
Second quantization

In the course ”Theorie E” second quantization for photons was introduced. Now
we do the same for arbitrary particles, e.g., electrons or atoms.

I. BOSONS

We consider a system of many indistinguishable paricles which obey the Bose-
Einstein statistics.

Let |i〉 = φi(x) be the full ortho-normal system of one-particle states. By x we
mean all the coordinates plus spin, i.e., x = (~r, σ), where σ is the projection of the
spin on the quantization axis. For s = 1, e.g., we have σ = −1, 0, 1. So a free
particle in a box of volume V = L3 having momentum h̄~k, where ~k = 2π

L (nx, ny, nz),
and σ = 1 would be described by

φ~k,1(~r, σ) =
1√
V
ei
~k~r δσ,1 (1)

For s = 0, the coordinate σ is unnecessary.
We characterize states of the system by occupation numbers, Ni, i.e, by number

of particles which are in state i. Since the particles are indistinguishable this is the
maximum information about the state of the system. We use the Dirac notation
|N1, N2, ...〉 which describes a state with N1 particles in state φ1 etc. In usual
Schrödinger representation this state reads

|N1, N2, ...〉 =

(
N1!N2! . . .

N !

)1/2∑
P

φP1
(x1)φP2

(x2) . . . φPN
(xN) , (2)

where N = N1 + N2 + . . . is the total number of particles. The permutation P
counts all different arrangements of N1 numbers 1, N2 numbers 2 etc.

A. One-particle operators

Consider a one-particle operator. For example the z-coordinate operator f̂ (1) = z
or the momentum in z direction f̂ (1) = −ih̄∂/∂z. For indistinguishable particles
only the following operators are allowed

F̂ (1) =
∑
a
f̂ (1)xa

, (3)

where the subscript xa determines on which coordinate in (2) the operator f̂ (1) acts.
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The operator F̂ (1) can change at most the state of one particle. Thus it can have
only the following matrix elements

〈N1, N2, . . .| F̂ (1) |N1, N2, . . .〉 (4)

and

〈. . . , Ni, . . . , Nj − 1, . . .| F̂ (1) |. . . , Ni − 1, . . . , Nj, . . .〉 (5)

Combinatorics gives (exercise)

〈N1, N2, . . .| F̂ (1) |N1, N2, . . .〉 =
∑
i

Ni 〈i| f̂ (1) |i〉 (6)

and

〈. . . , Ni, . . . , Nj − 1, . . .| F̂ (1) |. . . , Ni − 1, . . . , Nj, . . .〉 =
√
NiNj 〈i| f̂ (1) |j〉 (7)

B. Creation and annihilation operators

It is convenient to introduce the annihilation operator âi defined by

âi |. . . , Ni, . . .〉 =
√
Ni |. . . , Ni − 1, . . .〉 (8)

The same can be written as 〈Ni − 1| âi |Ni〉 =
√
Ni. The conjugated (creation)

operator â†i is given by

〈Ni| â†i |Ni − 1〉 = 〈Ni − 1| âi |Ni〉∗ =
√
Ni (9)

Thus

â†i |. . . , Ni, . . .〉 =
√
Ni + 1 |. . . , Ni + 1, . . .〉 (10)

Properties:

â†i âi |. . . , Ni, . . .〉 = Ni |. . . , Ni, . . .〉 (11)

or in short â†i âi = Ni. Also âiâ
†
i = Ni + 1. This gives the commutation relation

âiâ
†
i − â

†
i âi = 1 (12)

The state |Ni〉 is obtained by acting Ni times with the creation operator:

|Ni〉 =
(â†i)

Ni

√
Ni!
|0〉 . (13)

For different states i and j (i 6= j) we have âiâ
†
j − â

†
jâi = 0 etc.

Now we can express the operator F̂ (1) in terms of the creation and annihilation
operators:

F̂ (1) =
∑
ij

〈i| f (1) |j〉 â†i âj (14)

The equivalence is proven by comparing the matrix elements.
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C. Two-particle operators

Consider now an operator f (2) acting on two-particle states. For example poten-
tial interaction between particles: f (2)φ(x1, x2) = U(|~r1 − ~r2|)φ(x1, x2). Again, for
indistinguishable particles only the following operators are allowed:

F̂ (2) =
∑
a<b

f
(2)
ab , (15)

where the subscripts a and b determine on which pair of coordinates the operator
f (2) acts. Analogously to the one-particle operators one obtains

F̂ (2) =
1

2

∑
iklm

〈ik| f (2) |lm〉 â†i â
†
kâlâm , (16)

where

〈ik| f (2) |lm〉 ≡
∫ ∫

dx1dx2 φ
∗
i (x1)φ

∗
k(x2)f̂

(2)φl(x1)φm(x2) . (17)

D. Example

Consider the Hamiltonian describing N pairwise interacting particles:

Ĥ =
∑
a
Ĥ(1)
a +

∑
a<b

U (2)(~ra, ~rb) , (18)

where the single-particle part it given by

Ĥ(1)
a = − h̄2

2m
∆a + U (1)(~ra) (19)

Then in terms of creation and annihilation operators we obtain

Ĥ =
∑
ik

〈i| Ĥ(1) |j〉 â†i âj +
1

2

∑
iklm

〈ik|U (2) |lm〉 â†i â
†
kâlâm . (20)

If the states |i〉 are the eigenstates of Ĥ(1), i.e., Ĥ(1) |i〉 = Ei |i〉 we obtain

Ĥ =
∑
i

Eiâ
†
i âi +

1

2

∑
iklm

〈ik|U (2) |lm〉 â†i â
†
kâlâm . (21)

For example, consider free (U (1) = 0) but interacting (U (2) = U(|~ra−~rb|)) particles.
Then, the convenient basis is

|~p〉 =
1√
V
e

i~p~r
h̄ (22)
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and we obtain

Ĥ =
∑
~p

(~p)2

2m
â†~pâ~p +

1

2V

∑
~p,~q1,~q2

U(|~q1 − ~q2|)â†~p+~q1
2

â†
~p−~q1

2

â
~p+

~q2
2

â
~p−~q2

2

. (23)

Another way to parametrize the momenta of interacting particles would be, for
example,

Ĥ =
∑
~p

(~p)2

2m
â†~pâ~p +

1

2V

∑
~p1,~p1,~q

U(~q)â†~p1+~q
â†~p2−~qâ~p2

â~p1
. (24)

E. Field operators

More compact and intuitive form one obtains by defining the field operators:

Ψ̂(x) =
∑
i

φi(x)âi and Ψ̂†(x) =
∑
i

φ∗i (x)â†i (25)

The wave functions have the property (
∑
i |i〉 〈i| = 1̂)∑

i

φ∗i (x)φi(x
′) = δ(x− x′) = δ(~r − ~r′)δσ,σ′ (26)

From this we derive

Ψ̂(x)Ψ̂†(x′)− Ψ̂†(x′)Ψ̂(x) = δ(x− x′) (27)

and all other commutators vanish ([Ψ̂, Ψ̂] = 0 and [Ψ̂†, Ψ̂†] = 0).
Physical meaning: Ψ̂†(x0) creates a particle at x0 (that is at ~r0 with spin projection

σ0). Indeed, since â†i |0〉 corresponds to the state with wave function φi(x), we obtain
that Ψ̂†(x0) |0〉 corresponds to the wave function

∑
i φ
∗
i (x0)φi(x) = δ(x− x0).

F. One- and two-particle operators in terms of field operators

F̂ (1) =
∑
ij

〈i| f (1) |j〉 â†i âj =
∑
ij

∫
dxφ∗i (x)f (1)φj(x)â†i âj =

∫
dxΨ̂†(x)f (1)Ψ̂(x) (28)

For example density of a single particle at x0 is given by f (1)ρ (x0) = δ(x−x0). This
gives for the total density of many particles

F (1)
ρ (x0) = ρ̂(x0) = Ψ̂†(x0)Ψ̂(x0) (29)

Analogously

F̂ (2) =
1

2

∑
iklm

〈ik| f (2) |lm〉 â†i â
†
kâlâm
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=
1

2

∑
iklm

∫ ∫
dx1dx2 φ

∗
i (x1)φ

∗
k(x2)f̂

(2)φl(x1)φm(x2)â
†
i â
†
kâlâm

=
1

2

∫ ∫
dx1dx2 Ψ̂†(x1)Ψ̂

†(x2)f̂
(2)Ψ̂ (x1)Ψ̂ (x2)

=
1

2

∫ ∫
dx1dx2 Ψ̂†(x1)Ψ̂

†(x2)f̂
(2)Ψ̂ (x2)Ψ̂ (x1) , (30)

The order is not important for bosons. However, for fermions discussed below, only
the last form is correct.

Consider again the Hamiltonian describing N pairwise interacting particles:

Ĥ =
∑
a
Ĥ(1)
a +

∑
a<b

U (2)(~ra, ~rb) , (31)

where the single-particle part it given by

Ĥ(1)
a = − h̄2

2m
∆a + U (1)(~ra) (32)

In terms of the field operators we obtain

Ĥ =
∫
dx

− h̄2

2m
Ψ̂†(x)∆Ψ̂(x) + Ψ̂†(x)U (1)(x)Ψ̂(x)


+

1

2

∫ ∫
dx1dx2 Ψ̂†(x1)Ψ̂

†(x2)U
(2)(x1, x2)Ψ̂ (x2)Ψ̂ (x1) (33)

II. FERMIONS

The wave functions must be antisymmetric. This means that the occupation
numbers are either 0 or 1, Ni = 0, 1. This is called Pauli principle. The wave
function for N particles occupying states i = 1, ..., N is given by

|11, 12, ..., 1N〉 =

(
1

N !

)1/2∑
P

(−1)PφP1
(x1)φP2

(x2) . . . φPN
(xN) , (34)

To fix the signs one chooses a certain order of states. For example, the permutation
with P1 < P2 < . . . < PN will be assigned the positive sign.

A. One-particle operators

Consider a one-particle operator. For example the z-coordinate operator f̂ (1) = z
or the momentum in z direction f̂ (1) = −ih̄∂/∂z. For indistinguishable particles
only the following operators are allowed

F̂ (1) =
∑
a
f̂ (1)xa

, (35)
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where the subscript xa determines on which coordinate in (34) the operator f̂ (1)

acts.
The operator F̂ (1) can change at most the state of one particle. Thus it can have

only the following matrix elements

〈N1, N2, . . .| F̂ (1) |N1, N2, . . .〉 , (36)

where Ni = 0, 1 and

〈. . . , 1i, . . . , 0j, . . .| F̂ (1) |. . . , 0i, . . . , 1j, . . .〉 (37)

or

〈. . . , 0i, . . . , 1j, . . .| F̂ (1) |. . . , 1i, . . . , 0j, . . .〉 (38)

Order is now important, so the way we write assumes i < j.
Combinatorics gives (exercise)

〈N1, N2, . . .| F̂ (1) |N1, N2, . . .〉 =
∑
i

Ni 〈i| f̂ (1) |i〉 (39)

and

〈. . . , 1i, . . . , 0j, . . .| F̂ (1) |. . . , 0i, . . . , 1j, . . .〉 = 〈i| f̂ (1) |j〉 (−1)θij (40)

where θij ≡
∑k=j−1
k=i+1 Nk. That is the sign is determined by the number of occupied

states between i and j.

B. Creation and annihilation operators

We define

âi |. . . , 1i, . . .〉 = (−1)θi∞ |. . . , 0i, . . .〉 (41)

and

â†i |. . . , 0i, . . .〉 = (−1)θi∞ |. . . , 1i, . . .〉 (42)

That is the sign is determined by the number of occupied states with k > i.
Than, by comparing the matrix elements we obtain

F̂ (1) =
∑
ij

〈i| f (1) |j〉 â†i âj (43)

This definition shows that in order to get signs right we have to act with creation
operators in a certain order. Namely

|11, 12, ...., 1N〉 = â†N . . . â
†
2â
†
1 |0〉 (44)
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That is every time â†i acts there are no yet states occupied to the right of i. We
should annihilate the states in the opposite order, i.e.,

|0〉 = â1â2 . . . âN |11, 12, ...., 1N〉 (45)

From here we obtain the anti-commutation relations for i 6= j:
âiâj + âjâi = 0, â†i â

†
j + â†jâ

†
i = 0, â†i âj + âjâ

†
i = 0 etc.

For i = j we obtain â†i âi = Ni, while âi â
†
i = 1−Ni. Thus âi â

†
i + â†i âi = 1.

C. Two-particle operators

Consider now an operator f (2) acting on two-particle states. For example poten-
tial interaction between particles: f (2)φ(x1, x2) = U(|~r1 − ~r2|)φ(x1, x2). Again, for
indistinguishable particles only the following operators are allowed:

F̂ (2) =
∑
a<b

f
(2)
ab , (46)

where the subscripts a and b determine on which pair of coordinates the operator
f (2) acts.

We obtain

F̂ (2) =
1

2

∑
iklm

〈ik| f (2) |lm〉 â†i â
†
kâmâl , (47)

where

〈ik| f (2) |lm〉 ≡
∫ ∫

dx1dx2 φ
∗
i (x1)φ

∗
k(x2)f̂

(2)φl(x1)φm(x2) . (48)

Pay attention to the order of operators in (47). In order to keep the signs right we
have to create and annihilate in opposite order (here with respect to coordinates xa
and xb).

Recall that x = (~r, σ), i.e., it includes the spin variable (index). The integration∫
dx means then

∫
dx ≡ ∑

σ
∫
d3r.

D. Field operators

More compact and intuitive form one obtains by defining the field operators:

Ψ̂(x) =
∑
i

φi(x)âi and Ψ̂†(x) =
∑
i

φ∗i (x)â†i (49)

The wave functions have the property (
∑
i |i〉 〈i| = 1̂)∑

i

φ∗i (x)φi(x
′) = δ(x− x′) = δ(~r − ~r′)δσ,σ′ (50)
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From this we derive

Ψ̂(x)Ψ̂†(x′) + Ψ̂†(x′)Ψ̂(x) = δ(x− x′) (51)

and all other anti-commutators vanish (
{
Ψ̂, Ψ̂

}
+

= 0 and
{
Ψ̂†, Ψ̂†

}
+

= 0).

Physical meaning: Ψ̂†(x0) creates a particle at x0 (that is at ~r0 with spin projection
σ0). Indeed, since â†i |0〉 corresponds to the state with wave function φi(x), we obtain
that Ψ̂†(x0) |0〉 corresponds to the wave function

∑
i φ
∗
i (x0)φi(x) = δ(x− x0).

E. One- and two-particle operators in terms of field operators

F̂ (1) =
∑
ij

〈i| f (1) |j〉 â†i âj =
∑
ij

∫
dxφ∗i (x)f (1)φj(x)â†i âj =

∫
dxΨ̂†(x)f (1)Ψ̂(x) (52)

For example density of a single particle at x0 is given by f (1)ρ (x0) = δ(x−x0). This
gives for the total density of many particles

F (1)
ρ (x0) = ρ̂(x0) = Ψ̂†(x0)Ψ̂(x0) (53)

Analogously

F̂ (2) =
1

2

∑
iklm

〈ik| f (2) |lm〉 â†i â
†
kâmâl

=
1

2

∑
iklm

∫ ∫
dx1dx2 φ

∗
i (x1)φ

∗
k(x2)f̂

(2)φl(x1)φm(x2)â
†
i â
†
kâmâl

=
1

2

∫ ∫
dx1dx2 Ψ̂†(x1)Ψ̂

†(x2)f̂
(2)Ψ̂ (x2)Ψ̂ (x1) , (54)

The order is important.


