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1. Failure of Fermi liquid theory in 1D (10 Punkte)

The purpose of this exercise is to compute perturbatively the residue of the of fermionic
Green function of 1D interacting fermions

Z =
1

1− ∂εReΣ(p, ε)

∣∣∣∣
p=pF , ε=εF

(1)

We will see that Z = 0 which signals the failure of Fermi liquid theory in 1D.

(a) Consider spinless interacting fermion with linear dispersion relation at T = 0 inter-
acting via point-like density-density interaction with interaction constant g. Draw
the three diagrams contributing to the self energy Σ+ of right-moving particles
in the second order in g. Show that the two diagrams involving only the Green
functions of right-movers cancel.

(b) Consider the polarization operator (density bubble) for left movers involved in the
remainig diagramm for Σ+. Show that

Π−(ω, q) =
1

2π

q

vF q + ω + i0 signω
(2)

(c) Write the analytic expression for the diagramm from (a) and perform the frequency
integration. Show that the real part of Σ+ is given by

ReΣ+(p, ε) =
g2

(2π)2

∫ ∞
0

dq

[
q

ε+ vF (2q − p)
+

q − p
ε− vF (2q − p)

]
(3)

(d) Calculate the quasiparticle residue Z.

2. Dzyaloshinskii-Larkin theorem (8 Punkte)

The purpose of this exersise is to show that in the Tomonaga-Luttinger model all the
loops made out of n ≤ 3 fermionic lines vanish. This means that the RPA approximation
is exact.

(a) Let us consider a loop made out of three fermionic Green functions and with three
wavy lines as external legs carrying frequencies ωi and momenta ki, i = 1, 2, 3.
Physically, such a diagram represents the cubic interaction of density fluctuations
(compare to polarization operator). To be precise, there are two diagrams of this
type which differ by the order of wavy lines. Draw these two diagrams and write
down the corresponding analytical expressions. Assume Matsubara technique for
definiteness.



(b) Use the following simple identity

1

iε− qVF
1

i(ε+ ω1)− VF (q + k1)
=

1

iω1 + VFk1

[
1

iε− VF q
− 1

i(ε+ ω1)− VF (k1 + q)

]
(4)

to transform the analytic expressions for the diagrams discussed in task (a). What
is the graphical representation of this transformation?

(c) Show that the sum of the two diagrams from task (a) vanish.

(d) Generalize the above arguments to the case of arbitrary fermionic loop with more
than 2 fermionic lines.

(e) Why the line of reasoning (a)-(c) does not apply to fermionic loop made out of two
fermionic lines (polarization operator)?

3. Critical exponents and Anderson transition (8 Punkte)

Disorder driven Anderson metal-insulator transitions (MITs) constitute a (very pecu-
liar) example of (quantum) phase transitions. Generally, the behavior at the transition
point of a continuous phase transition is universally described by “critical exponents”.
The goal of this exercise is to determine the critical exponents from the beta function
in the exemplary case of the Anderson MIT.
Consider the beta function d ln g

d ln(L/l)
= β(g) where g denotes the dimensionless conduc-

tance, l the UV scale and L the running scale. Assume that beta function crosses zero
exactly once at g = gc and in the vicinity of this point can be Taylor expanded

β(g) = β′c(g − gc) + . . . , β′c > 0 (5)

(a) Consider the following situations at the UV scale

(i) g(l) = g0 > gc or (ii) g(l) = g0 < gc.

How does g(L) behave in the thermodynamic limit L → ∞ for both cases? What
is the meaning of gc?

(b) Linearize and the renormalization group equation for given δg(l) = δg0 � gc and
determine the scale ξ at which the linear approximation fails to remain valid. This
scale ξ marks the crossover from the critical scale dependence of g observed in the
vicinity of gc to the classical metallic or insulating behavior at g → ∞ or g → 0
(for example, Ohm’s law g = σLd−2 in the metallic phase). What is the meaning of
ξ in insulating phase?

(c) The critical exponent ν governs the behaviors of the correlation length in the vicinity
of the critical point, ξ ∼ l0|δg0|−ν . Read off the exponent ν from the results obtained
in (b).


