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1. Renormalization group of φ3-theory and critical exponents (20 + 30 = 50
Punkte)

Consider the classical φ3-theory determined by the effective Hamiltonian

H =
1

2

∫
ddx
(
c(∇φ)2 + r0φ

2 + uφ3
)

with r0 = a(T − T0) and c, u > 0. Do not worry about the fact that the Hamiltonian
is not bounded from below, since one can add higher order terms in φ to remedy this
fact. In the following we study the theory close to the phase transition, where these
additional terms are irrelevant in the renormalization group sense.

(a) Determine the upper critical dimension du of the theory.

(b) Derive the renormalization group equations using the Wilson procedure of successi-
vely integrating out thin shells of fields with large momenta. Calculate the critical
exponents close to the upper critical dimension in an expansion in the small quan-
tity ε = du−d, where d denotes the dimensionality of the theory. What is the value
of the the anomalous exponent η, and how does it compare with the result of a
φ4-theory ?

2. Dangerously irrelevant variable (20 + 10 + 20 = 50 Punkte)

Consider the classical φ4-theory determined by the effective Hamiltonian

H =

∫
ddx
( c

2
(∇φ)2 +

r0
2
φ2 +

u

4
φ4 − hφ

)
,

with r0 = a(T − Tc)/Tc = at and c, u > 0.

(a) Derive the critical exponents within Landau theory, which are correct above the
upper critical dimension du = 4. For the (thermodynamic) exponents β, δ, γ, α you
can neglect the spatial fluctuations. For the (correlation) exponents η, ξ include
the spatial fluctuations, and solve the Euler-Lagrange equation that determines the
minimum of H in Fourier space.

(b) Now perform a lowest order (tree-level) RG analysis of H, i.e, simply take the
term that only contains slow fields into account and perform momentum and field
rescaling, to derive the scaling behavior of the (singular part) of the free energy
density f = F (r0, h, u)/V with F = lnZ and Z =

∫
Dφ<Dφ>e−βH :

f(r0, h, u) = b−df [bytr0, b
yhh, byuu] ,

where f [r(l), h(l), u(l)] = F [r(l), h(l), u(l)]/V with F [r(l), h(l), u(l)] =
∫
Dφ<e−βHeff(φ

<).
Determine the exponents yt, yh, yu by Confirm that yu < 0 for d > du.



(c) Derive the scaling form of the magnetization

m(r0, h, u) = bymm[bytr0, b
yhh, byuu] ,

i.e., determine ym. Then set h = 0 and b = |t|−1/yt . Noting that the last argument
of the scaling function becomes small for yu < 0 you may be tempted to set u = 0
to obtain the exponent β. What result do you obtain this way, and does it agree
with the correct mean-field exponent β ?

To see what goes wrong show explicitly that within Landau theory m(−1, 0, ũ) ∝
ũ−1/2. Use this and the scaling form of m to obtain the correct exponent β. Note that
the existence of a dangerously irrelevant variable for d > du like u here imples the
violation of hyperscaling, i.e, the scaling relations that contain the dimensionality
d explicitly are violated above d > du. The mean-field exponents obey hyperscaling
only exactly at d = du.


