}
,

f<k (w) = 2πiukvk

{
nkδ(w − Ek)− (1− nk)δ(w + Ek)

}
,

f̃<k (w) = 2πiu∗kv
∗
k

{
nkδ(w − Ek)− (1− n−k)δ(w + Ek)

}
,

f>k (w) = −2πiukvk

{
(1− nk)δ(w − Ek)− n−kδ(w + Ek)

}
,

f̃>k (w) = −2πiu∗kv
∗
k

{
(1− nk)δ(w − Ek)− n−kδ(w + Ek)

}
. (A.38)
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B. Luminescence

B.1. Dyson Equations

The general Dyson equations [Mah90] are

G< =
(

1 +GRΠR
)
g<
(

1 + ΠAGA
)

+GRΠ<GA,

G> =
(

1 +GRΠR
)
g>
(

1 + ΠAGA
)

+GRΠ>GA,

GA = gA
(

1 + ΠAGA
)
,

GR = gR
(

1 + ΠRGR
)
. (B.1)

In the case of stationarity and the assumptions that the system could be described by a
set of distribution functions at some point in the past, the Dyson equations simplify to

GA =
1

(gA)−1 −ΠA
,

GR =
1

(gR)−1 −ΠR
,

G< = g< +GRΠ<GA,

G> = g> +GRΠ>GA. (B.2)

B.2. Photon propagator

In this subsection we derive the photon propagator in detail. In a normal light emitting
diode only processes with an equal number of fermion creation and destruction operators
contribute. They are proportional to |g|2n. In a superconductor-normal conductor mixed
phase also contributions proportional to g2m|g|2n would contribute but are not discussed
here. We also exploit that all diagrams that are not fully connected chancel in the Keldysh
formalism. We start with the very general perturbative expansion of the photon propagator

Dqq′(t1, t2) ≡ −i
∑
n=0

(−i)n

n!

∫
C

ds1...ds1

〈
T̂cH

int
H0

(s1)...H int
H0

(sn)bq(t1)b†q′(t2)

〉
. (B.3)

The leading contribution in the coupling constant is

D
(1)
qq′ (t1, t2) =

i

2

∫
C

ds1ds2

〈
T̂cH

int
H0

(s1)H int
H0

(s2)bq(t1)b†q′(t2)

〉

=
i

2

∫
C

ds1ds2

〈
T̂c
∑
k1,q1

(
gc†k1

(s1)vk1−q1(s1)bq1(s1) + g∗v†k1−q1(s1)ck1(s1)b†q1(s1)
)
×

×
∑
k2,q2

(
gc†k2

(s2)vk2−q2(s2)bq2(s2) + g∗v†k2−q2(s2)ck2(s2)b†q2(s2)
)
bq(t1)b†q′(t2)

〉
.

Using Wick’s theorem of contraction we find

D
(1)
qq′ (t1, t2) = −i|g|2

∑
k

∫
C

ds1,2 dq(t1, s1)gck(s1, s2)gvk−q(s2, s1)dq(s2, t2)δqq′ . (B.4)
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Next we go to real time, assume stationarity, Fourier transform and find

DR,(1)
q (t, t′) =

∫
dt1,2 d

R
q (t, t1)ΠR,(1)

q (t1, t2)dRq (t2, t
′),

DR,(1)
q (w) = dRq (w)ΠR,(1)

q (w)dRq (w)

= |g|2
( 1

w − wq + i0+

)2∑
k

nv,k−q − nc,k
w + εv,k−q − εc,k + i0+

. (B.5)

The randome phase corrected photon propagator is just one step away. We preform the
geometric row and find

DR
q (w) =

1

w − wq + i0+ − |g|2
∑

k
nv,k−q−nc,k

w−εc,k+εv,k−q+2i0+

≡ 1

w − wq − ΣR
ph − iΓRph

. (B.6)

In order to derive the luminescence we need the imaginary part

Im
(
DR
q (w)

)
=

ΓRph

(w − wq − ΣR
ph)2 + (ΓRph)2

, (B.7)

where ΓRph is

ΓRph(w) = Im
(∑

k

nv,k − nc,k
w − εc,k + εv,k + 2i0+

)
= −π

∫
dεNF (ε)

(
nF (εv,0 − ε− µv)− nF (εc,0 + ε− µc)

)
δ(w −∆ε− 2ε). (B.8)

B.3. Photon self energy

We find the first order photon self energy by comparing the first order photon propagator
with the the Dyson equation:

D(1)
q (t1, t2) = −i|g|2

∑
k1

∫
C

ds1,2 dq(t1, s1)gck1
(s1, s2)gvk1−q(s2, s1)dq(s2, t2)

≡
∫
C

ds1ds2 dq(t1, s1)Π
(1)
ph,q(s1, s2)dq(s2, t2). (B.9)

The leading order self energy is

Π
(1)
ph,q(s1, s2) = −i|g|2

∑
k

gck(s1, s2)gvk−q(s2, s1) = . (B.10)

The second order photon self energy can be extracted from the second order photon prop-
agator and so forth. Next we going to real time, assume stationarity

Π
(1)
ph,q,ab(t1, t2) = −i|g|2

∑
k

gck,ab(t1 − t2)gvk−q,ba(t2 − t1) (B.11)

and Fourier transform

Π
(1)
ph,q,ab(w) = −i|g|2

∑
k

∫
dw1

2π
gck,ab(w1)gvk−q,ba(w1 − w). (B.12)
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What we are really interested in are the explicit expressions for time ordered, lesser and
retarded self energy:

Π
(1)
ph,q,11(w) = −i|g|2

∑
k

∫
dw1

2π
gck,11(w1)gvk−q,11(w1 − w)

= −i|g|2
∑
k

∫
dw1

2π

(
1

w1 − εc,k + i0+
+

nc,k
w1 − εc,k − i0+

+
−nc,k

w1 − εc,k + i0+

)
×

×

(
1

w1 − w − εv,k−q + i0+
+

nv,k−q
w1 − w − εv,k−q − i0+

+
−nv,k−q

w1 − w − εv,k−q + i0+

)

= −|g|2
∑
k

(
nv,k−q(1− nc,k)

w − εc,k + εv,k−q + 2i0+
+

−nc,k(1− nv,k−q)
w − εc,k + εv,k−q − 2i0+

)
,

Π
(1)
ph,q,12(w) = −i|g|2

∑
k

∫
dw1

2π
gck,12(w1)gvk−q,21(w1 − w)

= −i|g|2
∑
k

∫
dw1

2π

(
2πinc,kδ(w1 − εc,k)

)(
− 2πi(1− nv,k−q)δ(w1 − w − εv,k−q)

)
= −2πi|g|2

∑
k

nc,k(1− nv,k−q)δ(w − εc,k + εv,k−q),

Π
R(1)
ph,q (w) = Π

(1)
ph,q,11(w)−Π

(1)
ph,q,12(w)

= −|g|2
∑
k

(
nv,k−q(1− nc,k)

εc,k − w − εv,k−q − i0+
+

−nc,k(1− nv,k−q)
εc,k − w − εv,k−q + i0+

)

+ 2i|g|2
∑
k

nc,k(1− nv,k−q)
0+

(w + εv,k−q − εc,k)2 + (0+)2

= |g|2
∑
k

nv,k−q − nc,k
(w + εv,k−q − εc,k + i0+)

. (B.13)

We can even show that the lesser self energy has no higher order corrections to the lesser
photon self energy due to our constraint D<

q = 0 of no photons in the system. All we use
other than that are the simplified Dyson equations (B.2) and get

Π<
q (w) = −i|g|2

∑
k

∫
dw1

2π
G<c,k(w1)G>v,k−q(w1 − w),

G<c,k(w) = GRc,k(w)Π<
c,k(w)GAc,k(w),

G>v,k(w) = GRv,k(w)Π>
v,k(w)GAv,k(w),

Π<
c,k(w) = i|g|2

∑
q

∫
dw1

2π
G<v,k−q(w1)D<

q (w − w1) = 0,

Π>
v,k(w) = i|g|2

∑
q

∫
dw1

2π
G>c,k+q(w1)D<

q (w − w1) = 0,

⇒ Π<
q (w) = −i|g|2

∑
k

∫
dw1

2π
g<c,k(w1)g>v,k−q(w1 − w) = Π

<(1)
ph,q (w) (B.14)
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B.4. Electron propagators

The derivation of the electron operators follows the very same procedure as the photon
propagator. Therefore, we only state the results:

G
(1)
c,k(t1, t2) = i|g|2

∑
q

∫
C

ds1ds2 gc,k(t1, s1)gv,k−q(s1, s2)dq(s1, s2)gc,k(s2, t2),

G(1)
v,p(t1, t2) = i|g|2

∑
q

∫
C

ds1ds2 gv,p(t1, s1)gc,p+q(s1, s2)dq(s2, s1)gv,p(s2, t2). (B.15)
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C. Special case: Two level system

C.1. Luminescence

The detailed steps to arrive at the final result are:

Lem,RPA+ = 2|g|2 nc(1− nv)
∫ Λ

0
dwqNph(wq)

|g|2
Γ (1

2 − nv + nc)

(εc − εv − wq)2 +
(
|g|2
Γ (1

2 − nv + nc)
)2 ,

= 2|g|2 nc(1− nv)
1

∆ε

∫ Λ

0
dwqNph(wq)

1
2
−nv+nc

π(1−nv) ∆εNph(∆ε)(
1− wq

∆ε

)2
+
( 1

2
−nv+nc

π(1−nv) ∆εNph(∆ε)

)2 ,

≈ 2|g|2 nc(1− nv)Nph(∆ε)

∫ Λ
∆ε

0
dx

1
2
−nv+nc

π(1−nv) ∆εNph(∆ε)

(1− x)2 +
( 1

2
−nv+nc

π(1−nv) ∆εNph(∆ε)

)2 ,

= 2π|g|2 nc(1− nv)Nph(∆ε)

[
1

2
+

1

π
arctan

(
π∆εNph(∆ε)

1− nv
1− nv + nc − 1

2

)]
. (C.1)

C.2. Photon propagator

In RPA using the already RPA resumed photon self energy we find

DRPA+(w) =
1

(dR)−1 −ΠRPA+
ph

,

=
1

w − wq − |g|2
[

1
w+ε̃v−ε̃c+i(Γc+Γv) + −nc

w+ε̃v−εc+iΓv
+ −(1−nv)

w+εv−ε̃c+iΓc

] ,
≈ 1

w − wq − |g|2
[

1
wq+εv−εc+2iΓ + −1+nv−nc

wq+εv−εc+iΓ

] . (C.2)

C.3. Photon self energy

The RPA resumed retarded photon self energy that is calculated using RPA resumed
electron propagators reads:

ΠR,RPA+
ph (w) = −i|g|2

∫
dw1

2π

[
GT,RPA
c (w1)GT,RPA

v (w1 − w)

−G<,RPA
c (w1)G>,RPA

v (w1 − w)

]
. (C.3)

In order to evaluate this expression we use general relations between the various types of
Green’s functions

GTc G
T
v −G<c G>v = (GRc +G<c )(GAv +G>v )−G<c G>v

= GRc G
A
v +G<c G

A
v +GRc G

>
v

= GRc G
A
v + g<c G

A
v +GRc g

>
v (C.4)

to rewrite equation (C.3). The nice feature of this new form is that the lesser conduction
electron and the greater valence electron Green’s function do not acquire higher order
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corrections. The physical reason is the absence of photons. Hence, we find

ΠR,RPA+
ph (w) = −i|g|2

∫
dw1

2π

[
GR,RPA
c (w1)GA,RPA

v (w1 − w)

+ g<c (w1)GA,RPA
v (w1 − w) +GR,RPA

c (w1)g>v (w1 − w)

]
. (C.5)

For clarity we evaluate the individual contributions step by step:∫
dw1

2π
GR,RPA
c (w1)GA,RPA

v (w1 − w) =

∫
dw1

2π

1

w1 − ε̃c + iΓc

1

w1 − w − ε̃v − iΓv

=
i

w + ε̃v − ε̃c + i(Γc + Γv)
,

∫
dw1

2π
g<c (w1)GA,RPA

v (w1 − w) =

∫
dw1

2π
2πincδ(w1 − εc)

1

w1 − w − ε̃v − iΓv

=
−inc

w + ε̃v − εc + iΓv
,

∫
dw1

2π
GR,RPA
c (w1)g>v (w1 − w) =

∫
dw1

2π

1

w1 − ε̃c + iΓc
(−2πi)(1− nv)δ(w1 − w − εv)

=
−i(1− nv)

w + εv − ε̃c + iΓc
. (C.6)

All together the result is

ΠR,RPA+
ph (w) = |g|2

[
1

w + ε̃v − ε̃c + i(Γc + Γv)
+

−nc
w + ε̃v − εc + iΓv

+
−(1− nv)

w + εv − ε̃c + iΓc

]
. (C.7)

C.4. Electron Propagators

Next we include randome phase corrections:

GR,RPA
c (w) =

1

(gRc )−1 −Π
R(1)
c

=
1

(w − εc + i0+) + |g|2(1− nv)
( ∫

dwq
Nph(wq)
wq−w+εv

+ iπNph(w − εv)
) ,

GA,RPA
c (w) =

1

(gAc )−1 −Π
A(1)
c

=
1

(w − εc − i0+) + |g|2(1− nv)
( ∫

dwq
Nph(wq)
wq−w+εv

− iπNph(w − εv)
) ,

G<,RPA
c (w) = g<c (w) +

(
GR,RPA
c Π<(1)

c GA,RPA
c

)
(w) = g<c (w). (C.8)

For further calculations an approximation of the above expression is useful. Assuming
that Nph ∼ wγq with γ > 0, allows an approximation of the real part of the self energy
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as a small constant ΣR
c ∼ |g|2 that is absorbed in the conduction electron level energy

ε̃c = εc + ΣR
c . Obviously this neglects the nontrivial w-dependence. However since γ > 0

the expression is finite and positive. Since it amounts only to a small (∼ |g|2) shift in
the energy level, the qualitative physics should remain unaltered. Also the infinitesimal
imaginary part in the denominator can be neglected, since the self energy provides a finite
imaginary contribution to the denominator. The retarded propagator reads

GR,RPA
c (w) ≈ 1

(w − ε̃c)− iπ|g|2(1− nv)Nph(w − εv)
. (C.9)

Also, from the above equation it is clear that the imaginary part is only important, if
(w − ε̃c) ≤ π|g|2(1− nv)Nph(w − εv), since the coupling constant is assumed to be small,
this is only a small interval which allows to approximate the photon density of states a
constant and therefore the imaginary part of the self energy also is a constant ΓRc . To avoid
confusion a positive constants are introduced: Σc ≡ −ΣR

c = −ΣA
c and Γc ≡ −ΓRc = ΓAc .

Hence

GR,RPA
c (w) ≈ 1

(w − ε̃c)− iπ|g|2(1− nv)Nph(ε̃c − εv)

≡ 1

w − ε̃c − iΓRc
≡ 1

w − ε̃c + iΓc
. (C.10)

The same approximation can be made for the valence electron propagator

GA,RPA
c (w) ≈ 1

(w − ε̃c) + iπ|g|2(1− nv)Nph(ε̃c − εv)

≡ 1

w − ε̃c − iΓAc
≡ 1

w − ε̃c − iΓc
. (C.11)

Using the same approximations as for the conduction band, the valence band propagators
read

GR,RPA
v (w) =

1

(gRv )−1 −ΠR
v

=
1

(w − εv + i0+)− |g|2nc
( ∫

dwq
Nph(wq)
wq+w−εc − iπNph(εc − w)

)
≈ 1

w − ε̃v − iΓRv
,

GA,RPA
v (w) =

1

(gAv )−1 −ΠA
v

=
1

(w − εv − i0+)− |g|2nc
( ∫

dwq
Nph(wq)
wq+w−εc + iπNph(εc − w)

)
≈ 1

w − ε̃v − iΓAv
,

G>,RPA
c (w) = g>c (w) +

(
GR,RPA
c Π>(1)

c GA,RPA
c

)
(w) = g>c (w). (C.12)

C.5. Electron self energies

In this subsection we give a detailed derivation of the explicit expressions for the conduction
and valence electron self energies. The derivation is analogous to the photon self energy
calculations. We begin with comparing the first order conduction electron propagator with
the Dyson equation:

G(1)
c (t1, t2) = i|g|2

∑
q1

∫
C

ds1ds2 g
c(t1, s1)gv(s1, s2)d(q1; s1, s2)gc(s2, t2)

≡
∫
C

ds1ds2 g
c(t1, s1)Π(1)

c (s1, s2)gc(s2, t2). (C.13)
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The self energy on the Keldysh contour is thus

Π(1)
c (s1, s2) = i|g|2

∑
q

gv(s1, s2)d(q; s1, s2). (C.14)

Assuming stationarity and going to real time allows us to use Fourier transformation:

Π
(1)
c,ab(t1 − t2) = i|g|2

∑
q

∫
gvab(t1 − t2)dab(q; t1 − t2),

Π
(1)
c,ab(w) = i|g|2

∑
q

∫
dw1

2π
gvab(w1)dab(q, w − w1) (C.15)

All that is left to do is to plug in the explicit expressions for the free Green’s functions
(5.21). The algebra is sketched in the following lines:

ΠT,(1)
c (w) = i|g|2

∑
q

∫
dw1

2π
gv11(w1)d11(q, w − w1)

= i|g|2
∫

dwqNph(wq)

∫
dw1

2π

(
1− nv

w1 − εv + i0+
+

nv
w1 − εv − i0+

)(
1

w − w1 − wq + i0+

)

= −|g|2
∫

dwqNph(wq)

(
1− nv

wq − w + εv − 2i0+

)
,

Π<,(1)
c (w) = i|g|2

∑
q

∫
dw1

2π
gv12(w1)d12(q, w − w1) = 0,

Π>,(1)
c (w) = i|g|2

∑
q

∫
dw1

2π
gv21(w1)d21(q, w − w1)

= i|g|2
∫

dwqNph(wq)

∫
dw1

2π

(
− 2πi(1− nv)δ(w1 − εv)

)(
− 2πiδ(w − w1 − wq)

)
= −2πi|g|2Nph(w − εv)(1− nv),

ΠT̃ ,(1)
c (w) = i|g|2

∑
q

∫
dw1

2π
gv22(w1)d22(q, w − w1)

= i|g|2
∫

dwqNph(wq)

∫
dw1

2π

(
nv − 1

w1 − εv − i0+
+

−nv
w1 − εv + i0+

)
×

×

(
−1− nph

w − w1 − wq − i0+
+

nph
w − w1 − wq + i0+

)

= |g|2
∫

dwqNph(wq)

(
1 + nph − nv − nvnph
εv − w + wq + 2i0+

+
nvnph

εv − w + wq − 2i0+

)
. (C.16)

All derivations of the valence electron propagators are analogous to the conduction electron
propagators. We only state the results:

ΠT,(1)
v (w) = −|g|2

∫
dwqNph(wq)

(
nc

εc − w − wq + 2i0+

)
,

Π<,(1)
v (w) = 2πi|g|2Nph(εc − w)nc,

Π>,(1)
v (w) = i|g|2

∑
q

∫
dw1

2π
gc21(w1)d12(q, w1 − w) = 0. (C.17)
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100 Appendix

D. Source of squeezed light

This section contains detailed calculations complimentary to section 5.3. We begin with
the derivation of the photon operator in the rotating frame. The equation of motion reads

ḃH,q(t) = i
[(
Heff

)
H
, bH,q

]
= −i

(
wq + |g|2e2ηtXq

)
bH,q(t)− ig∗eηte−ieVtY †q (t)

+ ig
∑
q1

eηteieVt[Yq1(t), bH,q(t)]bH,q1(t)

+ ig∗eηte−ieVt
∑
q1

b†H,q1(t)[Y †q1(t), bH,q(t)]

+ (g∗)2e2ηte−2ieVt(Z∗q + Z∗−q)b
†
H,−q(t). (D.1)

Next we go to the rotating frame bH,q(t) ≡ e−iwqtbq(t) and find

ḃq(t) = −i|g|2e2ηtXqbq(t)− ig∗eηtY †q (t)e−ieVteiwqt

+ ig
∑
q1

eηteieVt[Yq1(t), bq(t)]bq1(t)e−iwq1 t

+ ig∗eηte−ieVt
∑
q1

b†q1(t)eiwq1 t[Y †q1(t), bq(t)]

+ (g∗)2e2ηte−2ieVt(Z∗q + Z∗−q)b
†
−q(t)e

2iwqt

= −i|g|2e2ηtXqbq(t)− ig∗eηtei(wq−eV)tY †q (t)

+ ig
∑
q1

eηte−i(wq1−eV)t[Yq1(t), bq(t)]bq1(t)

+ ig∗eηt
∑
q1

ei(wq1−eV)tb†q1(t)[Y †q1(t), bq(t)]

+ (g∗)2e2ηte2i(wq−eV)t(Z∗q + Z∗−q)b
†
−q(t). (D.2)

Formal integration
∫ t
t0

dt′ and recursive substitution lead to

bq(t) = bq,0 − i|g|2Xqbq,0

∫ t

t0

dt′ e2ηt′ − ig∗
∫ t

t0

dt′ eηt
′
ei(wq−eV)t′Y †q (t′)

+ ig
∑
q1

∫ t

t0

dt′ eηt
′
e−i(wq1−eV)t′ [Yq1(t′), bq(t

′)]bq1(t′)

+ ig∗
∑
q1

∫ t

t0

dt′ eηt
′
ei(wq1−eV)t′b†q1(t′)[Y †q1(t′), bq(t

′)]

+ (g∗)2(Z∗q + Z∗−q)b
†
−q,0

∫ t

t0

dt′ e2ηt′e2i(wq−eV)t′ +O(|g|3)

= bq,0 − ig∗
∫ t

t0

dt′ eηt
′
ei(wq−eV)t′Y †q (t′) +O(|g|2) (D.3)

Recursive iteration gives

bq(t) = bq,0 − i|g|2Xqbq,0

∫ t

t0

dt′ e2ηt′ − ig∗
∫ t

t0

dt′ eηt
′
ei(wq−eV)t′Y †q (t′)

+ |g|2
∑
q1

∫ t

t0

dt′ eηt
′
e−i(wq1−eV)t′

∫ t′

t0

dt′′ eηt
′′
ei(wq−eV)t′′ [Yq1(t′), Y †q (t′′)]bq1(t′)

− i(g∗)2(Z∗q + Z∗−q)b
†
−q,0

∫ t

t0

dt′ e2ηt′e2i(wq−eV)t′ +O(|g|3). (D.4)
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We then go back into the Heisenberg picture

bH,q(t) = bq,0e−iwqt − i|g|2e2ηtXqbq,0

∫ t

t0

dt′ e−iwqt

− ig∗
∫ t

t0

dt′ eηt
′
ei(wq−eV)t′Y †q (t′)e−iwqt

+ |g|2
∫ t

t0

dt′ eηt
′
e−i(wq−eV)t′

∫ t′

t0

dt′′ eηt
′′
ei(wq−eV)t′′ [Yq(t

′), Y †q (t′′)]bq(t
′)e−iwqt

− i(g∗)2(Z∗q + Z∗−q)b
†
−q,0

∫ t

t0

dt′ e2ηt′e2i(wq−eV)t′e−iwqt +O(|g|2). (D.5)

The commutator of the Y operators is given by

[Yq1(t1), Y †q2(t2)] =
∑

k,k1,σ,σ1

[(
u∗c,σkuv,σ(k−q1)e

i(Ec,k−Ev,k−q1 )t1γ†c,k,σ,0γv,k−q1,σ,0

− v∗c,σkvv,σ(k+q1)e
−i(Ec,k−Ev,(k+q1))t1γ†v,(k+q1),σ,0γc,k,σ,0

+ σv∗c,σkuv,σ(k+q1)e
−i(Ec,k+Ev,−k−q1 )t1γc,k,σ,0γv,−k−q1,σ̄,0

+ σu∗c,σkvv,σ(k−q1)e
i(Ec,k+Ev,q1−k)t1γ†v,q1−k,σ̄,0γ

†
c,k,σ,0

)
,(

uc,σ1k1u
∗
v,σ1(k1−q2)e

−i(Ec,k1
−Ev,k1−q2 )t2γ†v,k1−q2,σ1,0

γc,k1,σ1,0

− vc,σ1k1v
∗
v,σ1(k1+q2)e

i(Ec,k1
−Ev,(k1+q2))t2γ†c,k1,σ1,0

γv,(k1+q2),σ1,0

+ σ1vc,σ1k1u
∗
v,σ1(k1+q2)e

i(Ec,k1
+Ev,−k1−q2 )t2γ†v,−k1−q2,σ̄1,0

γ†c,k1,σ1,0

+ σ1uc,σ1k1v
∗
v,σ1(k1−q2)e

−i(Ec,k1
+Ev,q2−k1

)t2γc,k1,σ1,0γv,q2−k1,σ̄1,0

)]
δq1,q2

=
∑
k,σ

[
|uc,σk|2|uv,σ(k−q)|2(nc,k,σ − nv,k−q,σ)ei(Ec,k−Ev,k−q)(t1−t2)

− |vc,σk|2|vv,σ(k+q)|2(nc,k,σ − nv,k+q,σ)e−i(Ec,k−Ev,k+q)(t1−t2)

+ |vc,σk|2|uv,σ(k+q)|2(1− nc,k,σ − nv,−k−q,σ̄)e−i(Ec,k+Ev,−k−q)(t1−t2)

− |uc,σk|2|vv,σ(k−q)|2(1− nc,k,σ − nv,q−k,σ̄)ei(Ec,k+Ev,q−k)(t2−t1)

]
δq1,q2

=
∑
k,σ

[
αq,k,σ(nc,k,σ − nv,k−q,σ)ei(Ec,k−Ev,k−q)(t1−t2)

− β−q,k,σ(nc,k,σ − nv,k+q,σ)e−i(Ec,k−Ev,k+q)(t1−t2)

+ δ−q,k,σ(1− nc,k,σ − nv,−k−q,σ̄)e−i(Ec,k+Ev,−k−q)(t1−t2)

− ζq,k,σ(1− nc,k,σ − nv,q−k,σ̄)ei(Ec,k+Ev,q−k)(t2−t1)

]
δq1,q2 (D.6)
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Here we have used Greek letters

αq,k,σ ≡ |uc,σk|2|uv,σ(k−q)|2,
βq,k,σ ≡ |vc,σk|2|vv,σ(k−q)|2,
χq,k,σ ≡ u∗c,σkv∗c,σkuv,σ(k−q)vv,σ(k−q),

δq,k,σ ≡ |vc,σk|2|uv,σ(k−q)|2,
ζq,k,σ ≡ |uc,σk|2|vv,σ(k−q)|2, (D.7)

to write the various combinations of coherence factors in a compact way. We continue
with the evaluation of the equation of motion∫ t

t0

dt1 eηt1e−i(wq−eV)t1

∫ t1

t0

dt2 eηt2ei(wq−eV)t2 [Yq(t1), Y †q (t2)]− iXq

∫ t

t0

dt′ e2ηt′

= i
e2ηt

2η

∑
k,σ

[
αq,k,σ(nc,k,σ − nv,k−q,σ)

1

wq − eV− Ec + Ev + iη

− β−q,k,σ(nc,k,σ − nv,k+q,σ)
1

wq − eV + Ec − Ev + iη

+ δ−q,k,σ(1− nc,k,σ − nv,−k−q,σ̄)
1

wq − eV + Ec + Ev + iη

− ζq,k,σ(1− nc,k,σ − nv,q−k,σ̄)
1

wq − eV− Ec − Ev + iη
,

]
(D.8)

approximate |k| � |q| and write w̃q ≡ wq − eV to get

≈ i
e2ηt

2η

∑
k

[
αk

nc,k − nv,k
w̃q − Ec + Ev + iη

− βk
nc,k − nv,k

w̃q + Ec − Ev + iη

+ δk
1− nc,k − nv,k

w̃q + Ec + Ev + iη
− ζk

1− nc,k − nv,k
w̃q − Ec − Ev + iη

]
. (D.9)

All together the result is

bq(t) ≈ bq,0 − g∗
∑
k,σ

(
uc,ku

∗
v,k

ei(w̃q−Ec+Ev−iη)t

w̃q − Ec + Ev − iη
γ†v,k−q,σ,0γc,k,σ,0

− vc,kv∗v,k
ei(w̃q+Ec−Ev−iη)t

w̃q + Ec − Ev − iη
γ†c,k,σ,0γv,k+q,σ,0

+ σvc,ku
∗
v,k

ei(w̃q+Ec+Ev−iη)t

w̃q + Ec + Ev − iη
γv,−q−k,σ̄,0γc,k,σ,0

+ σuc,kv
∗
v,k

ei(w̃q−Ec−Ev−iη)t

w̃q − Ec − Ev − iη
γ†c,k,σ,0γ

†
v,q−k,σ̄,0

)

+ i|g|2 e2ηt

2η

∑
k

[
αk

nc,k − nv,k
w̃q − Ec + Ev + iη

− βk
nc,k − nv,k

w̃q + Ec − Ev + iη

+ δk
1− nc,k − nv,k

w̃q + Ec + Ev + iη
− ζk

1− nc,k − nv,k
w̃q − Ec − Ev + iη

]
bq,0

− (g∗)2Z∗q
e2i(w̃q−iη)t

w̃q − iη
b†−q,0 +O(|g|3). (D.10)
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For clarity we introduce the operator Yq that contains all fermionic contributions and the
c-valued parameter Mq:

bq(t) = bq,0 − g∗Y†q (t) + i|g|2 e2ηt

2η
Mq(t)bq,0 − (g∗)2Z∗q

e2i(w̃q−iη)t

w̃q − iη
b†−q,0 +O(|g|2). (D.11)

The anomalous expectation value reads〈
bqb−q

〉
= (g∗)2

〈
Y†q (t)Y†q (t)

〉
− (g∗)2Z∗q

e2i(w̃q−iη)t

w̃q − iη

〈
b†−q,0b−q,0 + bq,0b

†
q,0

〉
= (g∗)2

〈
Y†q (t)Y

†
−q(t)

〉
− (g∗)2Z∗q

e2i(w̃q−iη)t

w̃q − iη
. (D.12)

The first term is explicitly given by

〈
Y†q (t)Y

†
−q(t)

〉
=
∑
k,σ

(
− χk(nv,k−q,σ − nc,k,σ)

e2i(w̃q−iη)t

(w̃q − iη)2 − (Ec − Ev)2

+ χk(1− nv,k,σ̄ − nc,k,σ)
e2i(w̃q−iη)t

(w̃q − iη)2 − (Ec + Ev)2

)
. (D.13)

If we use the same approximations as in section 5.2.7 we find

〈
Y†q (t)Y

†
−q(t)

〉
= 2π∆ei arg(χ) e2i(w̃q−iη)t

(w̃q − iη)2 − (2∆)2
,

Zq = 2π∆ei arg(χ)

(
1

w̃q − 2∆ + iη
+

1

w̃q + 2∆ + iη

)
, (D.14)

and finally 〈
bqb−q

〉
= 2π(g∗)2∆ei arg(χ) 1

(2∆)2 − (w̃q − iη)2
e2i(w̃q−iη)t. (D.15)
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