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Preface

These lecture notes summarize the main content of the course Statistical Me-
chanics (Theory F), taught at the Karlsruhe Institute of Technology during
the summer semester 2012 and 2014. They are based on the graduate course
Statistical Mechanics taught at Iowa State University between 2003 and 2005.
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Chapter 1

Introduction

Many-particle systems are characterized by a huge number of degrees of free-
dom. However, in essentially all cases a complete knowledge of all quantum or
classical states is neither possible nor useful and necessary. For example, it is
hard to determine the initial coordinates and velocities of 1023 Ar-atoms in a
high-temperature gas state, needed to integrate Newton’s equations. In addi-
tion, it is known from the investigation of classical chaos that in classical systems
with many degrees of freedom the slightest change (i.e. lack of knowledge) in
the initial conditions usually causes dramatic changes in the long time behavior
of the individual particles are concerned. On the other hand the macroscopic
properties of container of gas or a bucket of water are fairly generic and don’t
seem to depend on how the individual particles have been initialized. This in-
teresting observation clearly suggests that there are principles at work, ensuring
that only a few variables are needed to characterize the macroscopic properties
of a macroscopic system. It is obviously worthwhile trying to identify these
principles instead of going through the effort to identify all particle momenta
and positions.

The tools and insights of statistical mechanics enable us to determine the
macroscopic properties of many particle systems with known microscopic Hamil-
tonian, albeit in many cases only approximately. This bridge between the micro-
scopic and macroscopic world is based on the concept of a “lack of knowledge”
in the precise characterization of the system and therefore has a probabilistic
aspect. This is indeed a lack of knowledge which, different from the probabilistic
aspects of quantum mechanics, could be fixed if one we were only able to fully
characterize and solve the many particle problem. For finite but large systems
this is an extraordinary tough problem. It becomes truly impossible in the limit
of infinitely many particles. It is this limit of large systems where statistical
mechanics is extremely powerful. One way to see that the “lack of knowledge”
problem is indeed more fundamental than solely laziness of the physicist is that
essentially every physical system is embedded in an environment. Only complete
knowledge of system and environment allows for a complete characterization.
Even the observable part of our universe seems to behave this way, denying us
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full knowledge of any given system as a matter of principle.



Chapter 2

Thermodynamics

Even though this course is about statistical mechanics, it is useful to summarize
some of the key aspects of thermodynamics. Clearly these comments cannot
replace a course on thermodynamics itself. Thermodynamics and statistical
mechanics have a relationship which is quite special. It is well known that clas-
sical mechanics covers a set of problems which are a subset of the ones covered
by quantum mechanics. Even more clearly is non-relativistic mechanics a part
of relativistic mechanics. Such a statement cannot be made if one tries to re-
late thermodynamics and statistical mechanics. Thermodynamics makes very
general statements about equilibrium states. The observation that a system in
thermodynamic equilibrium does not depend on its preparation in the past for
example is being beautifully formalized in terms of exact and inexact differ-
entials. However, it also covers the energy balance and efficiency of processes
which can be reversible or irreversible. Using the concept of extremely slow,
so called quasi-static processes it can then make far reaching statements which
only rely on the knowledge of equations of state like for example

pV = kBNT (2.1)

in case of a dilute gas at high temperatures. On the other hand, equilibrium
statistical mechanics provides us with the tools to derive such equations of state,
even though it has not much to say about the actual processes, like for example
in a Diesel engine. The latter may however be covered as part of the rapidly
developing field of non-equilibrium statistical mechanics. The main conclusion
from these considerations is that it is important to summarize some, but not
necessary to summarize all aspects of thermodynamics for this course.

2.1 Equilibrium and the laws of thermodynam-
ics

Thermodynamics is based on four laws which are in short given as:

9
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• 0th law: Thermodynamic equilibrium exists and is characterized by a
temperature

• 1st law: Energy is conserved

• 2nd law: Not all heat can be converted into work

• 3rd law: One cannot reach absolute zero temperature.

Zeroth law: A closed system reaches after long time the state of thermo-
dynamic equilibrium. Here closed stands for the absence of directed energy,
particle etc. flux into or out of the system, even though a statistical fluctuation
of the energy, particle number etc. may occur. The equilibrium state is then
characterized by a set of variables like:

• volume, V

• electric polarization, P

• magnetization, M

• particle numbers, Ni of particles of type i

• etc.

This implies that it is irrelevant what the previous volume, magnetization etc. of
the system were. The equilibrium has no memory! If a function of variables does
not depend on the way these variables have been changed it can conveniently
written as a total differential like dV or dNi etc.

If two system are brought into contact such that energy can flow from one
system to the other. Experiment tells us that after sufficiently long time they
will be in equilibrium with each other. Then they are said to have the same
temperature. If for example system A is in equilibrium with system B and with
system C, it holds that B and C are also in equilibrium with each other. Thus,
the temperature is the class index of the equivalence class of the thermodynamic
equilibrium. There is obviously large arbitrariness in how to chose the tempera-
ture scale. If T is a given temperature scale then any monotonous function t (T )
would equally well serve to describe thermodynamic systems. The temperature
is typically measured via a thermometer, a device which uses changes of the
system upon changes of the equilibrium state. This could for example be the
volume of a liquid or the magnetization of a ferromagnet etc.

In classical system one frequently uses the averaged kinetic energy of the
particles

kBT =
2

3
〈εkin〉 (2.2)

as measure of the temperature. We will derive this later. Here we should only
keep in mind that this relation is not valid within quantum mechanics, i.e. fails
at low temperatures. The equivalence index interpretation given above is a
much more general concept.
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First law: The first law is essentially just energy conservation. The total
energy is called the internal energy U . Below we will see that U is nothing else
but the expectation value of the Hamilton operator. Changes, dU of U occur
only by causing the system to do work, δW , or by changing the heat content,
δQ. To do work or change heat is a process and not an equilibrium state and
the amount of work depends of course on the process. Nevertheless, the sum of
these two contributions is a total differential1

dU = δQ+ δW (2.3)

which is obvious once one accepts the notion of energy conservation, but which
was truly innovative in the days when R. J. Mayer (1842) and Joule (1843-49)
realized that heat is just another energy form.

The specific form of δW can be determined from mechanical considerations.
For example we consider the work done by moving a cylinder in a container.
Mechanically it holds

δW = −F · ds (2.4)

where F is the force exerted by the system and ds is a small distance change
(here of the wall). The minus sign in δW implies that we count energy which
is added to a system as positive, and energy which is subtracted from a system
as negative. Considering a force perpendicular to the wall (of area A) it holds
that the pressure is just

p =
|F|
A
. (2.5)

If we analyze the situation where one pushes the wall in a way to reduce the
volume, then F and ds point in opposite directions, and and thus

δW = pAds = −pdV. (2.6)

Of course in this case δW > 0 since dV = −Ads < 0. Alternatively, the wall is
pushed out, then F and ds point in the same direction and

δW = −pAds = −pdV.

Now dV = Ads > 0 and δW < 0. Note, we can only consider an infinitesimal
amount of work, since the pressure changes during the compression. To calculate
the total compressional work one needs an equation of state p (V ). It is a general
property of the energy added to or subtracted from a system that it is the
product of an intensive quantity (pressure) and the change of an extensive state
quantity (volume).

1A total differential of a function z = f (xi) with i = 1, · · · , n, corresponds to dz =∑
i

∂f
∂xi

dxi. It implies that z
(
x
(1)
i

)
− z

(
x
(2)
i

)
=
´
C

∑
i

∂f
∂xi

dxi,with contour C connecting

x
(2)
i with x

(1)
i , is independent on the contour C. In general, a differential

∑
i Fidxi is total

if ∂Fi
∂xj

=
∂Fj
∂xi

, which for Fi = ∂f
∂xi

corresponds to the interchangability of the order in which

the derivatives are taken.
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More generally holds

δW = −pdV + E·dP + H·dM+
∑
i

µidNi, (2.7)

where E, H and µi are the electrical and magnetic field and the chemical poten-
tial of particles of type i. P is the electric polarization and M the magnetization.
To determine electromagnetic work δWem = E·dP+H·dM is in fact rather sub-
tle. As it is not really relevant for this course we only sketch the derivation and
refer to the corresponding literature: J. A. Stratton, “Electromagnetic Theory”,
Chap. 1, McGraw-Hill, New York, (1941) or V. Heine, Proc. Cambridge Phil.
Sot., Vol. 52, p. 546, (1956), see also Landau and Lifshitz, Electrodynamics of
Continua.

Finally we comment on the term with chemical potential µi. Essentially by
definition holds that µi is the energy needed to add one particle in equilibrium
to the rest of the system, yielding the work µidNi.

Second Law: This is a statement about the stability of the equilibrium
state. After a closed system went from a state that was out of equilibrium
(right after a rapid pressure change for example) into a state of equilibrium
it would not violate energy conservation to evolve back into the initial out-of-
equilibrium state. In fact such a time evolution seems plausible, given that the
microscopic laws of physics are invariant under time reversal. The content of
the second law is, however, that the tendency to evolve towards equilibrium can
only be reversed by changing work into heat (i.e. the system is not closed
anymore). We will discuss in some detail how this statement can be related to
the properties of the microscopic equations of motion.

Historically the second law was discovered by Carnot. Lets consider the
Carnot process of an ideal gas

1. Isothermal (T = Th = const.) expansion from volume V1 → V2 :

V2

V1
=
p1

p2
(2.8)

Since U of an ideal gas is solely kinetic energy ∼ Th, it holds dU = 0 and
thus

∆Q = −∆W = −
ˆ V2

V1

δW =

ˆ V2

V1

pdV

= NkBTh

ˆ V2

V1

dV

V
= NkBTh log

(
V2

V1

)
(2.9)

2. Adiabatic (δQ = 0) expansion from V2 → V3 with

∆Q = 0 (2.10)

The system will lower its temperature according to

V3

V2
=

(
Th
Tl

)3/2

. (2.11)
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This can be obtained by using

dU = CdT = −NkBT

V
dV (2.12)

and C = 3
2NkB and integrating this equation.

3. Isothermal compression V3 → V4 at Tl where similar to the first step:

∆Q
3→4

= NkBTl log

(
V4

V3

)
(2.13)

4. Adiabatic compression to the initial temperature and volume, i.e.

∆Q = 0 (2.14)

V1

V4
=

(
Tl
Th

)3/2

. (2.15)

As expected follows that ∆Utot = 0, which can be obtained by using ∆W =
−C (Tl − Th) for the first adiabatic and ∆W = −C (Th − Tl) for the second.
On the other hand ∆Qtot > 0, which implies that the system does work since
∆Wtot = −∆Qtot. As often remarked, for the efficiency (ratio of the work done

by the heat absorbed) follows η = |∆Wtot|
∆Q1→2

< 1.
Most relevant for our considerations is however the observation:

∆Q1→2

Th
+

∆Q
3→4

Tl
= NkB

(
log

(
V2

V1

)
+ log

(
V4

V3

))
= 0 (2.16)

Thus, it holds ˆ
δQ

T
= 0. (2.17)

This implies that (at least for the ideal gas) the entropy

dS ≡ δQ

T
(2.18)

is a total differential and thus a quantity which characterizes the state of a
system. This is indeed the case in a much more general context, where we write

δQ = TdS (2.19)

It then follows in particular that in equilibrium the entropy S is a maximum.
As we will see, the equilibrium is the least structured state possible at a given
total energy. In this sense it is very tempting to interpret the maximum of the
entropy in equilibrium in a way that S is a measure for the lack of structure, or
disorder.

It is already now useful to comment on the microscopic, statistical interpre-
tation of this behavior and the origin of irreversibility. In classical mechanics
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a state of motion of N particles is uniquely determined by the 3N coordinates
and 3N momenta (qi, pi) of the N particles at a certain time. The set (qi, pi)
is also called the micro-state of the system, which of course varies with time.
Each micro-state (qi, pi) corresponds to one point in a 6N -dimensional space,
the phase space. The set (qi, pi) i.e., the micro-state, can therefore be identified
with a point in phase space. Let us now consider the diffusion of a gas in an
initial state (qi (t0) , pi (t0)) from a smaller into a larger volume. If one is really
able to reverse all momenta in the final state (qi (tf ) , pi (tf )) and prepare a state
(qi (tf ) ,−pi (tf )), the process would in fact be reversed. From a statistical point
of view, however, this is an event with an incredibly small probability. For there
is only one point (micro-state) in phase space which leads to an exact reversal
of the process, namely (qi (tf ) ,−pi (tf )). The great majority of micro-states
belonging to a certain macro-state, however, lead under time reversal to states
which cannot be distinguished macroscopically from the final state (i.e., the
equilibrium or Maxwell- Boltzmann distribution). The fundamental assump-
tion of statistical mechanics now is that all micro-states which have the same
total energy can be found with equal probability. This, however, means that the
micro-state (qi (tf ) ,−pi (tf )) is only one among very many other micro-states
which all appear with the same probability.

As we will see, the number Ω of micro-states that is compatible with a given
macroscopic observable is a quantity closely related to the entropy of this macro-
state. The larger Ω, the more probable is the corresponding macro-state, and the
macro-state with the largest number Ωmax of possible microscopic realizations
corresponds to thermodynamic equilibrium. The irreversibility that comes with
the second law is essentially stating that the motion towards a state with large
Ω is more likely than towards a state with smaller Ω.

Combining first and second law, follows (we ignore electrostatic effects and
consider only one type of particles):

dU = TdS − pdV+µdN (2.20)

It is easily possible to determine the zeroth law from this result and the prin-
ciple of maximum entropy. To this end we consider a perfectly isolated system
consisting of two subsystems. Let the total energy be U = U1 + U2 and the
total entropy be

S = S1 (U1) + S2 (U2) (2.21)

Since U is fixed, we only have one variable, say U1 that we need to adjust to
reach equilibrium. We want to determine U1 and thus the way the energy is
distributed among the subsystems from the principle of maximal entropy, i.e.
from

dS

dU1
=

dS1

dU1
+
dS2

dU2

dU2

dU1

=
dS1

dU1
− dS2

dU2
= 0 (2.22)
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We perform this analysis for fixed total volume + particle number and fixed
volume and particle number of the subsystems such that

1

T1
=
dS1

dU1

that the condition of maximal entropy implies that

T1 = T2,

which is the zeroth law of thermodynamics.
Third law: This law was postulated by Nernst in 1906 and is closely related

to quantum effects at low T . If one cools a system down it will eventually drop
into the lowest quantum state. Then, there is no lack of structure and one
expects S → 0. This however implies that one can not change the heat content
anymore if one approaches T → 0, i.e. it will be increasingly harder to cool
down a system the lower the temperature gets.

2.2 Thermodynamic potentials

The internal energy of a system is written (following the first and second law)
as

dU = TdS − pdV + µdN (2.23)

where we consider for the moment only one type of particles. Thus it is obviously
a function

U (S, V,N) (2.24)

with internal variables entropy, volume and particle number. In particular dU =
0 for fixed S, V , and N , i.e. U = const. In case one considers a physical situation
where indeed these internal variables are fixed the internal energy is constant
in equilibrium. Clearly, the internal energy is a natural variable to describe the
system if we consider a scenario with fixed S, V , and N .

Let us, instead, look at a situation where we want to fix the temperature T
instead of S. A simple trick however enables us to find another quantity

F = U − TS (2.25)

which is much more convenient in such a situation. F obviously has a differential

dF = dU − TdS − SdT (2.26)

which gives:

dF = −SdT − pdV + µdN. (2.27)

This implies that

F = F (T, V,N) (2.28)
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i.e. the free energy has the internal variables T , V and N and it does not change
(dF = 0) if the system has constant temperature, volume and particle number.
The transformation from U to F is called a Legendre transformation.

Subsystems: There is a more physical interpretation for the origin of the
Legendre transformation. To this end we consider a system with internal en-
ergy U and its environment with internal energy Uenv. Let the entire system,
consisting of subsystem and environment be closed with fixed energy

Utot = U (S, V,N) + Uenv (Senv, Venv, Nenv) (2.29)

Consider the situations where all volume and particle numbers are known and
fixed and we are only concerned with the entropies. The change in energy due
to heat fluxes is

dUtot = TdS + TenvdSenv. (2.30)

The total entropy for such a state must be fixed, i.e.

Stot = S + Senv = const (2.31)

such that

dSenv = −dS. (2.32)

As dU = 0 by assumption for such a closed system in equilibrium, we have

0 = (T − Tenv) dS, (2.33)

i.e. equilibrium implies that T = Tenv. It next holds

d (U + Uenv) = dU + TenvdSenv = 0 (2.34)

which yields for fixed temperature T = Tenv and with dSenv = −dS

d (U − TS) = dF = 0. (2.35)

with free energy F . From the perspective of the subsystem (without fixed
energy) is therefore the free energy the more appropriate thermodynamic po-
tential. Thus in a situation where a system is embedded in an external bath
and is rather characterized by a constant temperature. Then, U is not the most
convenient thermodynamic potential to characterize the system.

Of course, F is not the only thermodynamic potential one can introduce this
way, and the number of possible potentials is just determined by the number of
internal variables. For example, in case of a constant pressure (as opposed to
constant volume) one uses the enthalpy

H = U + pV (2.36)

with

dH = TdS + V dp+ µdN. (2.37)
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If both, pressure and temperature, are given in addition to the particle number
one uses the free enthalpy

G = U − TS + pV (2.38)

with
dG = −SdT + V dp+ µdN (2.39)

In all these cases we considered systems with fixed particle number. It is
however often useful to be able to allow exchange with a particle bath, i.e. have
a given chemical potential rather than a given particle number. The potential
which is most frequently used in this context is the grand-canonical potential

Ω = F − µN (2.40)

with
dΩ = SdT − pdV −Ndµ. (2.41)

Ω = Ω (T, V, µ) has now temperature, volume and chemical potential as internal
variables, i.e. is at a minimum if those are the given variables of a physical
system.

Maxwell relations: The statement of a total differential is very power-
ful and allows to establish connections between quantities that are seemingly
unrelated. Consider again

dF = −SdT − pdV + µdN (2.42)

Now we could analyze the change of the entropy

∂S (T, V,N)

∂V
(2.43)

with volume at fixed T and N or the change of the pressure

∂p (T, V,N)

∂T
(2.44)

with temperature at fixed V and N . Since S (T, V,N) = −∂F (T,V,N)
∂T and

p (T, V,N) = −∂F (T,V,N)
∂V follows

∂S (T, V,N)

∂V
= −∂

2F (T, V,N)

∂V ∂T
= −∂

2F (T, V,N)

∂T∂V

=
∂p (T, V,N)

∂T
(2.45)

Thus, two very distinct measurements will have to yield the exact same behav-
ior. Relations between such second derivatives of thermodynamic potentials are
called Maxwell relations.

On the heat capacity: The heat capacity is the change in heat δQ = TdS
that results from a change in temperature dT , i.e.

C (T, V,N) = T
∂S (T, V,N)

∂T
= −T ∂

2F (T, V,N)

∂T 2
(2.46)
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It is interesting that we can alternatively obtain this result from the internal
energy, if measured not with its internal variables, but instead U (T, V,N) =
U (S (T, V,N) , V,N):

C (T, V,N) =
∂U (T, V,N)

∂T

=
∂U (S, V,N)

∂S

∂S

∂T
= −T ∂S

∂T
. (2.47)

2.2.1 Example of a Legendre transformation

Consider a function
f (x) = x2 (2.48)

with
df = 2xdx (2.49)

We would like to perform a Legendre transformation from x to the variable p
such that

g = f − px (2.50)

and would like to show that

dg = df − pdx− xdp = −xdp. (2.51)

Obviously we need to chose p = ∂f
∂x = 2x. Then it follows

g =
(p

2

)2

− p2

2
= −p

2

4
(2.52)

and it follows
dg = −p

2
dp = −xdp (2.53)

as desired.

2.3 Gibbs Duhem relation

Finally, a very useful concept of thermodynamics is based on the fact that
thermodynamic quantities of big systems can be either considered as extensive
(proportional to the size of the system) of intensive (do not change as function
of the size of the system).

Extensive quantities:

• volume

• particle number

• magnetization

• entropy
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Intensive quantities:

• pressure

• chemical potential

• magnetic field

• temperature

Interestingly, the internal variables of the internal energy are all extensive

U = U (S, V,Ni) . (2.54)

Now if one increases a given thermodynamic system by a certain scale,

V → λV

Ni → λNi

S → λS (2.55)

we expect that the internal energy changes by just that factor U → λU i.e.

U (λS, λV, λNi) = λU (S, V,Ni) (2.56)

whereas the temperature or any other intensive variable will not change

T (λS, λV, λNi) = T (S, V,Ni) . (2.57)

Using the above equation for U gives for λ = 1 + ε and small ε:

U ((1 + ε)S, ...) = U (S, V,Ni) +
∂U

∂S
εS +

∂U

∂V
εV +

∑
i

∂U

∂Ni
εNi.

= U (S, V,Ni) + εU (S, V,Ni) (2.58)

Using the fact that

T =
∂U

∂S

p = −∂U
∂V

µi =
∂U

∂Ni
(2.59)

it follows

U ((1 + ε)S, ...) = U (S, V,Ni) + εU (S, V,Ni)

= U (S, V,Ni) + ε

(
TS − pV +

∑
i

µiNi

)
(2.60)
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which then gives

U = TS − pV +
∑
i

µiNi. (2.61)

Since
dU = TdS − pdV + µdN (2.62)

it follows immediately

0 = SdT − V dp+
∑
i

Nidµi. (2.63)

This relationship is useful if one wants to study for example the change of the
temperature as function of pressure changes etc. Another consequence of the
Gibbs Duhem relations is for the other potentials like

F = −pV +
∑
i

µiNi. (2.64)

or
Ω = −pV (2.65)

which can be very useful.



Chapter 3

Summary of probability
theory

We give a very brief summary of the key aspects of probability theory that are
needed in statistical mechanics. Consider a physical observable x that takes
with probability p (xi) the value xi. In total there are N such possible values,
i.e. i = 1, · · · , N . The observable will with certainty take one out of the N
values, i.e. the probability that x is either p (x1) or p (x2) or ... or p (xN ) is:

N∑
i=1

p (xi) = 1. (3.1)

The probability is normalized.
The mean value of x is given as

〈x〉 =

N∑
i=1

p (xi)xi. (3.2)

Similarly holds for an arbitrary function f (x) that

〈f (x)〉 =

N∑
i=1

p (xi) f (xi) , (3.3)

e.g. f (x) = xn yields the n-th moment of the distribution function

〈xn〉 =

N∑
i=1

p (xi)x
n
i . (3.4)

The variance of the distribution is the mean square deviation from the averaged
value: 〈

(x− 〈x〉)2
〉

=
〈
x2
〉
− 〈x〉2 . (3.5)

21
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If we introduce ft (x) = exp (tx) we obtain the characteristic function:

c (t) = 〈ft (x)〉 =

N∑
i=1

p (xi) exp (txi)

=

∞∑
n=0

tn

n!

N∑
i=1

p (xi)x
n
i =

∞∑
n=0

〈xn〉
n!

tn. (3.6)

Thus, the Taylor expansion coefficients of the characteristic function are iden-
tical to the moments of the distribution p (xi).

Consider next two observables x and y with probability P (xi&yj) that x
takes the value xi and y becomes yi. Let p (xi) the distribution function of x
and q (yj) the distribution function of y. If the two observables are statistically
independent, then, and only then, is P (xi&yj) equal to the product of the
probabilities of the individual events:

P (xi&yj) = p (xi) q (yj) iff x and y are statistically independent. (3.7)

In general (i.e. even if x and y are not independent) holds that

p (xi) =
∑
j

P (xi&yj) ,

q (yj) =
∑
i

P (xi&yj) . (3.8)

Thus, it follows

〈x+ y〉 =
∑
i,j

(xi + yj)P (xi&yj) = 〈x〉+ 〈y〉 . (3.9)

Consider now

〈xy〉 =
∑
i,j

xiyjP (xi&yj) (3.10)

Suppose the two observables are independent, then follows

〈xy〉 =
∑
i,j

xiyjp (xi) q (yj) = 〈x〉 〈y〉 . (3.11)

This suggests to analyze the covariance

C (x, y) = 〈(x− 〈x〉) (y − 〈y〉)〉
= 〈xy〉 − 2 〈x〉 〈y〉+ 〈x〉 〈y〉
= 〈xy〉 − 〈x〉 〈y〉 (3.12)

The covariance is therefore only finite when the two observables are not inde-
pendent, i.e. when they are correlated. Frequently, x and y do not need to be
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distinct observables, but could be the same observable at different time or space
arguments. Suppose x = S (r, t) is a spin density, then

χ (r, r′; t, t′) = 〈(S (r, t)− 〈S (r, t)〉) (S (r′, t′)− 〈S (r′, t′)〉)〉

is the spin-correlation function. In systems with translations invariance holds
χ (r, r′; t, t′) = χ (r − r′; t− t′). If now, for example

χ (r; t) = Ae−r/ξe−t/τ

then ξ and τ are called correlation length and time. They obviously determine
over how-far or how-long spins of a magnetic system are correlated.
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Chapter 4

Equilibrium statistical
mechanics

4.1 The maximum entropy principle

The main contents of the second law of thermodynamics was that the entropy
of a closed system in equilibrium is maximal. Our central task in statistical
mechanics is to relate this statement to the results of a microscopic calculation,
based on the Hamiltonian, H, and the eigenvalues

Hψi = Eiψi (4.1)

of the system.
Within the ensemble theory one considers a large number of essentially iden-

tical systems and studies the statistics of such systems. The smallest contact
with some environment or the smallest variation in the initial conditions or
quantum preparation will cause fluctuations in the way the system behaves.
Thus, it is not guaranteed in which of the states ψi the system might be, i.e.
what energy Ei it will have (remember, the system is in thermal contact, i.e. we
allow the energy to fluctuate). This is characterized by the probability pi of the
system to have energy Ei. For those who don’t like the notion of ensembles, one
can imagine that each system is subdivided into many macroscopic subsystems
and that the fluctuations are rather spatial.

If one wants to relate the entropy with the probability one can make the
following observation: Consider two identical large systems which are brought
in contact. Let p1 and p2 be the probabilities of these systems to be in state 1
and 2 respectively. The entropy of each of the systems is S1 and S2. After these
systems are combined it follows for the entropy as a an extensive quantity that

Stot = S1 + S2 (4.2)

and for the probability of the combined system

ptot = p1p2. (4.3)

25
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The last result is simply expressing the fact that these systems are independent
whereas the first ones are valid for extensive quantities in thermodynamics. Here
we assume that short range forces dominate and interactions between the two
systems occur only on the boundaries, which are negligible for sufficiently large
systems. If now the entropy Si is a function of pi it follows

Si ∼ log pi. (4.4)

It is convenient to use as pre-factor the so called Boltzmann constant

Si = −kB log pi (4.5)

where
kB = 1.380658× 10−23JK−1 = 8.617385× 10−5eVK−1. (4.6)

The averaged entropy of each subsystems, and thus of each system itself is then
given as

S = −kB

N∑
i=1

pi log pi. (4.7)

Here, we have established a connection between the probability to be in a given
state and the entropy S. This connection was one of the truly outstanding
achievements of Ludwig Boltzmann.

Eq.4.7 helps us immediately to relate S with the degree of disorder in the
system. If we know exactly in which state a system is we have:

pi =

{
1 i = 0
0 i 6= 0

=⇒ S = 0 (4.8)

In the opposite limit, where all states are equally probable we have instead:

pi =
1

N
=⇒ S = kB logN . (4.9)

Thus, if we know the state of the system with certainty, the entropy vanishes
whereas in case of the complete equal distribution follows a large (a maximal
entropy). Here N is the number of distinct state

The fact that S = kB logN is indeed the largest allowed value of S follows
from maximizing S with respect to pi. Here we must however keep in mind that
the pi are not independent variables since

N∑
i=1

pi = 1. (4.10)

This is done by using the method of Lagrange multipliers summarized in a
separate handout. One has to minimize

I = S + λ

( N∑
i=1

pi − 1

)

= −kB

N∑
i=1

pi log pi + λ

( N∑
i=1

pi − 1

)
(4.11)
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We set the derivative of I with respect to pi equal zero:

∂I

∂pj
= −kB (log pi + 1) + λ = 0 (4.12)

which gives

pi = exp

(
λ

kB
− 1

)
= P (4.13)

independent of i! We can now determine the Lagrange multiplier from the
constraint

1 =

N∑
i=1

pi =

N∑
i=1

P = NP (4.14)

which gives

pi =
1

N
, ∀i. (4.15)

Thus, one way to determine the entropy is by analyzing the number of states
N (E, V,N) the system can take at a given energy, volume and particle number.
This is expected to depend exponentially on the number of particles

N ∼ exp (sN) , (4.16)

which makes the entropy an extensive quantity. We will perform this calculation
when we investigate the so called micro-canonical ensemble, but will follow a
different argumentation now.

4.2 The canonical ensemble

Eq.4.9 is, besides the normalization, an unconstraint extremum of S. In many
cases however it might be appropriate to impose further conditions on the sys-
tem. For example, if we allow the energy of a system to fluctuate, we may still
impose that it has a given averaged energy:

〈E〉 =

N∑
i=1

piEi. (4.17)

If this is the case we have to minimize

I = S + λ

( N∑
i=1

pi − 1

)
− kBβ

( N∑
i=1

piEi − 〈E〉

)

= −kB

N∑
i=1

pi log pi + λ

( N∑
i=1

pi − 1

)
− kBβ

( N∑
i=1

piEi − 〈E〉

)
(4.18)

We set the derivative of I w.r.t pi equal zero:

∂I

∂pj
= −kB (log pi + 1) + λ− kBβEi = 0 (4.19)
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which gives

pi = exp

(
λ

kB
− 1− βEi

)
=

1

Z
exp (−βEi) (4.20)

where the constant Z (or equivalently the Lagrange multiplier λ) are determined
by

Z =
∑
i

exp (−βEi) (4.21)

which guarantees normalization of the probabilities.
The Lagrange multiplier β is now determined via

〈E〉 =
1

Z

∑
i

Ei exp (−βEi) = − ∂

∂β
logZ. (4.22)

This is in general some implicit equation for β given 〈E〉. However, there is a
very intriguing interpretation of this Lagrange multiplier that allows us to avoid
solving for β (〈E〉) and gives β its own physical meaning.

For the entropy follows (log pi = −βEi − logZ)

S = −kB

N∑
i=1

pi log pi = kB

N∑
i=1

pi (βEi + logZ)

= kBβ 〈E〉+ kB logZ = −kBβ
∂

∂β
logZ + kB logZ (4.23)

If one substitutes:

β =
1

kBT
(4.24)

it holds

S = kBT
∂ logZ

∂T
+ kB logZ =

∂ (kBT logZ)

∂T
(4.25)

Thus, there is a function
F = −kBT logZ (4.26)

which gives

S = −∂F
∂T

(4.27)

and

〈E〉 =
∂

∂β
βF = F + β

∂F

∂β
= F + TS (4.28)

Comparison with our results in thermodynamics lead after the identification of
〈E〉 with the internal energy U to:

T : temperature

F : free energy. (4.29)

Thus, it might not even be useful to ever express the thermodynamic variables
in terms of 〈E〉 = U , but rather keep T .

The most outstanding results of these considerations are:
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• the statistical probabilities for being in a state with energy Ei are

pi ∼ exp

(
− Ei
kBT

)
(4.30)

• all thermodynamic properties can be obtained from the so called partition
function

Z =
∑
i

exp (−βEi) (4.31)

• within quantum mechanics it is useful to introduce the so called density
operator

ρ =
1

Z
exp (−βH) , (4.32)

where

Z = tr exp (−βH) (4.33)

ensures that trρ = 1. The equivalence between these two representations
can be shown by evaluating the trace with respect to the eigenstates of
the Hamiltonian

Z =
∑
n

〈n| exp (−βH) |n〉 =
∑
n

〈n|n〉 exp (−βEn)

=
∑
n

exp (−βEn) (4.34)

as expected.

The evaluation of this partition sum is therefore the major task of equilibrium
statistical mechanics.

4.2.1 Spin 1
2

particles within an external field (paramag-
netism)

Consider a system of spin- 1
2 particles in an external field B = (0, 0, B) charac-

terized by the Hamiltonian

H = −gµB

N∑
i=1

ŝz,iB (4.35)

where µB = e~
2mc = 9.27× 10−24JT−1 = 0.671 41 kBK/T is the Bohr magneton.

Here the operator of the projection of the spin onto the z-axis, ŝz,i, of the
particle at site i has the two eigenvalues

sz,i = ±1

2
(4.36)
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Using for simplicity g = 2 gives with Si = 2sz,i = ±1, the eigenenergies are
characterized by the set of variables {Si}

E{Si} = −µB

N∑
i=1

SiB. (4.37)

Different states of the system can be for example

S1 = 1, S2 = 1,..., SN = 1 (4.38)

which is obviously the ground state if B > 0 or

S1 = 1, S2 = −1,..., SN = −1 (4.39)

etc. The partition function is now given as

Z =
∑
{Si}

exp

(
βµB

N∑
i=1

SiB

)

=
∑

S1=±1

∑
S2=±1

...
∑

SN=±1

exp

(
βµB

N∑
i=1

SiB

)

=
∑

S1=±1

∑
S2=±1

...
∑

SN=±1

N∏
i=1

exp (βµBSiB)

=
∑

S1=±1

eβµBS1B
∑

S2=±1

eβµBS2B ...
∑

SN=±1

eβµBSNB

=

( ∑
S=±1

eβµBSB

)N
= (Z1)

N

where Z1 is the partition function of only one particle. Obviously statistical
mechanics of only one single particle does not make any sense. Nevertheless
the concept of single particle partition functions is useful in all cases where the
Hamiltonian can be written as a sum of commuting, non-interacting terms and
the particles are distinguishable, i.e. for

H =

N∑
i=1

h (Xi) (4.40)

with wave function
|Ψ〉 =

∏
i

|ni〉 (4.41)

with
h (Xi) |ni〉 = εn |ni〉 . (4.42)

It holds that ZN = (Z1)
N

where Z1 = tr exp (−βh).
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For our above example we can now easily evaluate

Z1 = eβµBB + e−βµBB = 2 cosh (βµBB) (4.43)

which gives

F = −NkBT log

[
2 cosh

(
µBB

kBT

)]
(4.44)

For the internal energy follows

U = 〈E〉 = − ∂

∂β
logZ = −µBNB tanh

(
µBB

kBT

)
(4.45)

which immediately gives for the expectation value of the spin operator

〈ŝzi 〉 =
1

2
tanh

(
µBB

kBT

)
. (4.46)

The entropy is given as

S = −∂F
∂T

= NkB log

[
2 cosh

(
µBB

kBT

)]
− NµBNB

T
tanh

(
µBB

kBT

)
(4.47)

which turns out to be identical to S = U−F
T .

If B = 0 it follows U = 0 and S = NkB log 2, i.e. the number of configura-
tions is degenerate (has equal probability) and there are 2N such configurations.

For finite B holds

S (kBT � µBB)→ NkB

(
log 2− 1

2

(
µBB

kBT

)2

...

)
(4.48)

whereas for

S (kBT � µBB) → N
µBB

T
+Ne

− 2µBB

kBT −N µBB

T

(
1− 2e

− 2µBB

kBT

)
→ N2µBB

T
e
− 2µBB

kBT → 0 (4.49)

in agreement with the third law of thermodynamics.
The Magnetization of the system is

M = gµB

N∑
i=1

ŝi (4.50)

with expectation value

〈M〉 = NµB tanh

(
µBB

kBT

)
= −∂F

∂B
, (4.51)

i.e.
dF = −〈M〉 dB − SdT. (4.52)
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This enables us to determine the magnetic susceptibility

χ =
∂ 〈M〉
∂B

=
Nµ2

B

kBT
=
C

T
. (4.53)

which is called the Curie-law.
If we are interested in a situation where not the external field, but rather

the magnetization is fixed we use instead of F the potential

H = F + 〈M〉B (4.54)

where we only need to invert the 〈M〉-B dependence, i.e. with

B (〈M〉) =
kBT

µB
tanh−1

(
〈M〉
NµB

)
. (4.55)

4.2.2 Quantum harmonic oscillator

The analysis of this problem is very similar to the investigation of ideal Bose
gases that will be investigated later during the course. Lets consider a set of
oscillators. The Hamiltonian of the problem is

H =

N∑
i=1

(
p2
i

2m
+
k

2
x2
i

)
where pi and xi are momentum and position operators of N independent quan-
tum Harmonic oscillators. The energy of the oscillators is

E =

N∑
i=1

~ω0

(
ni +

1

2

)
(4.56)

with frequency ω0 =
√
k/m and zero point energy E0 = N

2 ~ω0. The integers
ni determine the oscillator eigenstates of the i-th oscillator. They can take the
values from 0 to infinity. The Hamiltonian is of the form H =

∑N
i=1 h (pi, xi)

and it follows for the partition function

ZN = (Z1)
N
.

The single oscillator partition function is

Z1 =

∞∑
n=0

e−β~ω0(n+ 1
2 ) = e−β~ω0/2

∞∑
n=0

e−β~ω0n

=
e−β~ω0/2

1− e−β~ω0
.

This yields for the partition function

logZN = N logZ1 = −Nβ~ω0/2−N log
(
1− e−β~ω0

)
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which enables us to determine the internal energy

〈E〉 = − ∂

∂β
logZN

= N~ω0

(
1

eβ~ω0 − 1
+

1

2

)
.

The mean value of the oscillator quantum number is then obviously given as

〈ni〉 = 〈n〉 =
1

eβ~ω0 − 1
,

which tells us that for kBT � ~ω0, the probability of excited oscillator states is
exponentially small. For the entropy follows from

F = −kBT logZN

= N~ω0/2 +NkBT log
(

1− e−
~ω0
kBT

)
(4.57)

that

S = −∂F
∂T

= −kBN log
(

1− e−
~ω0
kBT

)
+N

~ω0

T

1

e
~ω0
kBT − 1

= kB ((〈n〉+ 1) log (1 + 〈n〉)− 〈n〉 log 〈n〉) (4.58)

As T → 0 (i..e. for kBT � ~ω0) holds

S ' kBN
~ω0

kBT
e
− ~ω0
kBT → 0 (4.59)

in agreement with the 3rd law of thermodynamics, while for large kBT � ~ω0

follows

S ' kBN log

(
kBT

~ω0

)
. (4.60)

For the heat capacity follows accordingly

C = T
∂S

∂T
= NkB

(
~ω0

kBT

)2
1

4 sinh2
(

~ω0

kBT

) . (4.61)

Which vanishes at small T as

C ' NkB
(

~ω0

kBT

)2

e
− ~ω0
kBT , (4.62)

while it reaches a constant value

C ' NkB (4.63)

as T becomes large. The last result is a special case of the equipartition theorem
that will be discussed later.
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4.3 Heat capacity and Maxwell relations

The knowledge of the probability distribution

pi =
1

Z
exp (−βEi)

allows for a statistical interpretation of various thermodynamic quantities, if we
use Z =

∑
i exp (−βEi). As we discussed earlier, the free energy

F = −kBT logZ (4.64)

determines the mean (internal) energy

〈E〉 =
∂

∂β
βF = F + β

∂F

∂β
= F + TS (4.65)

It holds indeed

〈E〉 = − ∂

∂β
log
∑
i

exp (−βEi)

=
1

Z

∑
i

Ei exp (−βEi) =
∑
i

Eipi (4.66)

It is then tempting to analyze the heat capacity

C =
∂ 〈E〉
∂T

=
∂β

∂T

∂ 〈E〉
∂β

= − 1

kBT 2

∂ 〈E〉
∂β

(4.67)

It holds

∂ 〈E〉
∂β

=
∂

∂β

1

Z

∑
i

Ei exp (−βEi)

= − 1

Z2

∂Z

∂β

∑
i

Ei exp (−βEi)−
1

Z

∑
i

E2
i exp (−βEi)

= −
∑
i

E2
i pi +

(∑
i

Eipi

)2

. (4.68)

This yields

C = kB

〈
E2
〉
− 〈E〉2

(kBT )
2 = kB

〈
(E − 〈E〉)2

〉
(kBT )

2 (4.69)

i.e. the heat capacity is a measure of the energy fluctuations of a system.
Notice that C and 〈E〉 are extensive. Thus, we introduce the energy per particle
εi = Ei/N and the specific heat capacity c = C/N and obtain〈

(ε− 〈ε〉)2
〉

=
ckBT

2

N
(4.70)
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which implies that the fluctuations of the energy per particle vanishes as N →
∞.

Let X be a given extensive thermodynamic variable (e.g. volume) and x be
the conjugated variable (pressure in case of volume), such that

dU = TdS − xdX (4.71)

and

dF = −SdT − xdX (4.72)

The Maxwell relations imply that

∂S

∂X
=
∂x

∂T
(4.73)

In the canonical formalism, the dependence on X enters through the variation of
the energy eigenvalues Ei (X). For example, in case of X being the volume, the
energy changes if the boundary conditions are being changed as function of a
variation of the volume. It is interesting to analyze the temperature dependence
of x. We start with

x = − ∂F
∂X

= kBT
∂

∂X
logZ

=
kBT

Z

∂

∂X

∑
i

exp (−βEi) = − 1

Z

∑
i

exp (−βEi)
∂Ei
∂X

= −
〈
∂E

∂X

〉
(4.74)

The identity ∂F
∂X =

〈
∂E
∂X

〉
is also referred to as the Hellman-Feynman theorem.

We can now analyze

∂x

∂T
= − 1

kBT 2

∂x

∂β
= − 1

kBT 2

1

Z2

∂Z

∂β

∑
i

exp (−βEi)
∂Ei
∂X

− 1

kBT 2Z

∑
i

exp (−βEi)Ei
∂Ei
∂X

= −
〈
E ∂E

∂X

〉
−
〈
∂E
∂X

〉
〈E〉

kBT 2
= −

〈
(E − 〈E〉)

(
∂E
∂X −

〈
∂E
∂X

〉)〉
kBT 2

(4.75)

i.e. ∂x
∂T determines the correlations between the energy and ∂E

∂X . On the other
hand it holds

S = −kB

∑
i

pi log pi = −∂F
∂T

(4.76)

and we have
∂S

∂X
= − ∂2F

∂X∂T
=
∂x

∂T
. (4.77)
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Finally, it holds

∂x

∂X
=

1

Z2

∂Z

∂X

∑
i

exp (−βEi)
∂Ei
∂X
− 1

Z

∑
i

exp (−βEi)
∂2Ei
∂X2

+
β

Z

∑
i

exp (−βEi)
(
∂Ei
∂X

)2

= −
〈
∂2E

∂X2

〉
. (4.78)

4.4 The micro-canonical ensemble

The canonical ensemble is an approach to determine the thermodynamic po-
tentials and equation of state. In both cases we assumed fluctuations of energy
and in the grand canonical case even fluctuations of the particle number. Only
the expectation numbers of the energy or particle number are kept fixed.

A much more direct approach to determine thermodynamic quantities is
based on the micro-canonical ensemble. In accordance with our earlier analysis
of maximizing the entropy we start from

S = kB logN (E) (4.79)

where we consider an isolated system with conserved energy, i.e. take into
account that the we need to determine the number of states with a given energy.
If S (E) is known and we identity E with the internal energy U we obtain the
temperature from

1

T
=
∂S (E)

∂E

∣∣∣∣
V,N

. (4.80)

4.4.1 Quantum harmonic oscillator

Let us again consider a set of oscillators with energy

E = E0 +

N∑
i=1

~ω0ni (4.81)

and zero point energy E0 = N
2 ~ω0. We have to determine the number or

realizations of {ni} of a given energy. For example N (E0) = 1. There is one
realization (ni = 0 for all i) to get E = E0. There are N realization to have
an energy E = E0+ω0, i.e. N (E0 + ~ω0) = N . The general case of an energy
E = E0 + M~ω0 can be analyzed as follows. We consider M black balls and
N − 1 white balls. We consider a sequence of the kind

b1b2...bn1
wb1b2...bn2

w....wb1b2...bnN (4.82)
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where b1b2...bni stands for ni black balls not separated by a white ball. We need
to find the number of ways how we can arrange the N − 1 white balls keeping
the total number of black balls fixed at M . This is obviously given by

N (E0 +M~ω0) =

(
M +N − 1

N − 1

)
=

(M +N − 1)!

(N − 1)!M !
(4.83)

This leads to the entropy

S = kB (log (M +N − 1)!− log (N − 1)!−M !) (4.84)

For large N it holds logN ! ' N (logN − 1)

S = kBN log

(
N +M

N

)
+ kBM log

(
N +M

M

)
Thus it holds

β =
1

kB

∂S

∂E
=

1

kB

1

~ω0

∂S

∂M
=

1

~ω0
log

(
1 +

N

M

)
(4.85)

Thus it follows:

M =
N

eβ~ω0 − 1
(4.86)

Which finally gives

E = N~ω0

(
1

eβ~ω0 − 1
+

1

2

)
(4.87)

which is the result obtained within the canonical approach.
It is instructive to analyze the entropy without going to the large N and M

limit. Then

S = kB log
Γ (N +M)

Γ (N) Γ (M + 1)
(4.88)

and

β =
1

~ω0
(ψ (N +M)− ψ (M + 1)) (4.89)

where ψ (z) = Γ′(z)
Γ(x) is the digamma function. It holds

ψ (L) = logL− 1

2L
− 1

12L2
(4.90)

for large L, such that

β =
1

~ω0
log

(
N +M

M

)
+

1

2

N

(N +M)M
(4.91)

and we recover the above result for large N,M . Here we also have an approach
to make explicit the corrections to the leading term. The canonical and micro-

canonical obviously differ for small system since β log
(

1 + ~ω0N
E−E0

)
is the exact

result of the canonical approach for all system sizes.
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Another way to look at this is to write the canonical partition sum as

Z =
∑
i

eβEi =
1

∆E

ˆ
dEN (E) e−βE =

1

∆E

ˆ
dEe−βE+S(E)/kB (4.92)

If E and S are large (proportional to N) the integral over energy can be esti-
mated by the largest value of the integrand, determined by

−β +
1

kB

∂S (E)

∂E
= 0. (4.93)

This is just the above micro-canonical behavior. At the so defined energy it
follows

F = −kBT logZ = E − TS (E) . (4.94)

Again canonical and micro-canonical ensemble agree in the limit of large sys-
tems, but not in general.



Chapter 5

Ideal gases

5.1 Classical ideal gases

5.1.1 The non-relativistic classical ideal gas

Before we study the classical ideal gas within the formalism of canonical en-
semble theory we summarize some of its thermodynamic properties. The two
equations of state (which we assume to be determined by experiment) are

U =
3

2
NkBT

pV = NkBT (5.1)

We can for example determine the entropy by starting at

dU = TdS − pdV (5.2)

which gives (for fixed particle number)

dS =
3

2
NkB

dT

T
+NkB

dV

V
(5.3)

Starting at some state T0,V0 with entropy S0 we can integrate this

S (T, V ) = S0 (T, V ) +
3

2
NkB log

T

T0
+NkB log

V

V0

= NkB

(
s0 (T, V ) + log

[(
T

T0

)3/2
V

V0

])
. (5.4)

Next we try to actually derive the above equations of state. We start from
the Hamiltonian

H =
∑
i

p2
i

2m
. (5.5)

39
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and use that a classical system is characterized by the set of three dimensional
momenta and positions {pi,xi}. This suggests to write the partition sum as

Z =
∑
{pi,xi}

exp

(
−β
∑
i

p2
i

2m

)
. (5.6)

For practical purposes it is completely sufficient to approximate the sum by an
integral, i.e. to write∑

p,x

f (p, x) =
∆p∆x

∆p∆x

∑
p,x

f (p, x) '
ˆ

dpdx

∆p∆x
f (p, x) . (5.7)

Here ∆p∆x is the smallest possible unit it makes sense to discretize momentum
and energy in. Its value will only be an additive constant to the partition func-
tion, i.e. will only be an additive correction to the free energy ∼ 3NT log ∆p∆x.
The most sensible choice is certainly to use

∆p∆x = h (5.8)

with Planck’s quantum h = 6.6260755×10−34Js. Below, when we consider ideal
quantum gases, we will perform the classical limit and demonstrate explicitly
that this choice for ∆p∆x is the correct one. It is remarkable, that there seems
to be no natural way to avoid quantum mechanics in the description of a classical
statistical mechanics problem. Right away we will encounter another left-over
of quantum physics when we analyze the entropy of the ideal classical gas.

With the above choice for ∆p∆x follows:

Z =

N∏
i=1

ˆ
ddpid

dxi
hd

exp

(
−β p

2
i

2m

)

= V N
N∏
i=1

ˆ
ddpi
hd

exp

(
−β p

2
i

2m

)

=

(
V

λd

)N
, (5.9)

where we used ˆ
dp exp

(
−αp2

)
=

√
π

α
, (5.10)

and introduced:

λ =

√
βh2

2πm
(5.11)

which is the thermal de Broglie wave length. It is the wavelength obtained via

kBT = C
~2k2

λ

2m
and kλ =

2π

λ
(5.12)



5.1. CLASSICAL IDEAL GASES 41

with C some constant of order unity. If we compare both expressions, it follow

λ =
√

Ch2β
2m =

√
Ch2

2mkBT
, i.e. C = 1/π is indeed simply a constant of order

unity. In case of a generic ideal gas with energy momentum relation ε (p), it
holds in d-dimensions: (

h

λ

)d
=

ˆ
ddp exp (−βε (p)) .

For the free energy follows

F (V, T ) = −kBT logZ = −NkBT log

(
V

λ3

)
(5.13)

Using
dF = −SdT − pdV (5.14)

gives for the pressure:

p = − ∂F

∂V

∣∣∣∣
T

=
NkBT

V
, (5.15)

which is the well known equation of state of the ideal gas. Next we determine
the entropy

S = − ∂F

∂T

∣∣∣∣
V

= NkB log

(
V

λ3

)
− 3NkBT

∂ log λ

∂T

= NkB log

(
V

λ3

)
+

3

2
NkB (5.16)

which gives

U = F + TS =
3

2
NkBT. (5.17)

Thus, we recover both equations of state, which were the starting points of
our earlier thermodynamic considerations. Nevertheless, there is a discrepancy
between our results obtained within statistical mechanics and what follows from
thermodynamics. The entropy is not extensive but has a term of the form
N log V which grows faster with the system size than linear and thus seems to
overestimate the number of states.

The issue is that there are physical configurations, where (for some values
for the momenta PA and PB)

p1 = PA and p2 = PB (5.18)

as well as
p2 = PA and p1 = PB , (5.19)

i.e. we counted them both. Assuming indistinguishable particles however, all
what matters are whether there is some particle with momentum PA and some
particle with PB , but not which particles are in those states. Thus we assumed
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particles to be distinguishable. There are however N ! ways to relabel the par-
ticles which are all identical. We simply counted all these configurations. The
proper expression for the partition sum is therefore

Z =
1

N !

N∏
i=1

ˆ
ddpid

dxi
hd

exp

(
−β p

2
i

2m

)
=

1

N !

(
V

λd

)N
(5.20)

Using

logN ! = N (logN − 1) (5.21)

valid for large N , gives

F = −NkBT log

(
V

λ3

)
+NkBT (logN − 1)

= −NkBT

(
1 + log

(
V

Nλ3

))
. (5.22)

This result differs from the earlier one by a factor NkBT (logN − 1) which is
independent of the volume. Thus that the equation of state for the pressure is
unchanged by this issue. However, for the entropy follows now

S = NkB log

(
V

Nλ3

)
+

5

2
NkB (5.23)

Which gives again

U = F + TS =
3

2
NkBT. (5.24)

The reason that the internal energy is correct is due to the fact that it can
alternatively be written as an expectation value

U =

1
N !

N∏
i=1

´
ddpid

dxi
hd

∑
i
p2i
2m exp

(
−β p2i

2m

)
1
N !

N∏
i=1

´
ddpiddxi

hd
exp

(
−β p2i

2m

) (5.25)

and the factor N ! does not change the value of U . The pre-factor N ! is called
Gibbs correction factor.

The general partition function of a classical real gas or liquid with pair
potential V (xi − xj) is then characterized by the partition function

Z =
1

N !

ˆ N∏
i=1

ddpid
dxi

hd
exp

−β N∑
i=1

p2
i

2m
− β

N∑
i,j=1

V (xi − xj)

 . (5.26)
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5.1.2 Binary classical ideal gas

We consider a classical, non-relativistic ideal gas, consisting of two distinct types
of particles. There are NA particles with mass MA and NB particles with mass
MB in a volume V . The partition function is now

Z =
V NA+NB

λ3NA
A λ3NB

A NA!NB !
(5.27)

and yields with logN ! = N (logN − 1)

F = −NAkBT

(
1 + log

(
V

NAλ3
A

))
−NBkBT

(
1 + log

(
V

NBλ3
A

))
(5.28)

This yields

p =
NA +NB

V
kBT (5.29)

for the pressure and

S = NAkB log

(
V

NAλ3
A

)
+NBkB log

(
V

NBλ3
B

)
+

5

2
(NA +NB) kB (5.30)

for the entropy. We can compare this result with the entropy of an ideal gas of
N = NA +NB particles.

S0 = (NA +NB) kB log

(
V

(NA +NB)λ3

)
+

5

2
N kB (5.31)

It follows

S − S0 = NAkB log

(
(NA +NB)λ3

NAλ3
A

)
+NBkB log

(
(NA +NB)λ3

NBλ3
B

)
(5.32)

which can be simplified to

S − S0 = −NkB

(
φ log

(
λ3
A

λ3
φ

)
+ (1− φ) log

(
λ3
B

λ3
(1− φ)

))
(5.33)

where φ = NA
NA+NB

. The additional contribution to the entropy is called mixing
entropy.

5.1.3 The ultra-relativistic classical ideal gas

Our calculation for the classical, non-relativistic ideal gas can equally be applied
to other classical ideal gases with an energy momentum relation different from

ε (p) = p2

2m . For example in case of relativistic particles one might consider

ε (p) =
√
m2c4 + c2p2 (5.34)
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which in case of massless particles (photons) becomes

ε (p) = cp. (5.35)

Our calculation for the partition function is in many steps unchanged:

Z =
1

N !

N∏
i=1

ˆ
d3pid

3xi
hd

exp (−βcpi)

=
1

N !

(
V

h3

)N (ˆ
d3p exp (−βcp)

)N
(5.36)

The remaining momentum integral can be performed easily

I =

ˆ
d3p exp (−βcp) = 4π

ˆ ∞
0

p2dp exp (−βcp)

=
4π

(βc)
3

ˆ ∞
0

dxx2e−x =
8π

(βc)
3 . (5.37)

This leads to

Z =
1

N !

(
8πV

(
kBT

hc

)3
)N

(5.38)

where obviously the thermal de Broglie wave length of the problem is now given
as

λ =
hc

kBT
. (5.39)

For the free energy follows with logN ! = N (logN − 1) for large N :

F = −NkBT

[
1 + log

(
8πV

Nλ3

)]
. (5.40)

This allows us to determine the equation of state

p = −∂F
∂V

=
NkBT

V
(5.41)

which is identical to the result obtained for the non-relativistic system. This is
because the volume dependence of any classical ideal gas, relativistic or not, is
just the V N term such that

F = −NkBT log V + f (T,N) (5.42)

where f does not depend on V , i.e. does not affect the pressure. For the internal
energy follows

U = F − F ∂F
∂T

= 3NkBT (5.43)

which is different from the non-relativistic limit.
Comments:
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• In both ideal gases we had a free energy of the type

F = −NkBTf

(
(V/N)

1/3

λ

)
(5.44)

with known function f (x). The main difference was the de Broglie wave
length.

λcl =
h√

mkBT

λrel =
hc

kBT
(5.45)

Assuming that there is a mean particle distance d, it holds V ' d3N such
that

F = −NkBTf

(
d

λ

)
. (5.46)

Even if the particle-particle interaction is weak, we expect that quantum
interference terms become important if the wavelength of the particles be-
comes comparable or larger than the inter-particle distance, i.e. quantum
effects occur if

λ > d (5.47)

Considering now the ratio of λ for two systems (a classical and a relativistic
one) at same temperature it holds(

λrel

λcl

)2

=
mc2

kBT
(5.48)

Thus, if the thermal energy of the classical system is below mc2 (which
must be true by assumption that it is a non-relativistic object), it holds
that λrel

λcl
� 1. Thus, quantum effects should show up first in the relativis-

tic system.

• One can also estimate at what temperature is the de Broglie wavelength
comparable to the wavelength of 500nm, i.e. for photons in the visible
part of the spectrum. This happens for

T ' hc

kB500nm
' 28, 000K (5.49)

Photons which have a wave length equal to the de Broglie wavelength at
room temperature are have a wavelength

hc

kB300K
' 50µm (5.50)
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• Considering the more general dispersion relation ε (p) =
√
m2c4 + c2p2,

the non-relativistic limit should be applicable if kBT � mc2, whereas
in the opposite limit kBT � mc2 the ultra-relativistic calculation is the
right one. This implies that one only needs to heat up a system above the
temperature mc2/kB and the specific heat should increase from 3

2NkB to
twice this value. Of course this consideration ignores the effects of particle
antiparticle excitations which come into play in this regime as well.

5.1.4 Equipartition theorem

In classical mechanics one can make very general statements about the internal
energy of systems with a Hamiltonian of the type

H =

N∑
i=1

l∑
α=1

(
Aαp

2
i,α +Bαq

2
i,α

)
(5.51)

where i is the particle index and α the index of additional degrees of freedom,
like components of the momentum or an angular momentum. Here pi,α and
qi,α are the generalized momentum and coordinates of classical mechanics. The
internal energy is then written as

〈H〉 =

´ N∏
i=1

l∏
α=1

dpi,αdxi,α
h H exp (−βH)

´ N∏
i=1

l∏
α=1

dpi,αdxi,α
h exp (−βH)

= N

l∑
α=1

(´
dpαAαp

2
αe
−βAαp2α´

dpαe−βAαp
2
α

+

´
dqαBαq

2
αe
−βBαq2α´

dqαe−βBαq
2
α

)

= N

l∑
α=1

(
kBT

2
+
kBT

2

)
= NlkBT. (5.52)

Thus, every quadratic degree of freedom contributes by a factor kBT
2 to the

internal energy. In particular this gives for the non-relativistic ideal gas with
l = 3, Aα = 1

2m and Ba = 0 that 〈H〉 = 3
2NkBT as expected. Additional

rotational degrees of freedoms in more complex molecules will then increase
this number.

5.2 Ideal quantum gases

5.2.1 Occupation number representation

So far we have considered only classical systems or (in case of the Ising model or
the system of non-interacting spins) models of distinguishable quantum spins. If
we want to consider quantum systems with truly distinguishable particles, one
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has to take into account that the wave functions of fermions or bosons behave
differently and that states have to be symmetrized or antisymmetric. I.e. in
case of the partition sum

Z =
∑
n

〈
Ψn

∣∣e−βH ∣∣Ψn

〉
(5.53)

we have to construct many particle states which have the proper symmetry
under exchange of particles. This is a very cumbersome operation and turns
out to be highly impractical for large systems.

The way out of this situation is the so called second quantization, which
simply respects the fact that labeling particles was a stupid thing to begin with
and that one should characterize a quantum many particle system differently. If
the label of a particle has no meaning, a quantum state is completely determined
if one knows which states of the system are occupied by particles and which
not. The states of an ideal quantum gas are obviously the momenta since the
momentum operator

p̂l =
~
i
∇l (5.54)

commutes with the Hamiltonian of an ideal quantum system

H =

N∑
l=1

p̂2
l

2m
. (5.55)

In case of interacting systems the set of allowed momenta do not form the
eigenstates of the system, but at least a complete basis the eigenstates can be
expressed in. Thus, we characterize a quantum state by the set of numbers

n1 , n2 , ...nM (5.56)

which determine how many particles occupy a given quantum state with mo-
mentum p1, p2, ...pM . In a one dimensional system of size L those momentum
states are

pl =
~2πl

L
(5.57)

which guarantee a periodic wave function. For a three dimensional system we
have

plx,ly,lz =
~2π (lxex + lyey + lzez)

L
. (5.58)

A convenient way to label the occupation numbers is therefore np which deter-
mined the occupation of particles with momentum eigenvalue p. Obviously, the
total number of particles is:

N =
∑
p

np (5.59)

whereas the energy of the system is

E =
∑
p

npε (p) (5.60)
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If we now perform the summation over all states we can just write

Z =
∑
{np}

exp

(
−β
∑
p

npε (p)

)
δN,

∑
p np

(5.61)

where the Kronecker symbol δN,
∑

p np
ensures that only configurations with cor-

rect particle number are taken into account.

5.2.2 Grand canonical ensemble

At this point it turns out to be much easier to not analyze the problem for fixed
particle number, but solely for fixed averaged particle number 〈N〉. We already
expect that this will lead us to the grand-canonical potential

Ω = F − µN = U − TS − µN (5.62)

with
dΩ = −SdT − pdV −Ndµ (5.63)

such that
∂Ω

∂µ
= −N. (5.64)

In order to demonstrate this we generalize our derivation of the canonical en-
semble starting from the principle of maximum entropy. We have to maximize

S = −kB

N∑
i=1

pi log pi. (5.65)

with N the total number of macroscopic states, under the conditions

1 =

N∑
i=1

pi (5.66)

〈E〉 =

N∑
i=1

piEi (5.67)

〈N〉 =

N∑
i=1

piNi (5.68)

where Ni is the number of particles in the state with energy Ei. Obviously we
are summing over all many body states of all possible particle numbers of the
system. We have to minimize

I = S + λ

( N∑
i=1

pi − 1

)
− kBβ

( N∑
i=1

piEi − 〈E〉

)
+ kBν

( N∑
i=1

piNi − 〈N〉

)
(5.69)
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We set the derivative of I w.r.t pi equal zero:

∂I

∂pj
= −kB (log pi + 1) + λ− kBβEi + kBνNi = 0 (5.70)

which gives

pi = exp

(
λ

kB
− 1− βEi + νNi

)
=

1

Zg
exp (−βEi + νNi) (5.71)

where the constant Zg (and equivalently the Lagrange multiplier λ) are deter-
mined by

Zg =
∑
i

exp (−βEi + νNi) (5.72)

which guarantees normalization of the probabilities.
The Lagrange multiplier β is now determined via

〈E〉 =
1

Zg

∑
i

Ei exp (−βEi + νNi) = − ∂

∂β
logZg. (5.73)

whereas

〈N〉 =
1

Zg

∑
i

Ni exp (−βEi + νNi) =
∂

∂ν
logZg (5.74)

For the entropy S = −Ω−U+µN
T follows (log pi = −βEi + νNi − logZg)

S = −kB

N∑
i=1

pi log pi = kB

N∑
i=1

pi (βEi − νNi + logZ)

= kBβ 〈E〉 − kBν 〈N〉+ kB logZg =

= 〈E〉 − ν

β
〈N〉+ kBT logZg

−kBβ
∂

∂β
logZ + kB logZ (5.75)

which implies
Ω = −kBT logZg. (5.76)

We assumed again that β = 1
kBT

which can be verified since indeed S = −∂Ω
∂T

is fulfilled. Thus we can identify the chemical potential

µ =
ν

β
(5.77)

which indeed reproduces that

〈N〉 =
∂

∂ν
logZg = β

∂

∂µ
logZg = −∂Ω

∂µ
. (5.78)

Thus, we can obtain all thermodynamic variables by working in the grand
canonical ensemble instead.
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5.2.3 Partition function of ideal quantum gases

Returning to our earlier problem of non-interacting quantum gases we therefore
find

Zg =
∑
{np}

exp

(
−β
∑
p

np (ε (p)− µ)

)
(5.79)

for the grand partition function. This can be rewritten as

Zg =
∑
np1

∑
np2

...
∏
p

e−βnp(ε(p)−µ) =
∏
p

∑
np

e−βnp(ε(p)−µ) (5.80)

Fermions: In case of fermions np = 0, 1 such that

ZgFD =
∏
p

(
1 + e−β(ε(p)−µ)

)
(5.81)

which gives (FD stands for Fermi-Dirac)

ΩFD = −kBT
∑
p

log
(

1 + e−β(ε(p)−µ)
)

(5.82)

Bosons: In case of bosons np can take any value from zero to infinity and we
obtain ∑

np

e−βnp(ε(p)−µ) =
∑
np

(
e−β(ε(p)−µ)

)np

=
1

1− e−β(ε(p)−µ)
(5.83)

which gives (BE stands for Bose-Einstein)

ZgBE =
∏
p

(
1− e−β(ε(p)−µ)

)−1

(5.84)

as well as
ΩBE = kBT

∑
p

log
(

1− e−β(ε(p)−µ)
)
. (5.85)

5.2.4 Classical limit

Of course, both results should reproduce the classical limit. For large tempera-
ture follows via Taylor expansion:

Ωclass = −kBT
∑
p

e−β(ε(p)−µ). (5.86)

This can be motivated as follows: in the classical limit we expect the mean

particle distance, d0 ( 〈N〉V ' d−d0 ) to be large compared to the de Broglie wave
length λ, i.e. classically

d� λ. (5.87)
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The condition which leads to Eq.5.86 is e−β(ε(p)−µ) � 1. Since ε (p) > 0 this is
certainly fulfilled if eβµ � 1. Under this condition holds for the particle density

〈N〉
V

=
1

V

∑
p

e−β(ε(p)−µ) = eβµ
ˆ
ddp

hd
exp (−βε (p))

=
eβµ

λd
(5.88)

where we used that the momentum integral always yields the inverse de Broglie
lengthd. Thus, indeed if e−β(ε(p)−µ) � 1 it follows that we are in the classical
limit.

Analyzing further, Eq.5.86, we can write∑
p

f (ε (p)) =
∆p

∆p

∑
p

f (ε (p)) = ∆p−1

ˆ
d3pf (ε (p)) (5.89)

with

∆p =

(
h

L

)3

(5.90)

due to

plx,ly,lz =
~2π (lxex + lyey + lzez)

L
(5.91)

such that

Ωclass = −kBTV

ˆ
d3p

h3
e−β(ε(p)−µ) (5.92)

In case of the direct calculation we can use that the grand canonical parti-
tion function can be obtained from the canonical partition function as follows.
Assume we know the canonical partition function

Z (N) =
∑

i for fixed N

e−βEi(N) (5.93)

then the grand canonical sum is just

Zg (µ) =

∞∑
N=0

∑
i for fixed N

e−β(Ei(N)−µN) =

∞∑
N=0

eβµNZ (N) (5.94)

Applying this to the result we obtained for the canonical partition function

Z (N) =
1

N !

(
V

λ3

)N
=

1

N !

(
V

ˆ
d3p

h3
e−βε(p)

)N
(5.95)

Thus

Zg (µ) =

∞∑
N=0

1

N !

(
V

ˆ
d3p

h3
e−β(ε(p)−µ)

)N
= exp

(
V

ˆ
d3p

h3
e−β(ε(p)−µ)

)
(5.96)
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and it follows the expected result

Ωclass = −kBTV

ˆ
d3p

h3
e−β(ε(p)−µ) (5.97)

From the Gibbs Duhem relation

U = TS − pV + µN. (5.98)

we found earlier
Ω = −pV (5.99)

for the grand canonical ensemble. Since

〈N〉 = −∂Ωclass

∂µ
= −βΩclass (5.100)

follows
pV = NkBT (5.101)

which is the expected equation of state of the grand-canonical ensemble. Note,
we obtain the result, Eq.5.86 or Eq.5.92 purely as the high temperature limit
and observe that the indistinguishability, which is natural in the quantum limit,
survives the classical limit since our result agrees with the one obtained from
the canonical formalism with Gibbs correction factor. Also, the factor 1

h3 in the
measure follows naturally.

5.2.5 Analysis of the ideal fermi gas

We start from
Ω = −kBT

∑
p

log
(

1 + e−β(ε(p)−µ)
)

(5.102)

which gives

〈N〉 = −∂Ω

∂µ
=
∑
p

e−β(ε(p)−µ)

1 + e−β(ε(p)−µ)
=
∑
p

1

eβ(ε(p)−µ) + 1
=
∑
p

〈np〉 (5.103)

i.e. we obtain the averaged occupation number of a given quantum state

〈np〉 =
1

eβ(ε(p)−µ) + 1
(5.104)

Often one uses the symbol f (ε (p)− µ) = 〈np〉. The function

f (ω) =
1

eβω + 1
(5.105)

is called Fermi distribution function. For T = 0 this simplifies to

〈np〉 =

{
1 ε (p) < µ
0 ε (p) > µ

(5.106)
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States below the energy µ are singly occupied (due to Pauli principle) and states
above µ are empty. µ (T = 0) = EF is also called the Fermi energy.

In many cases will we have to do sums of the type

I =
1

V

∑
p

f (ε (p)) =
1

h3

ˆ
d3pf (ε (p)) (5.107)

these three dimensional integrals can be simplified by introducing the density
of states

ρ (ω) =

ˆ
d3p

h3
δ (ω − ε (p)) (5.108)

such that

I =

ˆ
dωρ (ω) f (ω) (5.109)

We can determine ρ (ω) by simply performing a substitution of variables ω =
ε (p) if ε (p) = ε (p) only depends on the magnitude |p| = p of the momentum

I =
4π

h3

ˆ
p2dpf (ε (p)) =

4π

h3

ˆ
dω

dp

dω
p2 (ω) f (ω) (5.110)

such that

ρ (ω) =
4πm

h3

√
2mω = V A0

√
ω (5.111)

with A0 = 4π
h3

√
2m3/2. Often it is more useful to work with the density of states

per particle

ρ0 (ω) =
V ρ (ω)

〈N〉
=

V

〈N〉
A0

√
ω. (5.112)

We determine the chemical potential as function of 〈N〉 for T = 0.

〈N〉 =
∑
p

f (ε (p)) = V

ˆ
ρ (ω)n (ω) dω

= V A0

ˆ EF

0

ω1/2dω = V
2

3
A0E

3/2
F (5.113)

which gives

EF =
~2

2m

(
6π2 〈N〉

V

)2/3

(5.114)

If V = d3N it holds that EF ∼ ~2

2md
−2. Furthermore it holds that

ρ0 (EF ) =
V

〈N〉
2m

4π2~2

(
6π2 〈N〉

V

)1/3

=
3

2

1

EF
(5.115)

Equally we can analyze the internal energy

U = − ∂

∂β
logZg = − ∂

∂β

∑
p

log
(

1 + e−β(ε(p)−µ)
)

=
∑
p

ε (p)

eβ(ε(p)−µ) + 1
(5.116)
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such that

U =
∑
p

ε (p) 〈np〉 =

ˆ
ρ (ω)ωn (ω − µ) dω =

3

5
〈N〉EF (5.117)

At finite temperatures, the evaluation of the integrals is a bit more subtle.
The details, which are only technical, will be discussed in a separate handout.
Here we will concentrate on qualitative results. At finite but small temperatures
the Fermi function only changes in a regime ±kBT around the Fermi energy. In
case of metals for example the Fermi energy with d ' 1 − 10Å leads to EF '
1...10eV i.e. EF /kB ' 104...105K which is huge compared to room temperature.
Thus, metals are essentially always in the quantum regime whereas low density
systems like doped semiconductors behave more classically.

If we want to estimate the change in internal energy at a small but finite
temperature one can argue that there will only be changes of electrons close to
the Fermi level. Their excitation energy is ∼ kBT whereas the relative number
of excited states is only ρ0 (EF ) kBT . Due to ρ0 (EF ) ∼ 1

EF
it follows in metals

ρ0 (EF ) kBT � 1. We therefore estimate

U ' 3

5
〈N〉EF + 〈N〉 ρ0 (EF ) (kBT )

2
+ ... (5.118)

at lowest temperature. This leads then to a specific heat at constant volume
and particle number

C (T, V,N) =
∂U (T, V,N)

∂T
∼ 2k2

B 〈N〉 ρ0 (EF )T

= 2k2
BV ρ (EF )T = γT (5.119)

which is linear, with a coefficient determined by the density of states at the
Fermi level. The correct result (see below) is

γ =
π2

3
k2

Bρ0 (EF ) (5.120)

which is almost identical to the one we estimated here. Note, this result does
not depend on the specific form of the density of states as long as ρ0 (EF ) is
a finite constant. It is much more general than the free electron case with a
square root density of states.

Let’s be a bit more careful with the analysis of the heat capacity. Suppose
we want to analyze

C (T, V, µ) = T
∂S (T, V, µ)

∂T
. (5.121)

We then consider the internal energy

U (T, V, µ) = U (S (T, V, µ) , V,N (T, V, µ)) (5.122)

such that
∂U (T, V, µ)

∂T
=
∂U

∂S

∂S (T, V, µ)

∂T
+
∂U

∂N

∂N (T, V, µ)

∂T
(5.123)
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from
dU = TdS − pdV + µdN (5.124)

follows
∂U (T, V, µ)

∂T
= T

∂S (T, V, µ)

∂T
+ µ

∂N (T, V, µ)

∂T
(5.125)

such that

C (T, V, µ) =
∂

∂T
(U (T, V, µ)− µN (T, V, µ)) (5.126)

It holds

U − µN = V

ˆ
ρ (ω)

ω − µ
eβ(ε−µ) + 1

dω

such that

C (T, V, µ) = V

ˆ
ρ (ω)

(ω − µ)
2

kBT 2

eβ(ε−µ)(
eβ(ε−µ) + 1

)2 dω.
The integral is confined to energies ε ' µ ± kBT . If the density of states is
indeed constant in this regime, we can approximate it by ρ (µ) and obtain

C (T, V, µ) = V ρ (µ)

ˆ
(ω − µ)

2

kBT 2

eβ(ε−µ)(
eβ(ε−µ) + 1

)2 dω
= V ρ (µ) k2

BT

ˆ ∞
−∞

x2ex

(ex + 1)
2 dx

It holds indeed
´∞
−∞

x2ex

(ex+1)2
dx = π2

3 and we obtain

C (T, V, µ) = V
π2

3
ρ (µ) k2

BT.

To compare this result with the heat capacity at constant particle number

C (T, V,N) = T
∂

∂T
S (T, V, µ (T,N, V ))

= C (T, V, µ) + T
∂S (T, V, µ)

∂µ

∂µ (T,N, V )

∂T

= C (T, V, µ) + T
∂N (T, V, µ)

∂T

∂µ (T,N, V )

∂T

∂N (T, V, µ)

∂T
= V

∂

∂T

ˆ
ρ (ω)

1

eβ(ε−µ) + 1
dω

= V

ˆ
ρ (ω)

(ω − µ)

kBT 2

eβ(ε−µ)(
eβ(ε−µ) + 1

)2 dω.
If one now assumes a constant density of states, the integral vanishes. Thus we
assume

ρ (ω) = ρ (µ) + ρ′ (µ) (ε− µ)
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and it follows
∂N (T, V, µ)

∂T
= V ρ′ (µ)

π2

3
k2
BT

Thus, even if ∂µ(T,N,V )
∂T stays constant, we can at small temperatures neglect

the difference between C (T, V, µ) and C (T, V,N).
Similarly one can analyze the magnetic susceptibility of a metal. Here the

energy of the up ad down spins is different once a magnetic field is applied, such
that a magnetization

M = µB (〈N↑〉 − 〈N↓〉)

= µB 〈N〉

(ˆ EF

0

ρ0 (ω + µBB)− ρ0 (ω − µBB)

)
dω (5.127)

For small field we can expand ρ0 (ω + µBB) ' ρ0 (ω) + ∂ρ0(ω)
∂ω µBB which gives

M = 2µ2
B 〈N〉B

ˆ EF

0

∂ρ0 (ω)

∂ω
dω

= 2µ2
B 〈N〉Bρ0 (EF ) (5.128)

This gives for the susceptibility

χ =
∂M

∂B
= 2µ2

B 〈N〉 ρ0 (EF ) . (5.129)

Thus, one can test the assumption to describe electrons in metals by considering
the ratio of χ and CV which are both proportional to the density of states at
the Fermi level.

5.2.6 The ideal Bose gas

Even without calculation is it obvious that ideal Bose gases behave very differ-
ently at low temperatures. In case of Fermions, the Pauli principle enforced the
occupation of all states up to the Fermi energy. Thus, even at T = 0 are states
with rather high energy involved. The ground state of a Bose gas is clearly
different. At T = 0 all bosons occupy the state with lowest energy, which is
in our case p = 0. An interesting question is then whether this macroscopic
occupation of one single state remains at small but finite temperatures. Here,
a macroscopic occupation of a single state implies

lim
〈N〉→∞

〈np〉
〈N〉

> 0. (5.130)

We start from the partition function

ΩBE = kBT
∑
p

log
(

1− e−β(ε(p)−µ)
)

(5.131)
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which gives for the particle number

〈N〉 = −∂Ω

∂µ
=
∑
p

1

eβ(ε(p)−µ) − 1
. (5.132)

Thus, we obtain the averaged occupation of a given state

〈np〉 =
1

eβ(ε(p)−µ) − 1
. (5.133)

Remember that Eq.5.132 is an implicit equation to determine µ (〈N〉). We
rewrite this as

〈N〉 = V

ˆ
dωρ (ω)

1

eβ(ω−µ) − 1
. (5.134)

The integral diverges if µ > 0 since then for ω ' µ

〈N〉 ' V
ˆ
dω

ρ (ω)

β (ω − µ)
→∞ (5.135)

if ρ (µ) 6= 0. Since ρ (ω) = 0 if ω < 0 it follows

µ ≤ 0. (5.136)

The case µ = 0 need special consideration. At least for ρ (ω) ∼ ω1/2, the above
integral is convergent and we should not exclude µ = 0.

Lets proceed by using

ρ (ω) = A0

√
ω (5.137)

with A0 = 4π
h3

√
2m3/2. Then follows

〈N〉
V

= A0

ˆ ∞
0

dω

√
ω

eβ(ω−µ) − 1

< A0

ˆ ∞
0

dω

√
ω

eβω − 1

= A0 (kBT )
3/2
ˆ ∞

0

dx
x1/2

ex − 1
(5.138)

It holds ˆ ∞
0

dx
x1/2

ex − 1
=

√
π

2
ς

(
3

2

)
' 2.32 (5.139)

We introduce

kBT0 = a0
~2

m

(
〈N〉
V

)2/3

(5.140)

with

a0 =
2π

ς
(

3
2

)2/3 ' 3.31. (5.141)
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The above inequality is then simply:

T0 < T. (5.142)

Our approach clearly is inconsistent for temperatures below T0 (Note, except
for pre-factors, kBT0 is a similar energy scale than the Fermi energy in ideal
fermi systems). Another way to write this is that

〈N〉 < 〈N〉
(
T

T0

)3/2

. (5.143)

Note, the right hand side of this equation does not depend on 〈N〉. It reflects
that we could not obtain all particle states below T0.

The origin of this failure is just the macroscopic occupation of the state with
p = 0. It has zero energy but has been ignored in the density of states since
ρ (ω = 0) = 0. By introducing the density of states we assumed that no single
state is relevant (continuum limit). This is obviously incorrect for p = 0. We
can easily repair this if we take the state p = 0 explicitly into account.

〈N〉 =
∑
p>0

1

eβ(ε(p)−µ) − 1
+

1

e−βµ − 1
(5.144)

for all finite momenta we can again introduce the density of states and it follows

〈N〉 = V

ˆ
dωρ (ω)

1

eβ(ω−µ) − 1
+

1

e−βµ − 1
(5.145)

The contribution of the last term

N0 =
1

e−βµ − 1
(5.146)

is only relevant if

lim
〈N〉→∞

N0

〈N〉
> 0. (5.147)

If µ < 0, N0 is finite and lim〈N〉→∞
N0

〈N〉 = 0. Thus, below the temperature T =

T0 the chemical potential must vanish in order to avoid the above inconsistency.
For T < T0 follows therefore

〈N〉 = 〈N〉
(
T

T0

)3/2

+N0 (5.148)

which gives us the temperature dependence of the occupation of the p = 0 state:
If T < T0

N0 = 〈N〉

(
1−

(
T

T0

)3/2
)
. (5.149)
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and N0 = 0 for T > T0. Then µ < 0.

For the internal energy follows

U = V

ˆ
dωρ (ω)ω

1

e−β(ω−µ) − 1
(5.150)

which has no contribution from the condensate which has ω = 0. The way the
existence of the condensate is visible in the energy is via µ (T < T0) = 0 such
that for T < T0

U = V A0

ˆ
dω

ω3/2

e−βω − 1
= V A0 (kBT )

5/2
ˆ ∞

0

dx
x3/2

e−x − 1
(5.151)

It holds again
´∞

0
dx x3/2

e−x−1 = 3
4

√
πς (5/2) ' 1.78. This gives

U = 0.77 〈N〉 kBT
(
T

T0

)3/2

(5.152)

leading to a specific heat (use U = αT 5/2)

C =
∂U

∂T
=

5

2
αT 3/2 =

5

2

U

T
∼ T 3/2. (5.153)

This gives

S =

ˆ T

0

c (T ′)

T ′
dT ′ =

5

2
α

ˆ T

0

T ′1/2dT ′ =
5

3
α T 3/2 =

5

3

U

T
(5.154)

which leads to

Ω = U − TS − µN = −2

3
U (5.155)

The pressure below T0 is

p = − ∂Ω

∂V
=

5

3

∂U

∂V
= 0.08

m3/2

h3 (kBT )
5/2

(5.156)

which is independent of V . This determines the phase boundary

pc = pc (vc) (5.157)

with specific volume v = V
〈N〉 at the transition:

pc = 1.59
~2

m
v−5/3. (5.158)
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5.2.7 Photons in equilibrium

A peculiarity of photons is that they do not interact with each other, but only
with charged matter. Because of this, photons need some amount of matter to
equilibrate. This interaction is then via absorption and emission of photons, i.e.
via a mechanism which changes the number of photons in the system.

Another way to look at this is that in relativistic quantum mechanics, parti-
cles can be created by paying an energy which is at least mc2. Since photons are
massless (and are identical to their antiparticles) it is possible to create, without
any energy an arbitrary number of photons in the state with ε (p) = 0. Thus,
it doesn’t make any sense to fix the number of photons. Since adding a photon
with energy zero to the equilibrium is possible, the chemical potential takes the
value µ = 0. It is often argued that the number of particles is adjusted such
that the free energy is minimal: ∂F

∂N = 0, which of course leads with µ = ∂F
∂N to

the same conclusion that µ vanishes.
Photons are not the only systems which behave like this. Phonons, the exci-

tations which characterize lattice vibrations of atoms also adjust their particle
number to minimize the free energy. This is most easily seen by calculating the
canonical partition sum of a system of Nat atoms vibrating in a harmonic po-
tential. As usual we find for non-interacting oscillators that Z (Nat) = Z (1)

Nat

with

Z (1) =

∞∑
n=0

e−β~ω0(n+ 1
2 ) = e−

β~ω0
2

1

1− e−β~ω0
(5.159)

Thus, the free energy

F = Nat
~ω0

2
+ kBTNat log

(
1− e−β~ω0

)
(5.160)

is (ignoring the zero point energy) just the grand canonical potential of bosons
with energy ~ω0 and zero chemical potential. The density of states is

ρ (ε) = Natδ (ε− ~ω0) . (5.161)

This theory can be more developed and one can consider coupled vibrations be-
tween different atoms. Since any system of coupled harmonic oscillators can be
mapped onto a system of uncoupled oscillators with modified frequency modes
we again obtain an ideal gas of bosons (phonons). The easiest way to determine
these modified frequency for low energies is to start from the wave equation for
sound

1

c2s

∂2u

∂t2
= ∇2u (5.162)

which gives with the ansatz u (r,t) = u0 exp (i (ωt− q · r)) leading to ω (q) =
cs |q|, with sound velocity cs. Thus, we rather have to analyze

F =
∑
q

~ω (q)

2
+ kBT

∑
q

log
(

1− e−β~ω(q)
)

(5.163)
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which is indeed the canonical (or grand canonical since µ = 0) partition sum
of ideal bosons. Thus, if we do a calculation for photons we can very easily
apply the same results to lattice vibrations at low temperatures. The energy
momentum dispersion relation for photons is

ε (p) = c |p| (5.164)

with velocity of light c. This gives

U =
∑
p

ε (p)
1

eβε(p) − 1
= V

ˆ
dε

ρ (ε) ε

eβε − 1
. (5.165)

The density of states follows as:

I =
1

V

∑
p

F (ε (p)) =
1

h3

ˆ
d3pF (cp)

=
1

h3
4π

ˆ
p2dpF (cp) =

4π

c3h3

ˆ
dεε2F (ε) . (5.166)

which gives for the density of states

ρ (ε) = g
4π

c3h3
ε2. (5.167)

Here g = 2 determines the number of photons per energy. This gives the
radiation energy as function of frequency ε =hω:

U =
gV ~
c32π2

ˆ
dω

ω3

eβ~ω − 1
(5.168)

The energy per frequency interval is

dU

dω
=

gV ~
c32π2

ω3

eβhω − 1
. (5.169)

This gives the famous Planck formula which was actually derived using thermo-
dynamic arguments and trying to combine the low frequency behavior

dU

dω
=
gV kBT

c32π2
ω2 (5.170)

which is the Rayleigh-Jeans law and the high frequency behavior

dU

dω
=

gV ~
c32π2

ω3eβ~ω (5.171)

which is Wien’s formula.
In addition we find from the internal energy that x = β~ω

U =
gV

~3c32π2
(kBT )

4
ˆ
dx

x3

ex − 1
(5.172)

=
gV π2

~3c330
(kBT )

4
(5.173)
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where we used
´
dx x3

ex−1 = π4

15 . U can then be used to determine all other
thermodynamic properties of the system.

Finally we comment on the applicability of this theory to lattice vibrations.
As discussed above, one important quantitative distinction is of course the value
of the velocity. The sound velocity, cs, is about 10−6 times the value of the
speed of light c = 2.99 × 108ms−1. In addition, the specific symmetry of a
crystal matters and might cause different velocities for different directions of
the sound propagation. Considering only cubic crystals avoids this complication.
The option of transverse and longitudinal vibrational modes also changes the
degeneracy factor to g = 3 in case of lattice vibrations. More fundamental
than all these distinctions is however that sound propagation implies that the
vibrating atom are embedded in a medium. The interatomic distance, a, will
then lead to an lower limit for the wave length of sound (λ > 2α) and thus to
an upper limit ∼ h/(2a) =hπa . This implies that the density of states will be
cut off at high energies.

Uphonons = g
4πV

c3sh
3

ˆ kBθD

0

dε
ε3

eβε − 1
. (5.174)

The cut off is expressed in terms of the Debye temperature θD. The most
natural way to determine this scale is by requiring that the number of atoms
equals the total integral over the density of states

Nat = V

ˆ kBθD

0

ρ (ε) dε = g
4πV

c3h3

ˆ kBθD

0

ε2dε = g
4πV

3c3h3
(kBθD)

3
(5.175)

This implies that the typical wave length at the cut off, λD, determined by
hcλ−1

D = kBθD is

Nat

V
= g

4π

3
λ−3
D (5.176)

If one argues that the number of atoms per volume determines the interatomic
spacing as V = 4π

3 a
3Nat leads finally to λD = 3.7a as expected. Thus, at low

temperatures T � θD the existence of the upper cut off is irrelevant and

Uphonons =
π2V

c3s~3

g

30
(kBT )

4
(5.177)

leading to a low temperature specific heat C ∼ T 3, whereas for high tempera-
tures T � θD

Uphonons =
π2V

3c3s~3

g

30
kBT (kBθD)

3
= NatkBT (5.178)

which is the expected behavior of a classical system. This makes us realize
that photons will never recover this classical limit since they do not have an
equivalent to the upper cut off θD.
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5.2.8 MIT-bag model for hadrons and the quark-gluon
plasma

Currently, the most fundamental building blocks of nature are believed to be
families of quarks and leptons. The various interactions between these particles
are mediated by so called intermediate bosons. In case of electromagnetism the
intermediate bosons are photons. The weak interaction is mediated by another
set of bosons, called W and Z. In distinction to photons these bosons turn out to
be massive and interact among each other (remember photons only interact with
electrically charged matter, not with each other). Finally, the strong interaction,
which is responsible for the formation of protons, neutrons and other hadrons,
is mediated by a set of bosons which are called gluons. Gluons are also self
interacting. The similarity between these forces, all being mediated by bosons,
allowed to unify their description in terms of what is called the standard model.

A particular challenge in the theory of the strong interaction is the formation
of bound states like protons etc. which can not be understood by using pertur-
bation theory. This is not too surprising. Other bound states like Cooper pairs
in the theory of superconductivity or the formation of the Hydrogen atom, where
a proton and an electron form a localized bound state, are not accessible using
perturbation theory either. There is however something special in the strong
interaction which goes under the name asymptotic freedom. The interaction
between quarks increases (!) with the distance between them. While at long
distance, perturbation theory fails, it should be possible to make some progress
on short distances. This important insight by Wilczek, Gross and Politzer led
to the 2004 Nobel price in physics. Until today hadronization (i.e. formation
of hadrons) is at best partly understood and qualitative insight was obtained
mostly using rather complex (and still approximate) numerical simulations.

In this context one should also keep in mind that the mass of the quarks
(mu ' 5MeV, md ' 10MeV) is much smaller than the mass of the proton
mp ' 1GeV. Here we use units with c = 1 such that masses are measured in
energy units. Thus, the largest part of the proton mass stems from the kinetic
energy of the quarks in the proton.

A very successful phenomenological theory with considerable predictive power
are the MIT and SLAC bag models. The idea is that the confinement of quarks
can be described by assuming that the vacuum is dia-electric with respect to
the color-electric field. One assumes a spherical hadron with distance R. The
hadron constantly feels an external pressure from the outside vacuum. This is
described by an energy

UB =
4π

3
BR3 (5.179)

where the so called bag constant B is an unknown constant. Since UB ' RF =
RAp with pressure p and bag area A it holds that B is an external pressure act-
ing on the bag. To determine B requires to solve the full underlying quantum
chromodynamics of the problem. Within the bag, particles are weakly interact-
ing and for our purposes we assume that they are non-interacting, i.e. quarks
and gluons are free fermions and bosons respectively. Since these particles are
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confined in a finite region their typical energy is

ε (p) ' cp ' c h
R

(5.180)

and the total energy is of order

U = c
h

R
+

4π

3
BR3 (5.181)

Minimizing this w.r.t. R yields

R0 =

(
ch

4π

)1/4

B−1/4 (5.182)

using a the known size of a proton R0 ' 1fm = 10−13cm gives B ' 60MeV/fm3.
In units where energy, mass, frequency and momentum are measured in electron
volts and length in inverse electron volts (c = h

2π = 1) this yields B ' 160MeV.
Using this simple picture we can now estimate the temperature needed to

melt the bag. If this happens the proton should seize to be a stable hadron and
a new state of matter, called the quark gluon plasma, is expected to form. This
should be the case when the thermal pressure of the gluons and quarks becomes
larger than the bag pressure B

pQ + pG = B (5.183)

Gluons and quarks are for simplicity assumed to be massless. In case of gluons
it follows, just like for photons, that (kB = 1)

pG = gG
π2

90
T 4 (5.184)

where gG = 16 is the degeneracy factor of the gluon. The calculation for quarks
is more subtle since we need to worry about the chemical potential of these
fermions. In addition, we need to take into account that we can always thermally
excite antiparticles. Thus we discuss the ultra-relativistic Fermi gas in the next
paragraph in more detail.

5.2.9 Ultra-relativistic fermi gas

In the ultra-relativistic limit kB T can be as large asmc2 and we need to take into

account that fermions can generate their antiparticles (e.g. positrons in addition
to electrons are excited). Electrons and positrons (quarks and antiquarks) are
always created and annihilated in pairs.

The number of observable electrons is

Ne =
∑
ε>0

1

eβ(ε−µ) − 1
(5.185)
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Since positrons are just 1−not observable electrons at negative energy, it follows

Np =
∑
ε<0

(
1− 1

eβ(ε−µ) − 1

)
=
∑
ε>0

1

eβ(ε+µ) − 1
(5.186)

The particle excess is then the one unaffected by creation and annihilation of
pairs

N = N+ −N− (5.187)

We conclude that electrons and positrons (quarks and antiquarks) can be consid-
ered as two independent ideal fermi systems with positive energy but chemical
potential of opposite sign

µe = −µp ≡ µ. (5.188)

It follows with ε = cp

logZg = g
∑
p

(
log
(

1 + e−β(ε(p)−µ)
)

+ log
(

1 + e−β(ε(p)+µ)
))

= g
4πV

h3c3

ˆ
ω2dω log

(
1 + e−β(ω−µ)

)
+ log

(
1 + e−β(ω+µ)

)
(5.189)

Performing a partial integration gives

logZg = g
4πV

h3c3
β

3

ˆ
ω3dω

(
1

eβ(ω−µ) + 1
+

1

eβ(ω+µ) + 1

)
(5.190)

substitute x = β (ω − µ) and y = β (ω + µ)

logZg = g
4πV

h3c3
1

3

ˆ ∞
−βµ

dx

(
x
β + µ

)3

eβx + 1
+

ˆ ∞
βµ

dy

(
y
β − µ

)3

eβx + 1


= g

4πV

h3c3
β−3

3

[ˆ ∞
0

dx
(x+ βµ)

3

eβx + 1
+

ˆ ∞
0

dy
(y − βµ)

3

eβx + 1

+

ˆ 0

−βµ
dx

(x+ βµ)
3

eβx + 1
−
ˆ βµ

0

dy
(y − βµ)

3

eβx + 1

]
(5.191)

The first two integrals can be directly combined, the last two after substitution
y = −x

logZg = g
4πV

h3c3
β−3

3

[ˆ ∞
0

dx
2x3 + 6x (βµ)

2

eβx + 1
+

ˆ βµ

0

dzz3

]
(5.192)

with z = x+ βµ. Using
ˆ
dx

x3

ex − 1
=

7π4

120ˆ
dx

x

ex − 1
=

π2

12
(5.193)
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follows finally

logZg =
gV

h3c3
4π

3
(kT )

3

(
7π4

120
+
π2

2

( µ

kT

)2

+
1

4

( µ

kT

)4
)

(5.194)

Similarly it follows

N =
g4πV

h3c3
(kT )

3

(
π2

3

µ

kT
+

1

3

( µ

kT

)4
)

(5.195)

It follows for the pressure immediately

p =
g

h3c3
4π

3
(kT )

4

(
7π4

120
+
π2

2

( µ

kT

)2

+
1

4

( µ

kT

)4
)

(5.196)

Using these results we can now proceed and determine, for a given density
of nucleons (or quarks) the chemical potential at a given temperature. For
example, in order to obtain about five times nuclear density

nQ = 2.55
1

fm3 (5.197)

at a temperature T ' 150MeV one has a value µ ' 2.05T .
Using the above value for the bag constant we are then in a position to

analyze our estimate for the transition temperature of the quark gluon plasma

pQ + pG = B (5.198)

which leads to

B = T 4
c

(
37π2

90
+
(µc
T

)2

+
1

2π2

(
µc
Tc

)4
)

(5.199)

For example at µc = 0 it follows Tc ' 0.7B1/4 ' 112MeV and for Tc = 0 it
holds µc = 2.1B1/4 ' 336MeV.

To relate density and chemical potential one only has to analyze

y = x+
x3

π2
(5.200)

with x = µ/T and y = 54
gQ

nQ
T 3 with gQ = 12.



Chapter 6

Interacting systems and

phase transitions

6.1 The classical real gas

In our investigation of the classical ideal gas we ignored completely the fact that
the particles interact with each other. If we continue to use a classical theory,
but allow for particle-particle pair interactions with potential U (ri − rj), we
obtain for the partition function

Z =

ˆ
d3Npd3Nr

h3NN !
e
−β
(∑

i

p2
i

2m+
∑
i<j U(ri−rj)

)

with d3Nr =
∏
i

d3r and similar for d3Np. The integration over momentum can

be performed in full analogy to the ideal gas and we obtain:

Z =
QN (V, T )

N !λdN
(6.1)

where we have:

QN (V, T ) =

ˆ
d3Nr exp

−β∑
i<j

U (ri − rj)


=

ˆ
d3Nr

∏
i<j

e−βUij (6.2)

If βUij � 1 it still holds that e−βUij ' 1 and an expansion is nontrivial, however
one can consider instead

fij = e−βUij − 1 (6.3)

67
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which is also well defined in case of large Uij . Then∏
i<j

(1 + fij) = 1 +
∑
i<j

fij +
∑

i<k;l<m

fikflm + ... (6.4)

And it follows

QN (V, T ) = V N + V N−1N (N − 1)

2

ˆ
d3r

(
e−βU(r) − 1

)
(6.5)

where we took into account that there are N(N−1)
2 pairs i < j. If we set

a (T ) =

ˆ
d3r

(
e−βU(r) − 1

)
(6.6)

follows

Z =
V N

N !λdN

(
1 +

N2

2V
a (T )

)
(6.7)

It follows for the equation of state that

p = −∂F
∂V

= kBT
∂ logZ

∂V
=
NkBT

V
− kBT

a
2

(
N
V

)2
1 + a

2

(
N
V

)2
' NkBT

V

(
1− a

2

N

V

)
(6.8)

An often used potential in this context is the Lennard-Jones potential

U (r) = U0

((r0

r

)12

− 2
(r0

r

)6
)

(6.9)

which has a minimum at r = r0 and consists of a short range repulsive and a
longer range attractive part. For simplicity we approximate this by

U (r) =

{
∞ r < r0

−U0

(
r0
r

)6
r ≥ r0

(6.10)

called Sutherland potential. Then

a (T ) = −4π

ˆ r0

0

r2dr + 4π

ˆ ∞
r0

r2
(
eβU0( r0r )

6

− 1
)
dr (6.11)

expanding for small potential gives with 4πβ
´∞
r0
r2U0

(
r0
r

)6
dr = 4π

3 r
3
0βU0 such

that

a (T ) = −4π

3
r3
0 (1− βU0) . (6.12)

This gives with v = V
N

p =
NkBT

V

(
1 +

2π

3v
r3
0 (1− βU0)

)
(6.13)
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or

p+
2π

3v2
r3
0U0 =

kBT

v

(
1 +

2πr3
0

3v

)
= kBT

(
v − 2πr3

0

3

)−1

(6.14)

which gives (
p+

a

v2

)
(v − b) = kBT (6.15)

which is the van der Waals equation of state with

a =
2π

3
r3
0U0

b =
2πr3

0

3
(6.16)

The analysis of this equation of state yields that for temperatures below

Tcr =
a

27bkB
=

U0

27kB
(6.17)

there are three solutions Vi of Eq.?? for a given pressure. One of these solutions
(the one with intermediate volume) can immediately be discarded since here
dp
dV > 0, i.e. the system has a negative compressibility (corresponding to a local
maximum of the free energy). The other two solutions can be interpreted as
coexistent high density (liquid) and low density (gas) fluid.

6.2 Classification of Phase Transitions

Phase transitions are transitions between qualitatively distinct equilibrium states
of matter such as solid to liquid, ferromagnet to paramagnet, superconductor to
normal conductor etc. The first classification of phase transitions goes back to
1932 when Paul Ehrenfest argued that a phase transition of nth-order occurs
when there is a discontinuity in the nth-derivative of a thermodynamic potential.
Thus, at a 1st-order phase transition the free energy is assumed to be continuous
but has a discontinuous change in slope at the phase transition temperature Tc
such that the entropy (which is a first derivative) jumps from a larger value in
the high temperature state S (Tc + ε) to a smaller value S (Tc − ε) in the low
temperature state, where ε is infinitesimally small. Thus a latent heat

∆Q = Tc∆S = Tc (S (Tc + ε)− S (Tc − ε)) (6.18)

is needed to go from the low to the high temperature state. Upon cooling,
the system jumps into a new state with very different internal energy (due to
F = U − TS must U be discontinuous if S is discontinuous).

Following Ehrenfest’s classification, a second order phase transition should
have a discontinuity in the second derivative of the free energy. For example
the entropy should then be continuous but have a change in slope leading to
a jump in the value of the specific heat. This is indeed what one finds in
approximate, so called mean field theories. However a more careful analysis of
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the role of spatial fluctuations (see below) yields that the specific heat rather
behaves according to a power-law with C ∼ (T − Tc)−α or (like in the two
dimensional Ising model) diverges logarithmically. In some cases α < 0 occurs
making it hard to identify the effects of these fluctuations. In other cases,
like conventional superconductors, the quantitative effect of fluctuations is so
small that the experiment is virtually indistinguishable from the mean field
expectation and Ehrenfest’s picture is a very sensible one.

More generally one might classify phase transitions in a way that at a nth-
order transition a singularity of some kind occurs in the nth-derivative of the
free energy, whereas all lower derivatives are continuous. The existence of a
latent heat in first order transitions and its absence in a second order transition
is then valid even if one takes fluctuations into account.

Finally one needs to realize that strictly no phase transition exists in a finite
system. For a finite system the partition sum is always finite. A finite sum of
analytic functions ∼ e−βEi is analytic itself and does not allow for similarities in
its derivatives. Thus, the above classification is valid only in the thermodynamic
limit of infinite systems.

6.3 Gibbs phase rule and first order transitions

We next discuss the issue of how many state variables are necessary to uniquely
determine the state of a system. To this end, we start from an isolated sys-
tem which contains K different particle species (chemical components) and P
different phases (solid, liquid, gaseous,... ) that coexist. Each phase can be un-
derstood as a partial system of the total system and one can formulate the first
law for each phase, where we denote quantities of the ith phase by superscript
i = 1, ..., P . We have

dU (i) = T (i)dS(i) − p(i)dV (i) +

P∑
l=1

µ
(i)
l dN

(i)
l (6.19)

Other terms also may appear, if electric or magnetic effects play a role. In
this formulation of the first law, U (i) of phase i is a function of the extensive

state variables S(i), V (i), N
(i)
l , i.e., it depends on K + 2 variables. Altogether

we therefore have P (K + 2) extensive state variables. If the total system is in

thermodynamic equilibrium, we have T (i) = T , p(i) = p and µ
(i)
l = µl. Each

condition contains P−1 equations, so that we obtain a system of (P − 1) (K + 2)

equations. Since T (i), p(i), and µ
(i)
l are functions of S(i), V (i), N

(i)
l we can

eliminate one variable with each equation. Thus, we only require

(K + 2)P − (K + 2) (P − 1) = K + 2 (6.20)

extensive variables to determine the equilibrium state of the total system. As
we see, this number is independent of the number of phases. If we now consider
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that exactly P extensive variables (e.g., V (i) with i = 1, ..., P ) determine the
size of the phases (i.e., the volumes occupied by each), one needs

F = K + 2− P

intensive variables. This condition is named after J.W. Gibbs and is called
Gibbs’ phase rule. It is readily understood with the help of concrete examples.
Let us for instance think of a closed pot containing a vapor. With K = 1 we
need 3 = K+2 extensive variables for a complete description of the system, e.g.,
S, V , and N . One of these (e.g., V ), however, determines only the size of the
system. The intensive properties are completely described by F = 1 + 2− 1 = 2
intensive variables, for instance by the pressure and the temperature. Then also
U/V , S/V , N/V , etc. are fixed and by additionally specifying V one can also
obtain all extensive quantities.

If both vapor and liquid are in the pot and if they are in equilibrium, we can
only specify one intensive variable, F −1+2−2 = 1, e.g., the temperature. The
vapor pressure assumes automatically its equilibrium value. All other intensive
properties of the phases are also determined. If one wants in addition to describe
the extensive properties, one has to specify for instance V liq and V vap, i.e., one
extensive variable for each phase, which determines the size of the phase (of
course, one can also take N liq and Nvap, etc.). Finally, if there are vapor,
liquid, and ice in equilibrium in the pot, we have F = 1+2−3 = 0. This means
that all intensive properties are fixed: pressure and temperature have definite
values. Only the size of the phases can be varied by specifying V liq, V sol, and
V vap. This point is also called triple point of the system.

6.4 The Ising model

Interacting spins which are allowed to take only the two values Si = ±1 are
often modeled in terms of the Ising model

H = −
∑
i,j

JijSiSi+1 − µB
∑
i

Si (6.21)

where Jij is the interaction between spins at sites i and j. The microscopic
origin of the Jij can be the dipol-dipol interaction between spins or exchange
interaction which has its origin in a proper quantum mechanical treatment of the
Coulomb interaction. The latter is dominant in many of the known 3d, 4f and
5f magnets. Often the Ising model is used in a context unrelated to magnetism,
like the theory of binary alloys where Si = ±1 corresponds to the two atoms of
the alloy and Jij characterizes the energy difference between two like and unlike
atoms on sites i and j. This and many other applications of this model make
the Ising model one of the most widely used concepts and models in statistical
mechanics. The model has been solved in one and two spatial dimensions and for
situations where every spin interacts with every other spin with an interaction
Jij/N . No analytic solution exists for three dimensions even though computer
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simulations for a model with nearest neighbor coupling J demonstrate that
the model is ordered, with limB→0 〈Si〉 6= 0, below a temperature Tc ' 4.512J .
Similarly the solution for the square lattice in d = 2 yields an ordered state below
Tc = 2J/arc coth

√
2 ' 2.269J, while the Ising model in one spatial dimension

has Tc = 0, i.e. the ground state is ordered while no zero field magnetization
exists at a finite temperature. The latter is caused by the fact that any domain
wall in a d-dimensional model (with short range interactions) costs an energy
Ed = JNd−1

d , where Nd is the number of spins in the domain. While this is a
large excitation energy for d > 1 it is only of order J in d = 1 and domains with
opposite magnetization of arbitrary size can easily be excited at finite T . This
leads to a breakdown of long range order in d = 1.

6.4.1 Exact solution of the one dimensional model

A first nontrivial model of interacting particles is the one dimensional Ising
model in an external field, with Hamiltonian

H = −J
∑
i

SiSi+1 − µB
∑
i

Si

= −J
∑
i

SiSi+1 −
µB

2

∑
i

(Si + Si+1) (6.22)

The partition function is

Z =
∑
{Si}

e−βH

=
∑

S1=±1

...
∑

SN=±1

eβ
∑
i[JSiSi+1+µB

2 Si+Si+1] (6.23)

We use the method of transfer matrices and define the operator T defined via
its matrix elements:

〈Si |T |Si+1〉 = eβ
∑
i[JSiSi+1+µB

2 (Si+Si+1)] (6.24)

The operator can be represented as 2× 2 matrix

T =

(
eβ(J+µBB) e−βJ

e−βJ eβ(J−µBB)

)
(6.25)

It holds then that

Z =
∑

S1=±1

...
∑

SN=±1

〈S1 |T |S2〉 〈S2 |T |S3〉 ... 〈SN |T |S1〉

=
∑

S1=±1

〈
S1

∣∣TN ∣∣S1

〉
= trTN. (6.26)

This can be expressed in terms of the eigenvalues of the matrix T

λ± = ey coshx±
[
e−2y + e2y sinh2 x

]1/2
(6.27)
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with

x = βµBB

y = βJ. (6.28)

It follows
Z = λN+ + λN− (6.29)

yielding

F = −kBT

(
N log λ+ + log

(
1 +

(
λ−
λ+

)N))
= −kBTN log λ+ (6.30)

where we used in the last step that λ− < λ+ and took the limit N →∞.
For the non-interacting system (y = 0) we obtain immediately the result of

non-interacting spins
F = −NkBT log (2 coshx) . (6.31)

For the magnetization

M = −∂F
∂B

= NµB
sinhx(

e−4y + sinh2 x
)1/2 . (6.32)

For T = 0 follows M = NµB , i.e. the system is fully polarized. In particular
M (B → 0, T = 0) 6= 0. On the other hand it holds for any finite temperature
that

M (T,B → 0)→ 0. (6.33)

Thus, there is no ordered state with finite zero-field magnetization at finite
temperature. In other words, the one dimensional Ising model orders only at
zero temperature.

6.4.2 Mean field approximation

In this section we discuss an approximate approach to solve the Ising model
which is based on the assumption that correlations, i.e. simultaneous deviations
from mean values like

(Si − 〈Si〉) (Sj − 〈Sj〉) (6.34)

are small and can be neglected. Using the identity

SiSj = (Si − 〈Si〉) (Sj − 〈Sj〉) + Si 〈Sj〉+ 〈Si〉Sj − 〈Si〉 〈Sj〉 (6.35)

we can ignore the first term and write in the Hamiltonian of the Ising model,
assuming 〈Si〉 = 〈S〉 independent of i:

H = −
∑
i

(zJ 〈S〉+ µB)Si −
z

2
N 〈S〉2 (6.36)



74CHAPTER 6. INTERACTING SYSTEMS AND PHASE TRANSITIONS

This model is, except for the constant −z2 N 〈S〉
2

equal to the energy of non-
interacting spins in an effective magnetic field

Beff = B +
zJ

µ
〈S〉 . (6.37)

Thus, we can use our earlier result for this model to find the expectation value
〈S〉 in terms of the field

〈S〉 = tanh

(
µBeff
kBT

)
(6.38)

Setting now the external field B = 0, we obtain

〈S〉 = tanh

(
zJ

kBT
〈S〉
)

(6.39)

If

T > Tc =
zJ

kB
(6.40)

this nonlinear equation has only the solution 〈S〉 = 0. However, for T below Tc
another solution with finite 〈S〉 emerges continuously. This can be seen more
directly by expanding the above tanh for small argument, and it follows

〈S〉 = tanh

(
Tc
T
〈S〉
)
' Tc

T
〈S〉 − 1

3

(
Tc
T

)2

〈S〉3 (6.41)

which yields

〈S〉 ∝ (Tc − T )
1/2

(6.42)

.i.e. the magnetization vanishes continuously. Right at Tc a small external field
B causes a finite magnetization which is determines by

〈S〉 =
µB + zJ 〈S〉

kBTc
− 1

3

(
µB + zJ 〈S〉

kBTc

)3

(6.43)

which yields

〈S〉 =

(
3
µB

kBTc

)1/3

. (6.44)

Finally we can analyze the magnetic susceptibility χ = ∂M
∂B with M = µN 〈S〉.

We first determine χS = ∂〈S〉
∂B above Tc. It follows for small field

〈S〉 ' µB + kBTc 〈S〉
kBT

(6.45)

such that

χS =
µ+ kBTcχS

kBT
(6.46)
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yielding

χS =
µ

kB (T − Tc)
(6.47)

and we obtain

χ =
C

T − Tc
(6.48)

with Curie constant C = µ2N/kB . This is the famous Curie-Weiss law which
demonstrates that the uniform susceptibility diverges at an antiferromagnetic
phase transition.

6.5 Landau theory of phase transitions

Landau proposed that one should introduce an order parameter to describe the
properties close to a phase transition. This order parameter should vanish in
the high temperature phase and be finite in the ordered low temperature phase.
The mathematical structure of the order parameter depends strongly on the
system under consideration. In case of an Ising model the order parameter is a
scalar, in case of the Heisenberg model it is a vector. For example, in case of a
superconductor or the normal fluid - superfluid transition of 4He it is a complex
scalar, characterizing the wave function of the coherent low temperature state.
Another example are liquid crystals where the order parameter is a second rank
tensor.

In what follows we will first develop a Landau theory for a scalar, Ising type
order. Landau argued that one can expand the free energy density in a Taylor
series with respect to the order parameter φ. This should be true close to a
second order transition where φ vanishes continuously:

f (φ) = f0 − hφ+
a

2
φ2 +

b

3
φ3 +

c

4
φ4 + ... (6.49)

The physical order parameter is the determined as the one which minimizes f

∂f

∂φ

∣∣∣∣
φ=φ0

= 0. (6.50)

If c < 0 this minimum will be at ±∞ which is unphysical. If indeed c < 0 one
needs to take a term ∼ φ6 into account and see what happens. In what follows
we will always assume c > 0. In the absence of an external field should hold
that f (φ) = f (−φ), implying h = b = 0. Whether or not there is a minimum
for φ 6= 0 depends now on the sign of a. If a > 0 the only minimum of

f (φ) = f0 +
a

2
φ+

c

4
φ4 (6.51)

is at φ = 0. However, for a < 0 there are two a new solutions φ = ±
√
−a
c .

Since φ is expected to vanish at T = Tc we conclude that a (T ) changes sign at
Tc suggesting the simple ansatz

a (T ) = a0 (T − Tc) (6.52)
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with a0 > 0 being at most weakly temperature dependent. This leads to a

temperature dependence of the order parameter
√

a0(Tc−T )
c

φ0 =

{ √
a0(Tc−T )

c T < Tc
0 T > Tc

(6.53)

It will turn out that a power-law relation like

φ ∼ (Tc − T )
β

(6.54)

is valid in a much more general context. The main change is the value of β.
The prediction of the Landau theory is β = 1

2 .
Next we want to study the effect of an external field (= magnetic field in

case φ characterizes the magnetization of an Ising ferromagnet). This is done
by keeping the term hφ in the expansion for f . The actual external field will be
proportional to h. Then we find that f is minimized by

aφ0 + cφ3
0 = h (6.55)

Right at the transition temperature where a = 0 this gives

φ3
0 ∼ h1/δ (6.56)

where the Landau theory predicts δ = 3. Finally we can analyze the change
of the order parameter with respect to an external field. We introduce the
susceptibility

χ =
∂φ0

∂h

∣∣∣∣
h→0

(6.57)

and find from Eq.6.55
aχ+ 3cφ2

0 (h = 0)χ = 1 (6.58)

using the above result for φ2
0 (h = 0) = a

c if T < Tc and φ2
0 (h = 0) = 0 above

Tc gives

χ =

{
1

4a0
(Tc − T )

−γ
T < Tc

1
a0

(T − Tc)−γ T > Tc
(6.59)

with exponent γ = 1.
Next we consider the specific heat where we insert our solution for φ0 into

the free energy density.

f =
a (T )

2
φ2

0 +
c

4
φ4

0 =

{
−a

2
0

4c (T − Tc)2
T < Tc

0 T > Tc
(6.60)

This yields for the specific heat per volume

c = −T ∂
2f

∂T
=

{
a20
4cT T < Tc
0 T > Tc

. (6.61)
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The specific heat is discontinuous. As we will see later, the general form of the
specific heat close to a second order phase transition is

c (T ) ∼ (T − Tc)−α + const (6.62)

where the result of the Landau theory is

α = 0. (6.63)

So far we have considered solely spatially constant solutions of the order
parameter. It is certainly possible to consider the more general case of spatially
varying order parameters, where the free energy

F =

ˆ
ddrf [φ (r)] (6.64)

is given as

f [φ (r)] =
a

2
φ (r)

2
+
c

4
φ (r)

4 − h (r)φ (r) +
b

2
(∇φ (r))

2
(6.65)

where we assumed that it costs energy to induce an inhomogeneity of the order
parameter (b > 0). The minimum of F is now determined by the Euler-Lagrange
equation

∂f

∂φ
−∇ ∂f

∂∇φ
= 0 (6.66)

which leads to the nonlinear partial differential equation

aφ (r) + cφ (r)
3

= h (r) + b∇2φ (r) (6.67)

Above the transition temperature we neglect again the non-linear term and
have to solve

aφ (r) − b∇2φ (r) = h (r) (6.68)

It is useful to consider the generalized susceptibility

δφ (r) =

ˆ
ddr′χ (r − r′) δh (r′) (6.69)

which determines how much a local change in the order parameter is affected
by a local change of an external field at a distance r− r′. This is often written
as

χ (r − r′) =
δφ (r)

δh (r′)
. (6.70)

We determine χ (r − r′) by Fourier transforming the above differential equation
with

φ (r) =

ˆ
ddkeikrφ (k) (6.71)

which gives
aφ (k) + bk2φ (k) = h (k) (6.72)
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In addition it holds for χ (k):

δφ (k) = χ (k) δh (k) . (6.73)

This leads to

χ (k) =
b−1

ξ−2 + k2
(6.74)

where we introduced the length scale

ξ =

√
b

a
=

√
b

a0
(T − Tc)−1/2

(6.75)

This result can now be back-transformed yielding

χ (r − r′) =

(
ξ

r − r′

) d−1
2

exp

(
−|r − r

′|
ξ

)
(6.76)

Thus, spins are not correlated anymore beyond the correlation length ξ. In
general the behavior of ξ close to Tc can be written as

ξ ∼ (T − Tc)−ν (6.77)

with ν = 1
2 .

A similar analysis can be performed in the ordered state. Starting again at

aφ (r) + cφ (r)
3

= h (r) + b∇2φ (r) (6.78)

and assuming φ (r) = φ0 + ψ (r) where φ0 is the homogeneous, h = 0, solution,
it follows for small ψ (r):(

a+ 3cφ2
0

)
ψ (r) = h (r) + b∇2ψ (r) (6.79)

and it holds a+ 3cφ2
0 = −2a > 0. Thus in momentum space

χ (k) =
dψ (k)

dh (k)
=

b−1

ξ−2
< + k2

(6.80)

with

ξ =

√
b

−2a
=

√
b

2a0
(Tc − T )

−1/2
(6.81)

We can now estimate the role of fluctuations beyond the linearized form used.
This can be done by estimating the size of the fluctuations of the order parameter
compared to its mean value φ0. First we note that

χ (r − r′) = 〈(φ (r)− φ0) (φ (r′)− φ0)〉 (6.82)

Thus the fluctuations of φ (r) in the volume ξd is〈
δφ2
〉

=
1

ξd

ˆ
r<ξ

ddrχ (r) (6.83)
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χ (r) =

ˆ
ddk

(2π)
d

b−1

k2 + ξ−2
e−ikr

ˆ
r<ξ

ddrχ (r) =

ˆ
ddk

(2π)
d

b−1

k2 + ξ−2

ˆ
r<ξ

ddre−ikr

=

ˆ
ddk

(2π)
d

b−1

k2 + ξ−2

d∏
α=1

sin kαξ

kα
(6.84)

where we used
1

2

ˆ ξ

−ξ
dxe−ikxx ' sin kxξ

kx
(6.85)

The last integral can be evaluated by substituting za = kαξ leading to

ˆ
r<ξ

ddrχ (r) = ξ2

ˆ
ddz

(2π)
d

b−1

z2 + 1

d∏
α=1

sin zα
zα

∝ d−1ξ2 (6.86)

Thus, it follows 〈
δφ2
〉
∝ b−1ξ2−d (6.87)

This must be compared with the mean value of the order parameter

φ2
0 =

a

c
∝ b

c
ξ−2 (6.88)

and it holds 〈
δφ2
〉

φ2
0

' c

b2
ξ4−d (6.89)

Thus, for d > 4 fluctuations become small as ξ → ∞, whereas they cannot be

neglected for d < 4. In d = 4, a more careful analysis shows that
〈δφ2〉
φ2
0
∝ log ξ.

Role of an additional term φ6:

f =
1

2
aϕ2 +

c

4
ϕ4 +

w

6
ϕ6 (6.90)

The minimum is at
∂E

∂ϕ
= aϕ+ cϕ3 + wϕ5 = 0 (6.91)

which gives either ϕ = 0 or r + cϕ2 + wϕ4 = 0 with the two solutions

ϕ2
± =

−c±
√
c2 − 4aw

2w
(6.92)

If c > 0 we can exclude the two solutions ϕ− which are purely imaginary. If
a > 0, then the ϕ+ are imaginary as well and the only solution is ϕ = 0. Close

to the transition temperature at a = 0 holds for r → 0−: ϕ =
√
−a
c , i.e. the

behavior is not affected by w.
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If c < 0 then the solutions ϕ− might become relevant if c2 > 4aw. For

a∗ = c2

4w new solutions at ϕ∗ = ±
√
−c
2w occur for the first time. for a < a∗ these

solutions are given by

ϕ = ±

√√
c2 − 4aw − c

2d
(6.93)

At ac = 3c2

16w the energy f =
c3−6acw−(c2−4aw)

3/2

24w2 of this solution equals the one

for ϕ = 0. The order parameter at this point is ϕc = ±
√
−3c
4w . Finally, for

a∗∗ = 0 the solution at ϕ = 0 which was metastable for a∗∗ < a < ac disappears
completely.

If c = 0 the solution is for a < 0:

ϕ =

(
−a
w

)1/4

(6.94)

whereas it vanishes for a > 0.

φ = µ1/δ

dφ

dµ
= µ1/δ−1 = φ1−δ (6.95)

6.5.0.1 Statistical mechanics motivation of the Landau theory:

We start from the Ising model

H [Si] = −
∑
ij

JijSiSj (6.96)

in an spatially varying magnetic field. The partition function is Z =
∑
{Si} e

−βH[Si].
In order to map this problem onto a continuum theory we use the identity

ˆ N∏
i

dxi exp

−1

4

∑
ij

xi
(
V −1

)
ij
xj + sixi

 =
(
2
√
π
)N √

detV e
∑N
i,j Vijsisj

(6.97)
which can be shown to be correct by rotating the variables xi into a represen-
tation where V is diagonal and using

ˆ
dx exp

(
−x

2

4v
+ sx

)
= 2
√

4πveV s
2

(6.98)
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This identity can now be used to transform the Ising model (use Vij = βJij)
according to

Z =

∑
{Si}
´ N∏

i

dxi exp
(
− 1

4

∑
ij xiV

−1
ij xj + xiSi

)
(4π)

N
2
√

detV
(6.99)

=

´ N∏
i

dxi exp
(
− 1

4

∑
ij xiV

−1
ij xj

)∑
{Si} e

xiSi

(4π)
N
2
√

detV
(6.100)

The last term is just the partition function of free spins in an external field ∼ xi
and it holds ∑

{Si}

exiSi ∼ exp

(∑
i

log (coshxi)

)
(6.101)

Transforming φi = 1√
2

∑
j V
−1
ij xj gives

Z ∼
ˆ
Dφ exp

−β
2

∑
ij

φiJijφj +
∑
i

log

cosh

√2
∑
j

βJijφj


(6.102)

where Dφ =
∏
i

dφi. Using

log (cosh z) ' z2

2
− z4

12
(6.103)

we obtain

Z ∼
ˆ
Dφ exp (−βHeff [φ]) (6.104)

with

Heff [φ] =
1

2

∑
ij

φi

(
Jij −

β

4

∑
l

JilJlj

)
φj +

1

12

∑
i,j,k,l,m

JijJikJilJimφjφkφlφm

(6.105)
It is useful to go into a momentum representation

φi = φ (Ri) =

ˆ
dDk

(2π)
D
φke
−ik·R (6.106)

which gives

Heff [φ] =
1

2

ˆ
ddkφk

(
Jk −

β

4
J2
k

)
φ−k

+
1

4

ˆ
ddk1d

dk2d
dk3u (k1, k2, k3)φk1φk2φk3φ−k1−k2−k3(6.107)
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with

u (k1, k2, k3) =
β4

3
Jk1Jk2Jk3J−k1−k2−k3 (6.108)

Using Jij = J for nearest neighbors and zero otherwise gives for a cubic lattice

Jk = 2J
∑

α=x,y,...

cos (kαa) ' 2J
(
d− a2k2

)
= J0

(
1− a2

d
k2

)
(6.109)

Here a is the lattice constant and we expanded Jk for small momenta (wave
length large compared to a)

Jk −
β

4
J2
k = J0 − J0

a2

d
k2 − β

4
J2

0 + 2
β

4
J2

0

a2

d
k2

= J0 −
β

4
J2

0 +

(
2
β

4
J2

0 − J0

)
a2

d
k2

=
J0

T

(
T − J0

4kB

)
+ J0

(
βJ0

2
− 1

)
a2

d
k2 (6.110)

At the transition βJ0 = 4 such that

Jk −
β

4
J2
k ' a0 (T − Tc) + bk2 (6.111)

with Tc = J0
4kB

, a0 ' 4kB , b ' J0
a2

d . Using u ' 1
3 (βJ0)

3
gives finally

Heff [φ] =
1

2

ˆ
ddkφk

(
a0 (T − Tc) + bk2

)
φ−k

+
u

4

ˆ
ddk1d

dk2d
dk φk1φk2φk3φ−k1−k2−k3 (6.112)

This is precisely the Landau form of an Ising model, which becomes obvious if
one returns to real space

Heff [φ] =
1

2

ˆ
ddr

(
a0 (T − Tc)φ2 + b (∇φ)

2
+
u

2
φ4
)
. (6.113)

From these considerations we also observe that the partition function is given
as

Z =

ˆ
Dφ exp (−βHeff [φ]) (6.114)

and it is, in general, not the minimum of Heff [φ] w.r.t. φ which is physically
realized, instead one has to integrate over all values of φ to obtain the free
energy. Within Landau theory we approximate the integral by the dominating
contribution of the integral, i.e. we writeˆ

Dφ exp (−βHeff [φ]) ' exp (−βHeff [φ0]) (6.115)

where δH
δφ

∣∣∣
φ=φ0

= 0.
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6.5.0.2 Ginzburg criterion

One can now estimate the range of applicability of the Landau theory. This is
best done by considering the next order corrections and analyze when they are
small. If this is the case, one can be confident that the theory is controlled.
Before we go into this we need to be able to perform some simple calculations
with these multidimensional integrals.

First we consider for simplicity a case where Heff [φ] has only quadratic
contributions. It holds

Z =

ˆ
Dφ exp

(
−1

2

ˆ
ddkφk

(
a+ bk2

)
φ−k

)
=

ˆ ∏
k

dφk exp

(
−∆k

2
φk
(
a+ bk2

)
φ−k

)

=
∏
k

(
(2π)

d

a+ bk2

)1/2

∼ exp

(
1

2

ˆ
ddk logχ (k)

)
(6.116)

with

χ (k) =
1

a+ bk2
. (6.117)

It follows for the free energy

F = −kBT
2

ˆ
ddk logχ (k) (6.118)

One can also add to the Hamiltonian an external field

Heff [φ]→ Heff [φ]−
ˆ
ddkh (k)φ (k) (6.119)

Then it is easy to determine the correlation function

χ (k) = 〈φkφ−k〉 − 〈φk〉 〈φ−k〉 (6.120)

via

δ logZ

δhkδh−k

∣∣∣∣
h→0

=
δ

δhk

1

Z

ˆ
Dφφke

−βHeff [φ]

=
1

Z

ˆ
Dφφkφ−ke

−βHeff [φ] −
(´
Dφφke

−βHeff [φ]
)2

Z2

= χ (k) (6.121)

This can again be done explicitly for the case with u = 0:

Z [h] =

ˆ
Dφ exp

(
−1

2

ˆ
ddkφk

(
a+ bk2

)
φ−k +

ˆ
ddkh (k)φk

)
= Z [0] exp

(
1

2

ˆ
ddkhkχ (k)h−k

)
(6.122)
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Performing the second derivative of logZ gives indeed 〈φkφ−k〉 = 1
a+bk2 . Thus,

we obtain as expected

χ (k) =
δφk
δh−k

. (6.123)

Let us analyze the specific heat related to the free energy

F = −kBT
2

ˆ
ddk logχ (k) (6.124)

It holds for the singular part of the specific heat

c ∼ −∂
2F

∂a2
∼
ˆ
ddkχ (k)

2 ∼
ˆ

kd−1dk

(ξ−2 + k2)
2 ∼ ξ

4−d (6.125)

Thus, as ξ →∞ follows that there is no singular (divergent) contribution to the
specific heat if d > 4 just as we found in the Landau theory. However, for d < 4
the specific heat diverges and we obtain a behavior different from what Landau
theory predicted.

Another way to see this is to study the role of inhomogeneous fluctuations
as caused by the

Hinh =
d

2

ˆ
ddr (∇φ)

2
(6.126)

Consider a typical variation on the scale ∇φ ∼
√
−a
u ξ
−1 and integrate those

over a volume of size ξd gives

Hinh ∼ bξd−2 a

u
∼ b2

u
ξd−4 (6.127)

Those fluctuations should be small compared to temperature in order to keep
mean field theory valid. If their energy is large compared to kBT they will be
rare and mean field theory is valid. Thus we obtain again that mean field theory
breaks down for d < 4. This is called the Ginzburg criterion. Explicitly this
criterion is

ξ−1 >
( u
b2
kBT

) 1
4−d

. (6.128)

Note, if b is large for some reason, fluctuation physics will enter only very
close to the transition. This is indeed the case for many so called conventional
superconductors.

6.6 Scaling laws

A crucial observation of our earlier results of second order phase transitions was
the divergence of the correlation length

ξ (T → Tc)→∞. (6.129)
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This divergency implies that at the critical point no characteristic length scale
exists, which is in fact an important reason for the emergence of the various
power laws. Using h as a dimensionless number proportional to an external
field and

t =
T − Tc
Tc

(6.130)

as dimensionless measure of the distance to the critical point the various critical
exponents are:

ξ (t, h = 0) ∼ t−ν

φ (t, h = 0) ∼ |t|β

φ (t = 0, h) ∼ h1/δ

χ (t, h = 0) ∼ t−γ

c (t, h = 0) ∼ t−α

χ (x→∞, t = 0) ∼ x2−d−η. (6.131)

where D is the spatial dimensionality. The values of the critical exponents for
a number of systems are given in the following table

exponent mean field d = 2, Ising d = 3, Ising
α 0 0 0.12
β 1

2
1
8 0.31

γ 1 7
4 1.25

ν 1
2 1 0.64

δ 3 15 5.0
η 0 1

4 0.04

It turn out that a few very general assumptions about the scaling behavior
of the correlation function χ (q) and the free energy are sufficient to derive
very general relations between these various exponents. Those relations are
called scaling laws. We will argue that the fact that there is no typical length
scale characterizing the behavior close to a second order phase transition leads
to a power-law behavior of the singular contributions to the free energy and
correlation function. For example, consider the result obtained within Landau
theory

χ (q, t) =
1

t+ q2
(6.132)

where we eliminated irrelevant pre-factors. Rescaling all length r of the system
according to x → x/b, where b is an arbitrary dimensionless number, leads to
k → kb. Obviously, the mean field correlation function obeys

χ (q, t) = b2χ
(
bq, tb2

)
. (6.133)

Thus, upon rescaling ( k → kb), the system is characterized by a correlation
function which is the same up to a pre-factor and a readjustment of the distance
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from the critical point. In what follows we will generalize this expression and
assume that even beyond the mean field theory of Landau a similar relationship
holds

χ (q, t) = b2−ηχ (bq, tby) . (6.134)

The mean field theory is obviously recovered if y = 2 and η = 0. Since b is

arbitrary, we can for example chose tby = 1 implying b = t−
1
y and we obtain

directly from our above ansatz

χ (q, t) = t−
2−η
y χ

(
qt−

1
y , 1
)
. (6.135)

By definition, the correlation length is the length scale which characterizes the

momentum variation of χ (q, t) i.e. χ (q, t) ∼ f (qξ), which leads to ξ ∼ t−
1
y and

we obtain
ν = y−1. (6.136)

The exponent y of our above ansatz for χ (q, t) is therefore directly related to
the correlation length exponent. This makes it obvious why it was necessary to
generalize the mean field behavior. y = 2 yields the mean field value of ν. Next
we consider t = 0 and chose bq = 1 such that

χ (q, t = 0) =
1

q2−η χ (1, 0) (6.137)

which gives

χ (x, t = 0) =

ˆ
ddq

(2π)
d
χ (q, t = 0) eikx ∼

ˆ
dqeikx

qd−1

q2−η (6.138)

substituting z = kx gives

χ (r, t = 0) ∼ x2−d−η. (6.139)

Thus, the exponent η of Eq.6.134 is indeed the same exponent as the one given
above. This exponent is often called anomalous dimension and characterizes the
change in the power-law decay of correlations at the critical point (and more
generally for length scales smaller than ξ). Thus we can write

χ (q, t) = b2−ηχ
(
bq, tb

1
ν

)
. (6.140)

Similar to the correlation function can we also make an assumption for the
free energy

F (t, h) = b−DF (tby, hbyh) . (6.141)

The pre-factor b−d is a simple consequence of the fact that an extensive quantity
changes upon rescaling of length with a corresponding volume factor. Using
y = ν−1 we can again use tby = 1 and obtain

F (t, h) = tDνF
(
1, ht−νyh

)
. (6.142)
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This enables us to analyze the specific heat at h = 0 as

c ∼ ∂2F (t, 0)

∂t2
∼ tdν−2 (6.143)

which leads to
α = 2− dν. (6.144)

This is a highly nontrivial relationship between the spatial dimensionality, the
correlation length exponent and the specific heat exponent. It is our first scaling
law. Interestingly, it is fulfilled in mean field (with α = 0 and ν = 1

2 ) only for
d = 4.

The temperature variation of the order parameter is given as

φ (t) ∼ ∂F (t, h)

∂h

∣∣∣∣
h→0

∼ tν(d−yh) (6.145)

which gives
β = ν (d− yh) = 2− α− νyh (6.146)

This relationship makes a relation between yh and the critical exponents just
like y was related to the exponent ν. Within mean field

yh = 3 (6.147)

Alternatively we can chose hbyh = 1 and obtain

F (t, h) = h
d
yh F

(
th
− 1
νyh , 0

)
(6.148)

This gives for the order parameter at the critical point

φ (t = 0, h) ∼ ∂F (t = 0, h)

∂h
∼ h

d
yh
−1

(6.149)

and gives 1
δ = d

yh
− 1. One can simplify this to

δ =
yh

d− yh
=

2− α− β
β

(6.150)

and yields
β (1 + δ) = 2− α (6.151)

Note, the mean field theory obeys δ = yh
yh−d only for d = 4. whereas δ = 2−α−β

β
is obeyed by the mean field exponents for all dimensions. This is valid quite
generally, scaling laws where the dimension, d, occurs explicitly are fulfilled
within mean field only for d = 4 whereas scaling laws where the dimensionality
does not occur are valid more generally.

The last result allows us to rewrite our original ansatz for the free energy

F (t, h) = b(2−α)ν−1

F
(
tb

1
ν , hb

βδ
ν

)
. (6.152)
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such that tb
1
ν = 1 leads to

F (t, h) = t2−αF
(
1, ht−βδ

)
(6.153)

We next analyze how the susceptibility diverges at the critical point. It holds

χ ∼ ∂2F (t, h)

∂h2

∣∣∣∣
h→0

∼ t2−α−2βδ (6.154)

which leads to
γ = α− 2 + 2βδ (6.155)

which is yet another scaling relation.
The last scaling law follows from the fact that the correlation function χ (q, t)

taken at q = 0 equals the susceptibility χ just analyzed. This gives

χ (t) = b2−ηχ (tby) (6.156)

and choosing again tby = 1 yields

χ (t) = t−ν(2−η) (6.157)

such that
γ = ν (2− η) . (6.158)

To summarize, we have identified all the exponents in the assumed scaling
relations of F (t, h) and χ (q, t) with critical exponents (see Eqn.6.140 and6.152).
In addition we have four relationships the six exponents have to fulfill at the
same time which are collected here:

α+ 2β + γ = 2 (6.159)

α = 2− dν.
β (1 + δ) = 2− α
2βδ − γ = 2− α

γ = ν (2− η) (6.160)

One can easily check that the exponents of the two and three dimensional Ising
model given above indeed fulfill all these scaling laws. If one wants to calculate
these exponents, it turns out that one only needs to determine two of them, all
others follow from scaling laws.

6.7 Renormalization group

6.7.1 Perturbation theory

A first attempt to make progress in a theory beyond the mean field limit would
be to consider the order parameter

φ (x) = φ0 + ψ (x) (6.161)
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and assume that φ0 is the result of the Landau theory and then consider ψ (x)
as a small perturbation. We start from

H [φ] =
1

2

ˆ
ddxφ (x)

(
r −∇2

)
φ (x) +

u

4

ˆ
ddxφ (x)

4
. (6.162)

where we have introduced

r =
a

b
,

u =
c

Tb2
, (6.163)

and a new field variable φnew =
√
Tdφ, where the suffix new is skipped in what

follows. We also call Heff simply H.
We expand up to second order in ψ (x):

H [φ] = V
(r

2
φ2

0 +
u

4
φ4

0

)
+

1

2

ˆ
ddxψ (x)

(
r −∇2 + 3uφ2

0

)
ψ (x) (6.164)

The fluctuation term is therefore of just the type discussed in the context
of the u = 0 Gaussian theory, only with a changes value of r → r + 3uφ2

0.
Thus, we can use our earlier result for the free energy of the Gaussian model
FGauss = − 1

2

´
ddk logχ (k) and obtain in the present case

F

V
=
r

2
φ2

0 +
u

4
φ4

0 +
1

2V

ˆ
ddk log

(
r + k2 + 3uφ2

0

)
(6.165)

We can now use this expression to expand this free energy again up to fourth
order in φ0 using:

log
(
r + k2 + 3uφ2

0

)
' log

(
r + k2

)
+

3uφ2
0

r + k2
− 1

2

9u2φ4
0

(r + k2)
2 (6.166)

it follows
F

V
=
F0

V
+
r′

2
φ2

0 +
u′

4
φ4

0 (6.167)

with

r′ = r + 3u

ˆ
ddk

1

r + k2
,

u′ = u− 9u2

ˆ
ddk

1

(r + k2)
2 . (6.168)

These are the fluctuation corrected values of the Landau expansion. If these
corrections were finite, Landau theory is consistent, if not, one has to use a
qualitatively new approach to describe the fluctuations. At the critical point
r = 0 and we find that

ˆ
ddk

1

k2
∝
ˆ Λ kd−1

k2
dk ∝

{
Λd−2 d > 2
∞ d ≤ 2
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where Λ is some upper limit of the momentum integration which takes into
account that the system under consideration is always embedded in a lattice of
atoms with interatomic spacing a, such that Λ ∼ a−1. It holds that r′ is finite
for D > 2 which we assume to be the case in what follows. The finite correction
to r′ only shifts the transition temperature by a finite amount. Since the value
of Tc was not so much our concern, this is a result which is acceptable. However,
the correction, u′, to u diverges for d ≤ 4:

ˆ
ddk

1

k4
∝
ˆ Λ kd−1

k4
dk ∝

{
Λd−4 d > 4
∞ d ≤ 4

and the nonlinearity (interactions) of the theory become increasingly stronger.
This is valid for arbitrarily small values of u itself, i.e. a perturbation theory in
u will fail for d ≤ 4. The dimension below which such strong fluctuations set in
is called upper critical dimension.

The strategy of the above scaling laws (i.e. the attempt to see what hap-
pens as one rescales the characteristic length scales) will be the heart of the
renormalization group theory which we employ to solve the dilemma below four
dimension.

6.7.2 Fast and slow variables

The divergency which caused the break down of Landau theory was caused by
long wave length, i.e. the k → 0 behavior of the integral which renormalized
u→ u′. One suspicion could be that only long wave length are important for an
understanding of this problem. However, this is not consistent with the scaling
concept, where the rescaling parameter was always assumed to be arbitrary. In
fact it fluctuations on all length scales are crucial close to a critical point. This
is on the one hand a complication, on the other hand one can take advantage
of this beautiful property. Consider for example the scaling properties of the
correlation function

χ (q, t) = b2−ηχ
(
bq, tb

1
ν

)
. (6.169)

Repeatedly we chose tb
1
ν = 1 such that b = t−ν → ∞ as one approaches the

critical point. However, if this scaling property (and the corresponding scaling
relation for the free energy) are correct for generic b (of course only if the system
is close to Tc) one might analyze a rescaling for b very close to 1 and infer the
exponents form this more innocent regime. If we obtain a scaling property of
χ (q, t) it simply doesn’t matter how we determined the various exponents like
ν, η etc.

This, there are two key ingredients of the renormalization group. The first is
the assumption that scaling is a sensible approach, the second is a decimation
procedure which makes the scaling transformation x → x/b explicit for b ' 1.
A convenient way to do this is by considering b = el for small l. Lets consider
a field variable

φ (k) =

ˆ
ddx exp (ik · x)φ (x) (6.170)
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Since there is an underlying smallest length-scale a ('interatomic spacing), no
waves with wave number larger than a given upper cut off Λ ' a−1 should
occur. For our current analysis the precise value of Λ will be irrelevant, what
matters is that such a cut off exists. Thus, be observe that φ (k) = 0 if k > Λ.

We need to develop a scheme which allows us to explicitly rescale length or
momentum variables. How to do this goes back to the work of Leo Kadanoff
and Kenneth G. Wilson in the early 70th of the last century. The idea is to
divide the typical length variations of φ (k) into short and long wave length
components

φ (k) =

{
φ< (k) 0 < k ≤ Λ/b
φ> (k) Λ/b < k ≤ Λ

. (6.171)

If one now eliminates the degrees of freedoms φ> one obtains a theory for φ<

only

exp
(
−H̃

[
φ<
])

=

ˆ
Dφ> exp

(
−H

[
φ<, φ>

])
. (6.172)

The momenta in H̃ [φ<] are confined to the smaller region 0 < k ≤ Λ/b. We
can now rescale simply according to

k′ = bk (6.173)

such that the new variable k′ is restricted to the original scales 0 < k′ ≤ Λ. The

field variable is then φ<
(
k′

b

)
and will conveniently be called

φ′ (k′) = b−ρφ<
(
k′

b

)
(6.174)

where the pre-factor b−ρ is only introduced for later convenience to be able to
keep the pre-factor of the k2 term in the Hamiltonian the same. The renor-
malized Hamiltonian is then determined by

H ′ [φ′] = H̃
[
b−ρφ′

]
. (6.175)

In practice this is then a theory of the type where the initial Hamiltonian

H [φ] =
1

2

ˆ
ddk

(
r + k2

)
|φ (k)|+

u

4

ˆ
ddk1d

dk2d
dk3φ (k1)φ (k2)φ (k3)φ (−k1 − k2 − k3)(6.176)

leads to a renormalized Hamiltonian

H ′ [φ′] =
1

2

ˆ
ddk′

(
r (l) + k′2

)
|φ′ (k′)|+

u (l)

4

ˆ
ddk′1d

dk′2d
dk′3φ

′ (k′1)φ′ (k′2)φ′ (k′3)φ′ (−k′1 − k′2 − k′3) .(6.177)

If this is the case one may as well talk about a mapping

H (r, u)→ H ′ (r (l) , u (l)) (6.178)
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and one only needs to analyze where this mapping takes one.
If one now analyzes the so called flow equation of the parameters r (l), u (l)

etc. there are a number of distinct cases. The most distinct case is the one
where a fixed point is approaches where r (l→∞) = r∗ , u (l→∞) = u∗ etc.
If this is the case the low energy behavior of the system is identical for all initial
values which reach the fixed point. Before we go into this we need to make sure
that the current procedure makes any sense and reproduces the idea of scaling.

6.7.3 Scaling behavior of the correlation function:

We start from H [φ] characterized by a cut off Λ. The new Hamiltonian with
cut off Λ/b, which results from the shell integration, is then determined by

e−H̃[φ<] =

ˆ
Dφ>e−H[φ<,φ>], (6.179)

which is supplemented by the rescaling

φ< (k) = bρφ′ (bk)

which yields the new Hamiltonian H ′ [φ′] which is also characterized by the
cut off Λ. If one considers states with momenta with k < Λ/b, it is possible
to determine the corresponding correlation function either from H [φ] or from
H ′ [φ′]. Thus, we can either start from the original action:

〈φ (k1)φ (k2)〉 =

ˆ
Dφe−H[φ]

Z
φ (k1)φ (k2) = χ (k1) δ (k1 + k2) (6.180)

or, alternatively, use the renormalized action:

〈φ (k1)φ (k2)〉 =

ˆ
Dφ′e−H

′[φ′]

Z ′
b2ρφ′ (bk1)φ′ (bk1)

= b2ρχ′ (kb1) δ (bk1 + bk2)

= b2ρ−dχ′ (bk1) δ (k1 + k2) (6.181)

where χ′ (bk) = χ (bk, r (l) , u (l)) is the correlation function evaluated for H ′ i.e.
with parameters r (l) and u (l) instead of the bare ones r and u, respectively.
It follows

χ (k, r, u) = b2ρ−dχ (k, r (l) , u (l)) (6.182)

This is close to an actual derivation of the above scaling assumption and suggests
to identify

2ρ− d = 2− η. (6.183)

What is missing is to demonstrate that r (l) and u (l) give rise to a behavior
teyl = tby of some quantity t which vanishes at the phase transition. To see this
is easier if one performs the calculation explicitly.
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6.7.4 ε-expansion of the φ4-theory

We will now follow the recipe outlined in the previous paragraphs and explicitly
calculate the functions r (l) and u (l). It turns out that this can be done in a
controlled fashion for spatial dimensions close to d = 4 and we therefore perform
an expansion in ε = 4 − d. In addition we will always assume that the initial
coupling constant u is small. We start from the Hamiltonian

H [φ] =
1

2

ˆ
ddk

(
r + k2

)
|φ (k)|2

+
u

4

ˆ
ddk1d

dk2d
dk3φ (k1)φ (k2)φ (k3)φ (−k1 − k2 − k3)(6.184)

Concentrating first on the quadratic term it follows

H0

[
φ>, φ<

]
=

1

2

ˆ
Λ/b<k<Λ

ddk
(
r + k2

) ∣∣φ> (k)
∣∣2

+
1

2

ˆ
k<Λ/b

ddk
(
r + k2

) ∣∣φ< (k)
∣∣2 (6.185)

There is no coupling between the φ> and φ< and therefore (ignoring constants)

H̃0

[
φ<
]

=
1

2

ˆ
k<Λ/b

ddk
(
r + k2

) ∣∣φ< (k)
∣∣ (6.186)

Now we can perform the rescaling φ< (k) = bρφ′ (bk) and obtain with k′ = bk

H ′0 =
b2ρ−d

2

ˆ
k′<Λ

ddk′
(
r + b−2k2

)
|φ′ (k′)|

=
b2ρ−d−2

2

ˆ
k′<Λ

ddk′
(
b2r + k2

)
|φ′ (k′)| (6.187)

This suggests ρ = d+2
2 and gives r (l) = e2lr.

Next we consider the quartic term

Hint =
u

4

ˆ
ddk1d

dk2d
dk3φ (k1)φ (k2)φ (k3)φ (−k1 − k2 − k3) (6.188)

which does couple φ> and φ<. If all three momenta are inside the inner shell,
we can easily perform the rescaling and find

H ′int =
ub4ρ−3d

4

ˆ
dDk′1d

Dk′2d
Dk′3φ (k′1)φ (k′2)φ (k′3)φ (−k′1 − k′2 − k′3) (6.189)

which gives with the above result for ρ:

4ρ− 3D = 4− d (6.190)

yielding
u (l) = ueεl. (6.191)
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The leading term for small u gives therefore the expected behavior that u (l→∞)→
0 if d > 4 and that u grows if d < 4. If d grows we cannot trust the leading
behavior anymore and need to go to the next order perturbation theory. Tech-
nically this is done using techniques based on Feynman diagrams. The leading
order terms can however be obtained quite easily in other ways and we don’t
need to spend our time on introducing technical tools. It turns out that the
next order corrections are identical to the direct perturbation theory,

r′ = e2lr + 3u

ˆ
Λ/b<k<Λ

ddk
1

r + k2

u′ = eεlu− 9u2

ˆ
Λ/b<k<Λ

ddk
1

(r + k2)
2 . (6.192)

with the important difference that the momentum integration is restricted to
the shell with radius between Λ/b and Λ. This avoids all the complications of
our earlier direct perturbation theory where a divergency in u′ resulted from
the lower limit of the integration (long wave lengths). Integrals of the type

I =

ˆ
Λ/b<k<Λ

ddkf (k) (6.193)

can be easily performed for small l:

I = Kd

ˆ Λ

Λe−l
kd−1f (k) dk ' KdΛ

d−1f (Λ)
(
Λ− Λe−l

)
' KdΛ

df (Λ) l (6.194)

It follows therefore

r′ = (1 + 2l) r +
3KdΛ

d

r + Λ2
ul

u′ = (1 + εl)u− 9KdΛ
d

(r + Λ2)
2u

2l . (6.195)

which is due to the small l limit conveniently written as a differential equation

dr

dl
= 2r +

3KdΛ
d

r + Λ2
u

du

dl
= εu− 9KdΛ

d

(r + Λ2)
2u

2. (6.196)

Before we proceed we introduce more convenient variables

r → r

Λ2

u → KdΛ
d−4u (6.197)



6.7. RENORMALIZATION GROUP 95

which are dimensionless and obtain the differential equations

dr

dl
= 2r +

3u

1 + r

du

dl
= εu− 9u2

(1 + r)
2 . (6.198)

The system has indeed a fixed point (where dr
dl = du

dl = 0) determined by

ε =
9u∗

(1 + r∗)
2

2r∗ = − 3u∗

1 + r∗
(6.199)

This simplifies at leading order in ε to

u∗ =
ε

9
or 0

r∗ = −3

2
u∗ (6.200)

If the system reaches this fixed point it will be governed by the behavior it its
immediate vicinity, allowing us to linearize the flow equation in the vicinity of
the fixed point, i.e. for small

δr = r − r∗

δu = u− u∗ (6.201)

Consider first the fixed point with u∗ = r∗ = 0 gives

d

dl

(
δr
δu

)
=

(
2 3
0 ε

)(
δr
δu

)
(6.202)

with eigenvalues λ1 = 2 and λ2 = ε. Both eigenvalues are positive for ε > 0
(D < 4) such that there is no scenario under which this fixed point is ever
governing the low energy physics of the problem.

Next we consider u∗ = ε
9 and r∗ = − ε6 . It follows

d

dl

(
δr
δu

)
=

(
2− ε

3 3 + ε
2

0 −ε

)(
δr
δu

)
(6.203)

with eigenvalues

y = 2− ε

2
y′ = −ε (6.204)

the corresponding eigenvectors are

e = (1, 0)

e′ =

(
−3

2
+
ε

8
, 1

)
(6.205)
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Thus, a variation along the edirection (which is varying r) causes the system
to leave the fixed point (positive eigenvalue), whereas it will approach the fixed
point if

(r, u) ∼ e′ (6.206)

this gives

r = u

(
−3

2
+
ε

8

)
(6.207)

which defines the critical surface in parameter space. If a system is on this
surface it approaches the fixed point. If it is slightly away, the quantity

t = r − u
(
−3

2
+
ε

8

)
(6.208)

is non-zero and behaves as

t (l) = teyl = tby. (6.209)

The flow behavior for large l is only determined by the value of t which is the
only scaling variable, which vanishes at the critical point. Returning now to the
initial scaling behavior of the correlation function we can write explicitly

χ (k, t) = b2χ (k, tby) (6.210)

comparing this with χ (q, t) = b2−ηχ
(
bq, tb

1
ν

)
gives immediately the two critical

exponents

η = O
(
ε2
)

ν ' 1

2
+
ε

8
. (6.211)

Extrapolating this to the ε = 1 case gives numerical results for the critical
exponents which are much closer to the exact ones (obtained via numerical
simulations)

exponent ε− expansion d = 3, Ising
α 0.125 0.12
β 0.3125 0.31
γ 1.25 1.25
ν 0.62 0.64
δ 5 5.0
η 0 0.04

A systematic improvement of these results occurs if one includes higher order
terms of the εexpansion. Thus, the renormalization group approach is a very
powerful tool to analyze the highly singular perturbation expansion of the φ4-
theory below its upper critical dimension. How is it possible that one can obtain
so much information by essentially performing a low order expansion in u for
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a small set of high energy degrees of freedom? The answer is in the power of

the scaling concept. We have assumed that the form χ (q, t) = b2−ηχ
(
bq, tb

1
ν

)
which we obtained for very small deviations of b from unity is valid for all b. If
for example the value of ν and η would change with l there would be no way
that we could determine the critical exponents from such a procedure. If scaling
does not apply, no critical exponent can be deduced from the renormalization
group.

6.7.5 Irrelevant interactions

Finally we should ask why we restricted ourself to the quartic interaction only.
For example, one might have included a term of the type

H(6) =
v

6

ˆ
ddxφ (x)

6
(6.212)

which gives in momentum space

H(6) =
v

6

ˆ
ddk1...d

dk5φ (k1)φ (k2)φ (k3) (k4)φ (k5)

×φ (−k1 − k2 − k3 − k4 − k5) (6.213)

The leading term of the renormalization group is the one where all three mo-
menta are inside the inner shell, and we can perform the rescaling immediately:

H ′int =
vb6ρ−5d

5

ˆ
ddk′1...d

dk′5φ (k′1)φ (k′2)φ (k′3)φ (k′4)φ (k′5)

×φ (−k′1 − k′2 − k′3 − k′4 − k′5) (6.214)

and the v dependence is with ρ = 2+d
2 and 6ρ− 5d = 2 (3− d) = −2 (1− ε)

v (l) = ve−2(1−ε)l (6.215)

Thus, in the strict sense of the ε expansion such a term will never play a role.
Only if u � ε initially is it important to keep these effects into account. This
happens in the vicinity of a so called tricritical point.
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Chapter 7

Density matrix and
fluctuation dissipation
theorem

One can make a number of fairly general statements about quantum statistical
systems using the concept of the density matrix. In equilibrium we found that
the expectation value of a physical observable is given by

〈O〉eq = tr (ρeqO) (7.1)

with density operator

ρeq =
1

Z
e−βH . (7.2)

The generalization to the grand canonical ensemble is straight forward. The den-
sity operator (or often called density matrix) is now given as ρeq = 1

Zg
e−β(H−µN),

where N is the particle number operator.

Considering now a system in a quantum state |ψi〉 with energy Ei, the ex-
pectation value of a physical observable is in that state is

Oi = 〈ψi |O|ψi〉 . (7.3)

If the system is characterized by a distribution function where a state |ψi〉 occurs
with probability pi it follows that the actual expectation value of O is

〈O〉 =
∑
i

piOi. (7.4)

This can be written in a formal sense as

〈O〉 = tr (ρO) (7.5)
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with the density operator

ρ =
∑
i

|ψi〉 pi 〈ψi| . (7.6)

Inserting this expression into Eq.7.5 gives the above result of one uses that the
|ψi〉 are orthonormal.

A state is called pure if pi = 0 for all i 6= 0 and p0 = 1. Then

ρpure = |ψ0〉 〈ψ0| (7.7)

which implies ρ2
pure = ρpure. States which are not pure are called mixed. Indeed,

it holds in general

tr (ρ) =
∑

i

pi = 1 (7.8)

which gives

tr
(
ρ2
)

=
∑

i

p2
i ≤ 1. (7.9)

The equal sign only holds for pure states making tr
(
ρ2
)

a general criterion for
a state to be mixed.

Next we determine the equation of motion of the density matrix under the
assumption that the probabilities are fixed: dpi

dt = 0. We use

i~
∂

∂t
|ψi〉 = H |ψi〉 (7.10)

and

−i~ ∂
∂t
〈ψi| = 〈ψi|H (7.11)

which gives

i~
∂

∂t
ρ =

∑
i

H |ψi〉 pi 〈ψi| − |ψi〉 pi 〈ψi|H = Hρ− ρH

= [H, ρ] (7.12)

which is called von Neuman equation.
The von Neuman equation should not be confused with the Heisenberg equa-

tion of operators in Heisenberg picture. The latter is given by

i~
d

dt
At (t) = i~

∂

∂t
At (t) + [At (t) , H] (7.13)

The first term is the explicit variation of the operator At which might be there
even in Schrödinger picture. The second term results from the unitary trans-
formation At (t) = e−iHt/hAte

iHt/h.
Once we know ρ, we can analyze for example the entropy

S = −kBtrρ log ρ. (7.14)
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Using the von Neuman equation gives for the time variation of the entropy

∂S

∂t
= −kBtr

[
∂ρ

∂t
(log ρ+ 1)

]
= i

kB

~
tr [[H, ρ] (log ρ+ 1)] = 0. (7.15)

Obviously this is a consequence of the initial assumption dpi
dt = 0. We conclude

that the von Neuman equation will not allow us to draw conclusions about the
change of entropy as function of time.

7.1 Density matrix of subsystems

Conceptually very important information can be obtained if one considers the
behavior of the density matrix of a subsystem of a bigger system. The bigger
system is then assumed to be in a pure quantum state. We denote the variables
of our subsystem with x and the variables of the bigger system which don’t
belong to our subsystem with Y . The wave function of the pure quantum
mechanical state of the entire system is

Ψ (Y, x, t) (7.16)

and we expand it’s x-dependence in terms of a complete set of functions acting
on the subsystem. Without loss of generality we can say

Ψ (Y, x, t) =
∑
α

Φα (Y, t)ϕα (x) . (7.17)

Let O (x) be some observable of the subsystem, i.e. the operator O does not act
on the coordinates Y . If follows

〈O〉 = 〈Ψ |O|Ψ〉 =
∑
α,α′

〈Φa (t) |Φα′ (t)〉 〈ϕα|O|ϕα′〉 (7.18)

This suggests to introduce the density operator

ρa′α (t) = 〈Φa (t) |Φα′ (t)〉 (7.19)

such that
〈O〉 = trρO, (7.20)

where the trace is only with respect to the quantum numbers α of the subsystem.
Thus, if one assumes that one can characterize the expectation value exclusively
within the quantum numbers and coordinates of a subsystem, one is forced to
introduce mixed quantum states and a density matrix.

Lets analyze the equation of motion of the density matrix.

i~
∂

∂t
ρa′α (t) = i~

ˆ
dY

(
∂Φ∗a (Y, t)

∂t
Φα′ (Y, t) + Φ∗a (Y, t)

∂Φα′ (Y, t)

∂t

)
(7.21)
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where
´
dY... is the matrix element with respect to the variables Y . Since

Ψ (Y, x, t) obeys the Schrödinger equation it follows

i~
∑
α

∂Φα (Y, t)

∂t
ϕα (x) = H (Y, x)

∑
α

Φα (Y, t)ϕα (x) (7.22)

Multiplying this by ϕ∗α′ (x) and integrating over x gives

i~
∂Φa′ (Y, t)

∂t
=

∑
β

Hα′β (Y ) Φβ (Y, t) (7.23)

i~
∂Φ∗a (Y, t)

∂t
= −

∑
β

Φ∗β (Y, t)Hβα (Y ) (7.24)

where

Hβα (Y ) = 〈ϕβ |H (Y, x)|ϕα〉 . (7.25)

It follows

i~
∂

∂t
ρa′α (t) =

ˆ
dY
∑
β

(
Φ∗a (Y, t)Hα′β (Y ) Φβ (Y, t)− Φ∗β (Y, t)Hβα (Y ) Φα′ (Y, t)

)
(7.26)

Lets assume that

H (Y, x) = H0 (x) +W (Y, x) (7.27)

where H0 does not depend on the environment coordinates. It follows

i~
∂

∂t
ρa′α (t) =

∑
β

(H0,α′βρβα − ρα′βH0,βα)− iγα,α′ (t) ρa′α (t) (7.28)

with

γα,α′ = i

´
dY
∑
β

(
Φ∗a (Y, t)Wα′β (Y ) Φβ (Y, t)− Φ∗β (Y, t)Wβα (Y ) Φα′ (Y, t)

)
´
dY Φ∗a′ (Y, t) Φα (Y, t)

(7.29)
which obeys γα′α = γ∗α,α′ .

i~
∂

∂t
ρ (t) = [H, ρ]− iΓρ. (7.30)

Thus, only if the subsystem is completely decoupled from the environment do
we recover the von Neuman equation. In case there is a coupling between
subsystem and environment the equation of motion of the subsystem is more
complex, implying dpi

dt 6= 0.
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7.2 Linear response and fluctuation dissipation
theorem

Lets consider a system coupled to an external field

Wt =

ˆ
dω

2π
W (ω) e−i(ω+iδ)t (7.31)

such that Wt→−∞ → 0. Next we consider the time evolution of a physical
quantity A:

〈A〉t = tr (ρtA) (7.32)

where

i~
∂

∂t
ρt = [H +Wt, ρt] (7.33)

We assume the system is in equilibrium at t→ −∞:

ρt→−∞ = ρ =
1

Z
e−βH . (7.34)

Lets go to the interaction representation

ρt = e−iHt/~ρt (t) eiHt/~ (7.35)

gives

i~
∂ρt
∂t

= [H, ρt] + e−iHt/hi~
∂ρt (t)

∂t
eiHt/h (7.36)

which gives

i~
∂ρt (t)

∂t
= [Wt (t) , ρt (t)] (7.37)

which is solved by

ρt (t) = ρ− i~
ˆ t

−∞
dt′ [Wt′ (t

′) , ρt′ (t
′)]

ρt = ρ− i~
ˆ t

−∞
dt′e−iH(t−t′)/h [Wt′ , ρt′ ] e

iH(t−t′)/h. (7.38)

Up to leading order this gives

ρt = ρ− i~
ˆ t

−∞
dt′e−iH(t−t′)/h [Wt′ , ρ] eiH(t−t′)/h. (7.39)

We can now determine the expectation value of A:

〈A〉t = 〈A〉 − i~
ˆ t

−∞
dt′tr ([Wt′ (t

′) , ρ] A (t)) (7.40)

one can cyclically change order under the trace operation

tr (Wρ− ρW) A = tr (AW −WA) ρ (7.41)
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which gives

〈A〉t = 〈A〉 − i~
ˆ t

−∞
dt′ 〈[A (t) ,Wt′ (t

′)]〉 (7.42)

It is useful to introduce (the retarded Green’s function)

〈〈A (t) ;Wt′ (t
′)〉〉 = −i~θ (t− t′) 〈[A (t) ,Wt′ (t

′)]〉 (7.43)

such that

〈A〉t = 〈A〉+

ˆ ∞
−∞

dt′ 〈〈A (t) ;Wt′ (t
′)〉〉 . (7.44)

The interesting result is that we can characterize the deviation from equilibrium
(dissipation) in terms of fluctuations of the equilibrium (equilibrium correlation
function).

Example, conductivity:
Here we have an interaction between the electrical field and the electrical

polarization:
Wt = −p ·Et (7.45)

with
Et = E0 exp (−i (ω + iδ) t) (7.46)

If we are interested in the electrical current it follows

〈jα〉t = −
ˆ ∞
−∞

dt′
〈〈
jα (t) ; pβ (t′)

〉〉
Eβe−i(ω+iδ)t′ (7.47)

which gives in Fourier space

〈jα〉ω = −
〈〈
jα; pβ

〉〉
ω
E0 (7.48)

which gives for the conductivity

σ (ω) = −
〈〈
jα; pβ

〉〉
ω
. (7.49)

Obviously, a conductivity is related to dissipation whereas the correlation func-
tion

〈[
jα (t) , pβ (t′)

]〉
is just an equilibrium fluctuation.



Chapter 8

Brownian motion and
stochastic dynamics

We start our considerations by considering the diffusion of a particle with density
ρ (x,t). Diffusion should take place if there is a finite gradient of the density
∇ρ. To account for the proper bookkeeping of particles, one starts from the
continuity equation

∂ρ

∂t
= ∇ · j (8.1)

with a current given by j 'D∇ρ, which is called Fick’s law. The pre-factor D is
the diffusion constant and we obtain ∂ρ

∂t = D∇2ρ.This is the diffusion equation,
which is conveniently solved by going into Fourier representation

ρ (x, t) =

ˆ
ddk

(2π)
d
ρ (k, t) e−ik·x, (8.2)

yielding an ordinary differential equation with respect to time:

∂ρ (k, t)

∂t
= −Dk2ρ (k, t) , (8.3)

with solution
ρ (k, t) = ρ0 (k) e−Dk

2t. (8.4)

where ρ0 (k) = ρ (k, t = 0). Assuming that ρ (x, t = 0) = δ (x), i.e. a particle at
the origin, it holds ρ0 (k) = 1 and we obtain

ρ (x, t) =

ˆ
ddk

(2π)
d
e−Dk

2te−ik·x. (8.5)

The Fourier transformation is readily done and it follows

ρ (x, t) =
1

(4πDt)
d/2

e−x
2/(4Dt). (8.6)

In particular, it follows that
〈
x2 (t)

〉
= 2Dt grows only linearly in time, as

opposed to the ballistic motion of a particle where 〈x (t)〉 = vt.
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8.1 Langevin equation

A more detailed approach to diffusion and Brownian motion is given by using
the concept of a stochastic dynamics. We first consider one particle embedded
in a fluid undergoing Brownian motion. Later we will average over all particles
of this type. The fluid is modeled to cause friction and to randomly push the
particle. This leads to the equation of motion for the velocity v = dx

dt :

dv (t)

dt
= − γ

m
v (t) +

1

m
ξ (t) . (8.7)

Here γ is a friction coefficient proportional to the viscosity of the host fluid.
If we consider large Brownian particles, the friction term can be expressed in
terms of the shear viscosity, η, of the fluid and the radius, R, of the particle:
γ = 6πηR. ξ (t) is a random force, simulating the scattering of the particle with
the fluid and is characterized by the correlation functions

〈ξ (t)〉ξ = 0

〈ξ (t) ξ (t′)〉ξ = gδ (t− t′) . (8.8)

The pre-factor g is the strength of this noise. As the noise is uncorrelated in
time, it is also referred to as white noise (all spectral components are equally
present in the Fourier transform of 〈ξ (t) ξ (t′)〉ξ, similar to white light).

The above stochastic differential equation can be solved analytically for ar-
bitrary ξ yielding

v (t) = v0e
−γt/m +

1

m

ˆ t

0

dse−γ(t−s)/mξ (s) (8.9)

and

x (t) = x0 +
mv0

γ

(
1− e−γt/m

)
+

1

γ

ˆ t

0

ds
(

1− e−γ(t−s)/m
)
ξ (s) . (8.10)

We can now directly perform the averages of this result. Due to 〈ξ (t)〉ξ = 0
follows

〈v (t)〉ξ = v0e
−γt/m

〈x (t)〉ξ − x0 =
mv0

γ

(
1− e−γt/m

)
(8.11)

which implies that a particle comes to rest at a time τ ' m
γ , which can be

long if the viscosity of the fluid is small (γ is small). More interesting are the
correlations between the velocity and positions at distant times. Inserting the
results for v (t) and x (t) and using 〈ξ (t) ξ (t′)〉ξ = gδ (t− t′) gives

〈v (t) v (t′)〉ξ =

(
v2

0 −
g

2mγ

)
e−γ(t+t

′)/m +
g

2mγ
e−γ(t−t

′)/m (8.12)
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and similarly〈
(x (t)− x0)

2
〉

=
m2

γ2

(
v2

0 −
g

2mγ

)(
1− e−γt/m

)2

+
g

γ2

(
t− m

γ

(
1− e−γt/m

))
. (8.13)

If the Brownian particle is in equilibrium with the fluid, we can average over all
the directions and magnitudes of the velocity v2

0 →
〈
v2

0

〉
T

= kBT
m . Where 〈...〉T

refers to the thermal average over all particles (so far we only considered one of
them embedded in the fluid). Furthermore, in equilibrium the dynamics should
be stationary, i.e. 〈

〈v (t) v (t′)〉ξ
〉
T

= f (t− t′) (8.14)

should only depend on the relative time t − t′ and not on some absolute time
point, like t, t′ or t+ t′. This is fulfilled if〈

v2
0

〉
T

=
g

2mγ
(8.15)

which enables us to express the noise strength at equilibrium in terms of the
temperature and the friction coefficient

g = 2γkBT (8.16)

which is one of the simplest realization of the fluctuation dissipation theorem.
Here the friction is a dissipative effect whereas the noise a fluctuation effect.
Both are closely related in equilibrium.

This allows us to analyze the mean square displacement in equilibrium〈
(x (t)− x0)

2
〉
T

=
2kBT

γ

(
t− m

γ

(
1− e−γt/m

))
. (8.17)

In the limit of long times t� τ = m
γ holds〈

(x (t)− x0)
2
〉
T
' 2kBT

γ
t (8.18)

which the result obtained earlier from the diffusion equation if we identify
D = kBT

γ . Thus, even though the mean velocity of the particle vanishes for
t � τ it does not mean that it comes to rest, the particle still increases its
mean displacement, only much slower than via a ballistic motion. This demon-
strates how important it is to consider, in addition to mean values like 〈v (t)〉ξ
, correlation functions of higher complexity.

8.2 Random electrical circuits

Due to the random motion and discrete nature of electrons, an LRC series circuit
experiences a random potential ξ (t). This in turn induces a randomly varying
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charge Q (t) on the capacitor plates and a random current

I (t) =
dQ

dt
(8.19)

through the resistor and inductor. The random charge satisfies

L
d2Q (t)

dt2
+R

dQ (t)

dt
+
Q (t)

C
= ξ (t) . (8.20)

Lets assume that the random potential is correlated according to.

〈ξ (t)〉ξ = 0

〈ξ (t) ξ (t′)〉ξ = gδ (t− t′) . (8.21)

In addition we use that the energy of the circuit

E (Q, I) =
1

2C
Q2 +

L

2
I2 (8.22)

implies via equipartition theorem that〈
Q2

0

〉
T

= CkBT〈
I2
0

〉
T

=
kBT

L
. (8.23)

The above equation is solved for the current as:

I (t) = I0e
−ΓtC (t)− 1

CL∆
Q0e

−Γt sinh (∆t)

+
1

L

ˆ t

0

dsξ (s) e−Γ(t−t′)C (t− t′) (8.24)

with damping rate

Γ =
R

L
(8.25)

and time constant

∆ =

√
R2 − L/C

L2
, (8.26)

as well as

C (t) = cosh (∆t)− Γ

∆
sinh (∆t) . (8.27)

Assuming 〈Q0I0〉T = 0 gives (assume t > t′ )〈
〈I (t) I (t′)〉ξ

〉
T

= e−Γ(t+t′)C (t)C (t′)
〈
I2
0

〉
T

+

(
1

CL∆

)2 〈
Q2

0

〉
T
e−Γ(t+t′) sinh (∆t) sinh (∆t′)

+
g

L2

ˆ t′

0

dse−Γ(t+t′−2s)C (t− s)C (t′ − s) (8.28)
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The last integral can be performed analytically, yielding

e−Γ(t+t′)

4∆2Γ

(
Γ2 −∆2

)
cosh (∆ (t′ − t))

+
eΓ(t−t′)

4∆

(
sinh (∆ (t′ − t)) +

∆

Γ
cosh (∆ (t′ − t))

)
+
eΓ(t+t′)

4∆2
(Γ cosh (∆ (t′ + t)) + ∆ sinh (∆ (t′ + t))) (8.29)

It is possible to obtain a fully stationary current-current correlation function if

g = 4RkBT (8.30)

which is again an example of the fluctuation dissipation theorem.
It follows (t′ > t)〈
〈I (t) I (t′)〉ξ

〉
T

=
kBT

L
e−Γ(t′−t)

(
cosh (∆ (t′ − t))− Γ

∆
sinh (∆ (t′ − t))

)
(8.31)

If C → 0, it holds ∆→ Γ and Γ−1 is the only time scale of the problem. Current-
current correlations decay exponentially. If 0 < ∆ < Γ, the correlation function
changes sign for t′ − t ' ∆−1. Finally, if R2 < L/C, current correlations decay
in an oscillatory way (use cosh (ix) = cosx and sinh (ix) = i sin (x)). Then

∆ = iδ with δ =
√

L/C−R2

L2 and

〈
〈I (t) I (t′)〉ξ

〉
T

=
kBT

L
e−Γ(t′−t)

(
cos (δ (t′ − t))− Γ

δ
sin (δ (t′ − t))

)
. (8.32)

For the fluctuating charge follows

Q (t) = Q0 +

ˆ t

0

I (s) ds. (8.33)
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Chapter 9

Boltzmann transport
equation

9.1 Transport coefficients

In the phenomenological theory of transport coefficients one considers a relation-
ship between generalized currents, Ji, and forces, Xi which, close to equilibrium
and for small forces is assumed to be linear:

Ji =
∑
j

LijXj (9.1)

Here, the precise definition of the forces is such that in each case an entropy
production of the kind

dS

dt
=
∑
i

XiJi (9.2)

occurs. If this is the case, the coefficients Lij are symmetric:

Lij = Lji, (9.3)

a result originally obtained by Onsager. The origin of this symmetry is the time
reversal invariance of the microscopic processes causing each of these transport
coefficients. This implies that in the presence of an external magnetic field holds

Lij (H) = Lji (−H) . (9.4)

For example in case of an electric current it holds that from Maxwell’s equa-
tions follows

dSE

dt
= J

E

T
(9.5)

which gives XE = E
T for the force (note, not the electrical field E itself). Consid-

ering a heat flux JQ gives entropy flux JQ/T . Then there should be a continuity
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equation
dSQ

dt
= ∇ (JQ/T ) = JQ∇

1

T
(9.6)

which gives XQ = − 1
T 2∇T for the generalized forces and it holds

JE = LEEXE + LEQXQ

=
LEE
T

E − LEQ
T 2
∇T (9.7)

JQ = LQEXE + LQQXQ

=
LQE
T

E − LQQ
T 2
∇T. (9.8)

We can now consider a number of physical scenario. For example the electri-
cal current in the absence of a temperature gradient is the determined by the
conductivity, σ, via

JE = σE (9.9)

which gives

σ =
LEE
T

. (9.10)

On the other hand, the thermal conductivity is defined as the relation between
heat current and temperature gradient in the absence of an electrical current

JQ = −κ∇T. (9.11)

This implies E =
LEQ
LEET

∇T for the electrical field yielding

κ =
1

T 2

(
LQQ −

L2
QE

LEE

)
. (9.12)

Finally we can consider the Thermopower, which is the above established rela-
tion between E and ∇T for JE = 0

E = S∇T (9.13)

with

S =
LEQ
LEET

. (9.14)

One approach to determine these coefficients from microscopic principles is
based on the Boltzmann equation.

9.2 Boltzmann equation for weakly interacting
fermions

For quasi-classical description of electrons we introduce the Boltzmann distri-
bution function fn(k, r, t). This is the probability to find an electron in state
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n,k at point r at time t. More precisely is f/V the probability density to find
an electron in state n,k in point r. This means the probability to find it in a
volume element dV is given by fdV/V .

We consider both k and r defined. This means that we consider wave pack-
ets with both k and r (approximately) defined, however always such that the
uncertainty relation ∆k∆r ∼ 1 holds.

The electron density and the current density are given by

n(r, t) =
1

V

∑
n,k,σ

fn(k, r, t) (9.15)

j(r, t) = − e

V

∑
n,k,σ

vkfn(k, r, t) (9.16)

The equations of motion of non-interacting electrons in a periodic solid and
weak external fields are

dr

dt
= vk =

1

~

(
∂εn(k)

∂k

)
, (9.17)

and

~
dk

dt
= −eE− e

c
(v ×B) . (9.18)

They determine the evolution of the individual k(t) and r(t) of each wave packet.
If the electron motion would be fully determined by the equations of motion,

the distribution function would satisfy

fn(k(t), r(t), t) = fn(k(0), r(0), 0) (9.19)

Thus, the full time derivative would vanish

df

dt
=
∂f

∂t
+
∂k

∂t
· ∇kf +

∂r

∂t
· ∇rf = 0 (9.20)

However, there are processes which change the distribution function. These
are collisions with impurities, phonons, other electrons. The new equation reads

df

dt
=
∂f

∂t
+
∂k

∂t
· ∇kf +

∂r

∂t
· ∇rf =

(
∂f

∂t

)
Coll

, (9.21)

where
(
∂f
∂t

)
Coll

= I[f ] is called the collision integral.

Using the equations of motion we obtain the celebrated Boltzmann equation

∂f

∂t
− e

~

(
E +

1

c
(v ×B)

)
· ∇kf + vk,n · ∇rf = I[f ] . (9.22)

The individual contributions to df
dt can be considered as a consequence of

spatial inhomogeneity effects, such as temperature or chemical potential gradi-
ents (carriers of a given state enter from adjacent regions enter into r whilst
others leave):

vk · ∇rf ' vk ·
∂f

∂T
∇T (9.23)
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In addition, there are effects due to external fields (changes of the k-vector at
the rate)

− e
~

(
E +

1

c
(v ×B)

)
· ∇kf (9.24)

Finally there are scattering processes, characterized by I[f ] which are deter-
mined by the difference between the rate at which the state k is entered and
the rate at which carriers are lost from it.

9.2.1 Collision integral for scattering on impurities

The collision integral describes processes that bring about change of the state
of the electrons, i.e., transitions. There are several reasons for the transitions:
phonons, electron-electron collisions, impurities. Here we consider only one:
scattering off impurities.

Scattering in general causes transitions in which an electron which was in the
state n1,k1 is transferred to the state n2,k2. We will suppress the band index
as in most cases we consider scattering within a band. The collision integral has
two contribution: in and out: I = Iin + Iout.

The in-part describes transitions from all the states to the state k:

Iin[f ] =
∑
k1

W (k1,k)f(k1, r)[1− f(k, r)] , (9.25)

where W (k1,k) is the transition probability per unit of time (rate) from state
k1 to state k given the state k1 is initially occupied and the state k is initially
empty. The factors f(k1) and 1− f(k) take care for the Pauli principle.

The out-part describes transitions from the state k to all other states:

Iout[f ] = −
∑
k1

W (k,k1)f(k, r)[1− f(k1, r)] , (9.26)

The collision integral should vanish for the equilibrium state in which

f(k) = f0 (k) =
1

exp
[
ε(k)−µ
kBT

]
+ 1

. (9.27)

This can be rewritten as

exp

[
ε(k)− µ
kBT

]
f0 = 1− f0 . (9.28)

The requirement Iin[f0] + Iout[f0] is satisfied if

W (k,k1) exp

[
ε(k1)

kBT

]
= W (k1,k) exp

[
ε(k)

kBT

]
. (9.29)
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We only show here that this is sufficient but not necessary. The principle that
it is always so is called detailed balance principle. In particular, for elastic
processes, in which ε(k) = ε(k1), we have

W (k,k1) = W (k1,k) . (9.30)

In this case (when only elastic processes are present we obtain)

I[f ] =
∑
k1

W (k1,k)f(k1)[1− f(k)]−
∑
k1

W (k,k1)f(k)[1− f(k1)]

=
∑
k1

W (k1,k) (f(k1)− f(k)) . (9.31)

9.2.2 Relaxation time approximation

We introduce f = f0 + δf . Since I[f0] = 0 we obtain

I[f ] =
∑
k1

W (k1,k) (δf(k1)− δf(k)) .

Assume the rates W are all equal and
∑

k1
δf(k1) = 0 (no change in total

density), then I[f ] ∼ −δf(k). We introduce the relaxation time τ such that

I[f ] = −δf
τ
. (9.32)

This form of the collision integral is more general. That is it can hold not only
for the case assumed above. Even if this form does not hold exactly, it serves
as a simple tool to make estimates.

More generally, one can assume τ is k-dependent, τk. Then

I[f(k)] = −δf(k)

τk
. (9.33)

9.2.3 Conductivity

Within the τ -approximation we determine the electrical conductivity. Assume
an oscillating electric field is applied, where E(t) = Ee−iωt. The Boltzmann
equation reads

∂f

∂t
− e

~
E · ∇kf + vk · ∇rf = −f − f0

τk
. (9.34)

Since the field is homogeneous we expect homogeneous response δf(t) = δfe−iωt.
This gives

− e
~

E · ∇kf =

(
iω − 1

τk

)
δf . (9.35)

If we are only interested in the linear response with respect to the electric field,
we can replace f by f0 in the l.h.s. This gives

− e
~
∂f0

∂εk
~vk ·E =

(
iω − 1

τk

)
δf . (9.36)
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and we obtain

δf =
eτk

1− iωτk
∂f0

∂εk
vk ·E (9.37)

For the current density we obtain j(t) = je−iωt, where

j = − e

V

∑
k,σ

vkδf(k)

= −2e2

V

∑
~k

τk
1− iωτk

∂f0

∂εk
(vk ·E) vk

= −2e2

ˆ
d3k

(2π)3

τk
1− iωτk

∂f0

∂εk
(vk ·E) vk. (9.38)

We define the conductivity tensor σαβ via jα =
∑
α σα,βEβ . Thus

σα,β = −2e2

ˆ
d3k

(2π)3

τk
1− iωτk

∂f0

∂εk
vkαvkβ .

At low enough temperatures, i.e., for kBT � µ,

∂f0

∂εk
≈ −δ(εk − µ)− π2

6
(kBT )2δ′′(εk − µ) , (9.39)

Assuming τ is constant and the band energy is isotropic (effective mass is
simple) we obtain

σα,β = − e2τ

1− iωτ

ˆ
dερ(ε)

dΩ

4π

∂f0

∂ε
vαvβ

=
e2τρF

1− iωτ

ˆ
dΩ

4π
vαvβ =

2e2τρF
(1− iωτ)

v2
F

3
δα,β . (9.40)

For the dc-conductivity, i.e., for ω = 0 we obtain

σα,β =
e2τρF v

2
F

3
δα,β (9.41)

where ρF is the total density of states at the Fermi level.

9.2.4 Determining the transition rates

Impurities are described by an extra potential acting on electrons

Uimp(r) =
∑
j

v(r− cj) , (9.42)

where cj are locations of the impurities.
In the Born approximation (Golden Rule) the rates are given by

W (k1,k) =
2π

~
|Uimp,k1,k|

2
δ(ε(k1)− ε(k)) , (9.43)
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where the delta function is meaningful since we use W in a sum over k1.
Uimp,k1,k is the matrix element of the impurity potential w.r.t. the Bloch states

Uimp,k1,k =
1

V

∑
j

ˆ
dV v(r− cj)u

∗
k1

(r)uk(r)ei(k−k1)·r (9.44)

We assume all impurities are equivalent. Moreover we assume that they all have
the same position within the primitive cell. That is the only random aspect is
in which cell there is an impurity. Then cj = Rj + δc. Shifting by Rj in each
term of the sum and using the periodicity of the functions u we obtain

Uimp,k1,k =
1

V

∑
j

ei(k−k1)·Rj

ˆ
dV v(r− δc)u∗k1

(r)uk(r)ei(k−k1)·r

=
1

V
vk1,k

∑
j

ei(k−k1)·Rj (9.45)

where vk1,k is the matrix element of a single impurity potential.
This gives

|Uimp,k1,k|
2

=
1

V 2
|vk1,k|2

∑
j,l

ei(k−k1)·(Rj−Rl) . (9.46)

This result will be put into the sum over k1 in the expression for the collision
integral I. The locations Rj are random. Thus the exponents will average out.
What remains are only diagonal terms. Thus we replace

|Uimp,k1,k|
2 → 1

V 2
|vk1,k|2Nimp , (9.47)

where Nimp is the total number of impurities.
This gives for the collision integral

I[f ] =
∑
~k1

W (k1,k) (f(k1)− f(k))

=
2π

~
Nimp

V 2

∑
~k1

|vk1,k|2 δ(ε(k1)− ε(k)) (f(k1)− f(k))

=
2π

~
nimp

ˆ
d3k1

(2π)3
vk1,k|2 δ(ε(k1)− ε(k)) (f(k1)− f(k)) , (9.48)

where nimp ≡ Nimp/V is the density of impurities.

9.2.5 Transport relaxation time

As we have seen the correction to the distribution function due to application
of the electric field was of the form δf ∼ E · vk. In a parabolic band (isotropic
spectrum) this would be δf ∼ E · k. So we make an ansatz

δf = a (k) E · ek , (9.49)
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where ek ≡ k/|k|. For isotropic spectrum conservation of energy means |k| =
|k1|, the matrix element vk1,k depends on the angle between k1 and k only, the
surface S is a sphere. Then we obtain

I[δf ] =
2π

~
nimp ρF

ˆ
dΩ1

4π
|vk1,k|2 (δf(k1)− δf(k))

=
2π

~
nimpρFa (k)E

ˆ
dΩ1

4π
|v(θk1,k)|2 (cos θk,E − cos θk1E) .(9.50)

We choose direction k as z. Then the vector k1 is described in spherical co-
ordinates by θk1

≡ θk,k1
and ϕk1

. Analogously the vector E is described by
θE = θk,E and ϕE. Then dΩ1 = sin θk1dθk1dϕk1 .

From simple vector analysis we obtain

cos θE,k1
= cos θE cos θk1

+ sin θE sin θk1
cos(ϕE − ϕk1

) . (9.51)

The integration then gives

I[δf ] =
nimpρF

2~
a (k)E

ˆ
sin θk1dθk1dϕk1 |v(θk1)|2 ×

× (cos θE − cos θE cos θk1 − sin θE sin θk1 cos(ϕE − ϕk1) )

=
πnimpρF

~
a (k)E cos θg

ˆ
sin θk1dθk1 |v(θk1)|2(1− cos θk1) .(9.52)

Noting that a (k)E cos θg = a (k) E · ek = −δf we obtain

I[δf ] = − δf
τtr

, (9.53)

where
1

τtr
=
πnimpν

~

ˆ
sin θdθ |v(θ)|2 (1− cos θ) (9.54)

Note that our previous relaxation time approximation was based on total
omission of the in-term. That is in the τ -approximation we had

I[f ] =
∑
k1

W (k1,k) (δf(k1)− δf(k)) ≈ −δf(k)
∑
k1

W (k1,k) .

Thus
1

τ
=
∑
k1

W (k1,k) =
πnimpν

~

ˆ
dθ |v(θ)|2 sin θ .

The difference between τtr (transport time) and τ (momentum relaxation
time) is the factor (1 − cos θ) which emphasizes backscattering. If |v(θ)|2 =
const. we obtain τtr = τ .
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9.2.6 H-theorem

Further insight into the underlying non-equilibrium dynamics can be obtained
from analyzing the entropy density

H = kB

ˆ
ddxddk

(2π)
d

[fk (r) ln fk (r) + (1− fk (r)) ln (1− fk (r))]

It follows for the time dependence of H that

∂H

∂t
= kB

ˆ
ddxddk

(2π)
d

∂fk (r)

∂t
ln

fk (r)

1− fk (r)

= −kB
ˆ
ddxddk

(2π)
d

(
∂k

∂t
· ∇kf +

∂r

∂t
· ∇rf

)
ln

fk (r)

1− fk (r)

+kB

ˆ
ddxddk

(2π)
d
Ik[f ] ln

fk (r)

1− fk (r)

where we used that fk (r) is determined from the Boltzmann equation.
Next we use that

∇kfk (r) ln
fk (r)

1− fk (r)
= ∇kyk (r)

with

yk (r) = log (1− fk (r)) + fk (r) ln
fk (r)

1− fk (r)

which allows us to write the term with ∂k
∂t ·∇kf as a surface integral. The same

can be done for the term with ∂r
∂t · ∇rf . Thus, it follows

∂H

∂t
= kB

ˆ
ddxddk

(2π)
d
Ik[f ] ln

fk (r)

1− fk (r)

= kB

ˆ
ddxddk

(2π)
d
W (k′,k)fk′(r)[1− fk(r)] −W (k,k′)fk(r)[1− fk′(r)] ln

fk (r)

1− fk (r)

=
kB
2

ˆ
ddxddk

(2π)
d
W (k′,k) (fk′(r)[1− fk(r)] − fk(r)[1− fk′(r)] ) ln

fk (r) (1− fk′ (r))

fk′ (r) (1− fk (r))

=
kB
2

ˆ
ddxddk

(2π)
d
W (k′,k) (fk′(r)[1− fk(r)] − fk(r)[1− fk′(r)] ) ln

fk (r) (1− fk′ (r))

fk′ (r) (1− fk (r))

It holds
(1− x) log x ≤ 0

where the equal sign is at zero. Thus, it follows

∂H

∂t
< 0.
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Only for
fk (r) (1− fk′ (r))

fk′ (r) (1− fk (r))
= 1

is H a constant. Thus

log
fk (r)

(1− fk (r))
= const.

which is the equilibrium distribution function.

9.2.7 Local equilibrium, Chapman-Enskog Expansion

Instead of global equilibrium with given temperature T and chemical potential
µ in the whole sample, consider a distribution function f(r,k) corresponding to
space dependent T (r) and µ(r):

f0 =
1

exp
[
εk−µ(r)
kBT (r)

]
+ 1

. (9.55)

This sate is called local equilibrium because also for this distribution function
the collision integral vanishes: I[f0] = 0. However this state is not static. Due
to the kinematic terms in the Boltzmann equation (in particular vk · ∇rf) the
state will change. Thus we consider the state f = f0 + δf and substitute it into
the Boltzmann equation. This gives (we drop the magnetic field)

∂δf

∂t
− e

~
E · ∇k(f0 + δf) + vk · ∇r(f0 + δf) = I[δf ] . (9.56)

We collect all the δf terms in the r.h.s.:

− e
~

E · ∇kf0 + vk · ∇rf0 = I[δf ] +
∂δf

∂t
+
e

~
E · ∇kδf − vk · ∇rδf . (9.57)

We obtain

∇rf0 = −∂f0

∂εk

(
∇rµ+

(εk − µ)

T
∇rT

)
(9.58)

and

−∂f0

∂εk
vk

(
(∇rµ+ eE) +

εk − µ
T

∇rT

)
= I[δf ]+

∂δf

∂t
+
e

~
E·∇kδf−vk ·∇rδf .

(9.59)
In the stationary state, relaxation time approximation, and neglecting the

last two terms (they are small at small fields) we obtain

−∂f0

∂εk
vk

(
(∇rµ+ eE) +

εk − µ
T

∇rT

)
= − δf

τtr
, (9.60)

which yields:

δf = τtr
∂f0

∂εk
vk

(
(∇rµ+ eE) +

εk − µ
T

∇rT

)
. (9.61)
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Thus we see that there are two forces getting the system out of equilib-
rium: the electrochemical field: Eel.ch. ≡ E + (1/e)∇µ and the gradient of the
temperature ∇T . More precisely one introduces the electrochemical potential
φel.ch. such that Eel.ch. = E + (1/e)∇µ = −∇φel.ch. = −∇φ + (1/e)∇µ. Thus
φel.ch. = φ− (1/e)µ.

On top of the electric current

jE(r, t) = − e

V

∑
k,σ

vkδf(k, r, t) (9.62)

we define the heat current

jQ(r, t) =
1

V

∑
k,σ

(εk − µ)vkδf(k, r, t) (9.63)

This expression for the heat current follows from the definition of heat dQ =
dU − µdN .

This gives (
jE
jQ

)
=

(
K11 K12

K21 K22

)(
Eel.ch.

∇T/T

)
(9.64)

Before we determine these coefficients, we give a brief interpretation of the
various coefficients. In the absence of ∇T , holds

jE = K11Eel.ch.

jQ = K21Eel.ch..

The first term is the usual conductivity, i.e.

σ = K11

, while the second term describes a heat current in case of an applied electric
field. The heat current that results as consequence of an electric current is called
Peltier effect

jQ = βEjE .

where
βE = K21/K11.

is the Peltier coefficient.
In the absence of Eel.ch. holds

jE =
K12

T
∇T

jQ =
K22

T
∇T

Thus, with jQ = −κ∇T follows

κ = −K22/T
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for the thermal conductivity, while K12 determines the electric current that is
caused by a temperature gradient. Keep in mind that the relationship between
the two currents is now jQ = βT jE with .

βT = K22/K12 = −Tκ/K12

Finally a frequent experiment is to apply a thermal gradient and allow for
no current flow. Then, due to

0 = K11Eel.ch. +
K12

T
∇T

follows that a voltage is being induced with associated electric field

Eel.ch. = S∇T

where

S =
K12

TK11

is the Seebeck coefficient (often refereed to as thermopower).
For the electrical current density we obtain

jE = − e

V

∑
k,σ

vkδf(k)

= − e

V

∑
k,σ

τtr
∂f0

∂εk

[
vk ·

(
eEel.ch. +

εk − µ
T
∇T
)]

vk . (9.65)

Thus for K11 we obtain

K11αβ = −e
2

V

∑
k,σ

τtr
∂f0

∂εk
vk,αvk,β . (9.66)

For K12 this gives

K12αβ = − e

V

∑
k,σ

τtr
∂f0

∂εk
(εk − µ)vk,αvk,β . (9.67)

For the heat current density we obtain

jQ =
1

V

∑
~k,σ

(εk − µ)vkδf(k)

=
1

V

∑
~k,σ

τtr (εk − µ)
∂f0

∂εk

[
vk ·

(
eEel.ch. +

εk − µ
T
∇T
)]

vk .(9.68)

Thus for K21 we obtain

K21αβ =
e

V

∑
k,σ

τtr
∂f0

∂εk
(εk − µ)vk,αvk,β . (9.69)
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For K22 this gives

K22αβ =
1

V

∑
k,σ

τtr
∂f0

∂εk
(εk − µ)2vk,αvk,β . (9.70)

K11 is just the conductivity calculated earlier. K12 = −K21. This is one of
the consequences of Onsager relations. K12 6= 0 only if the density of states is
asymmetric around µ (no particle-hole symmetry). Finally, for K22 we use

∂f0

∂ε
≈ −δ(ε− µ)− π2

6
(kBT )2δ′′(ε− µ) , (9.71)

This gives

K22αβ =
1

V

∑
~k,σ

τtr
∂f0

∂ε
(εk − µ)2 vk,αvk,β

= τtr

ˆ
ρ (ε) dε

dΩ

4π

∂f0

∂ε
(ε− µ)2vαvβ

= −τtr
π2

3
(kBT )2ρF

ˆ
dΩ

4π
vαvβ = −π

2

9
(kBT )2ρF v

2
F τtrδα,β .(9.72)

Thus, for thermal conductivity κ defined via jQ = −κ∇T we obtain

κ = −K22

kBT
=
π2

9
k2

BTρF v
2
F τtr (9.73)

Comparing with the electrical conductivity

σ =
1

3
ρF v

2
F τtr (9.74)

We obtain the Wiedemann-Franz law:

κ

σ
=
k2

BT

e2

π2

3
. (9.75)


