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1 The harmonic oscillator: raising and lowering
operators

Lets first reanalyze the harmonic oscillator with potential

V (x) =
mω2

2
x2 (1)

where ω is the frequency of the oscillator. One of the numerous approaches
we use to solve this problem is based on the following representation of the
momentum and position operators:

x̂ =

√
~

2mω

(
â† + â

)
p̂ = i

√
m~ω

2

(
â† − â

)
. (2)

From the canonical commutation relation

[x̂, p̂] = i~ (3)

follows [
â, â†

]
= 1

[â, â] =
[
â†, â†

]
= 0. (4)

Inverting the above expression yields

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
â† =

√
mω

2~

(
x̂− i

mω
p̂

)
(5)
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demonstrating that â† is indeed the operator adjoined to â. We also defined the
operator

N̂ = â†â (6)

which is Hermitian and thus represents a physical observable. It holds

N̂ =
mω

2~

(
x̂− i

mω
p̂

)(
x̂+

i

mω
p̂

)
=

mω

2~
x̂2 +

1

2m~ω
p̂2 − i

2~
[p̂, x̂]

=
1

~ω

(
p̂2

2m
+
mω2

2
x̂2
)
− 1

2
. (7)

We therefore obtain
Ĥ = ~ω

(
N̂ +

1

2

)
. (8)

Since the eigenvalues of Ĥ are given as En = ~ω
(
n+ 1

2

)
we conclude that the

eigenvalues of the operator N̂ are the integers n that determine the eigenstates
of the harmonic oscillator.

N̂ |n〉 = n |n〉 . (9)

Using the above commutation relation
[
â, â†

]
= 1 we were able to show that

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉 (10)

The operator â† and â raise and lower the quantum number (i.e. the number of
quanta). For these reasons, these operators are called creation and annihilation
operators.

2 second quantization of noninteracting bosons
While the above results were derived for the special case of the harmonic oscil-
lator there is a similarity between the result

En = ~ω
(
n+

1

2

)
(11)

for the oscillator and our expression

E{np} =
∑
p

εpnp (12)

for the energy of a many body system, consisting of non-interacting indistin-
guishable particles. While n in case of the oscillator is the quantum number
label, we may alternatively argue that it is the number of oscillator quanta in
the oscillator. Similarly we can consider the many body system as a collection
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of a set of harmonic oscillators labelled by the single particle quantum number
p (more generally by p and the spin). The state of the many body system was
characterized by the set {np} of occupation numbers of the states (the number
of particles in this single particle state). We the generalize the wave function
|n〉 to the many body case

|{np}〉 = |n1, n2, ..., np, ...〉 (13)

and introduce operators

âp |n1, n2, ..., np, ...〉 =
√
np |n1, n2, ..., np − 1, ...〉

â†p |n1, n2, ..., np, ...〉 =
√
np + 1 |n1, n2, ..., np + 1, ...〉 (14)

That obey [
âp, â

†
p′

]
= δp,p′ . (15)

It is obvious that these operators commute if p 6= p′. For p = p′ follows

âpâ
†
p |n1, n2, ..., np, ...〉 =

√
np + 1âp |n1, n2, ..., np + 1, ...〉

= (np + 1) |n1, n2, ..., np, ...〉 (16)

and

â†pâp |n1, n2, ..., np, ...〉 =
√
npâ

†
p |n1, n2, ..., np − 1, ...〉

= np |n1, n2, ..., np, ...〉 (17)

which gives âpâ†p − â†pâp = 1. Thus the commutation relation follow even if
the operators are not linear combinations of position and momentum. It also
follows

n̂p = â†pâp (18)

for the operator of the number of particles with single particle quantum number
p. The total number operator is N̂ =

∑
p â
†
pâp. Similarly, the Hamiltonian in

this representation is given as

Ĥ =
∑
p

εpâ
†
pâp (19)

which gives the correct matrix elements.
We generalize the problem and analyze a many body system of particles with

single particle Hamiltonian

ĥ =
p̂2

2m
+ U (r̂) (20)

which is characterized by the single particle eigenstates

ĥ |φα〉 = εα |φα〉 . (21)
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α is the label of the single particle quantum number. We can then introduce
the occupation number representation with

|n1, n2, ..., nα, ...〉 (22)

and corresponding creation and destruction operators
[
âα, â

†
α′

]
= δα,α′ . We can

then perform a unitary transformation among the states

|β〉 =
∑
α

Uβα |α〉 =
∑
α

|α〉 〈α|β〉 (23)

The states |β〉 are in general not the eigenstates of the single particle Hamil-
tonian (they only are if Uβα = 〈α|β〉 = δαβ). We can nevertheless introduce
creation and destruction operators of these states, that are most naturally de-
fined as:

âβ =
∑
α

〈β|α〉 âα (24)

and the corresponding adjoined equation

â†β =
∑
α

〈β|α〉∗ â†α. (25)

This transformation preserves the commutation relation (see below for an ex-
ample).

We can for example chose the basis β as the eigenbasis of the potential.
Then holds in second quantization

Û =
∑
β

〈β |U (r)|β〉 a†βaβ (26)

and we can transform the result as

Û =
∑
β,α,α′

〈α|β〉 〈β |U (r)|β〉 〈β|α′〉 â†αâα′

=
∑
α,α′

〈α |U (r)|α′〉 â†αâα′ (27)

It holds of course 〈α |U (r)|α′〉 =
´
d3rφα (r)U (r)φα′ (r).

In particular, we can chose |β〉 = |r〉 such that 〈β|α〉 = 〈r|α〉 = φα (r). In
this case we use the notation âr = ψ̂ (r) and our unitary transformations are

ψ̂ (r) =
∑
α

φα (r) âα

ψ̂† (r) =
∑
α

φ∗α (r) â†α (28)
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The commutation relation is then δα,α′[
ψ̂ (r) , ψ̂ (r′)

]
=

∑
α,α′

φα (r)φ∗α′ (r′)
[
âα, â

†
α′

]
=

∑
α

φα (r)φ∗α (r′) =
∑
α

〈r|α〉 〈α|r′〉

= 〈r|r′〉 = δ (r− r′) (29)

and it follows
Û =

ˆ
d3rU (r) ψ̂† (r) ψ̂ (r) (30)

Similarly holds for the kinetic energy

T̂ = − ~2

2m

ˆ
d3rd3r′

〈
r
∣∣∇2

∣∣ r′〉 ψ̂† (r) ψ̂ (r′)

= − ~2

2m

ˆ
d3rd3r′ψ̂† (r)∇2δ (r− r′) ψ̂ (r′)

= − ~2

2m

ˆ
d3rψ̂† (r)∇2ψ̂ (r) (31)

Thus we find

H =
∑
α

εαâ
†
αâα

=

ˆ
d3rψ̂† (r)

(
−~2∇2

2m
+ U (r)

)
ψ̂ (r) (32)

With the help of the field operators ψ̂ (r) and ψ̂† (r) is it possible to bring the
many body Hamiltonian in occupation number representation into the same
form as the Hamiltonian of a single particle.

2.1 Example 1: a single particle
We consider the most general wave function of a single spinless boson:

|ψα〉 =

ˆ
d3rφα (r) ψ̂† (r) |0〉 (33)

where |0〉 is the completely empty system. Let the Hamiltonian be

H =

ˆ
d3rψ̂† (r)

(
−~2∇2

r

2m
+ U (r)

)
ψ̂ (r) (34)

It follows

H |ψα〉 =

ˆ
d3r

ˆ
d3r′ψ̂† (r)

(
−~2∇2

r

2m
+ U (r)

)
φα (r′) ψ̂ (r) ψ̂† (r′) |0〉

=

ˆ
d3r

ˆ
d3r′ψ̂† (r)

(
−~2∇2

r

2m
+ U (r)

)
φα (r′) ψ̂† (r′) ψ̂ (r) |0〉

+

ˆ
d3r

ˆ
d3r′ψ̂† (r)

(
−~2∇2

r

2m
+ U (r)

)
φα (r′) δ (r− r′) |0〉(35)
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The first term disappears since ψ̂ (r) |0〉 = 0 for the empty state. Performing
the integration over r′ gives

H |ψα〉 =

ˆ
d3rψ̂† (r)

(
−~2∇2

r

2m
+ U (r)

)
φα (r) |0〉

=

ˆ
d3r

[(
−~2∇2

r

2m
+ U (r)

)
φα (r)

]
ψ̂† (r) |0〉 (36)

Thus, we need to find the eigenvalue of and eigenfunction of(
−~2∇2

2m
+ U (r)

)
φα (r) = εαφα (r) (37)

to obtain
H |ψα〉 = εα

ˆ
d3rphiα (r) ψ̂† (r) |0〉 = εα |ψα〉 . (38)

Thus, for a single particle problem we recover the original formulation of the
"first quantization". The function φ (r) in Eq.33 is therefore the wave function
of the single particle problem.

Using ψ̂† (r) =
∑
α
φ∗α (r) â†α follows â†α =

´
d3rφα (r) ψ̂† (r) and our above

wave function is nothing but

|ψα〉 = â†α |0〉 (39)

Applying the Hamiltonian to the wave function in this basis is obviously giving
the same answer.

H |ψα〉 =
∑
α′

εα′ â†α′ âα′ â†α |0〉 = εa |ψα〉 (40)

3 Second quantization of interacting bosons
Next we analyze the formulation of particle-particle interactions within the sec-
ond quantization. We consider a two body interaction V̂ that has, by definition,
matrix elements that depend on the states of two particles. Thus the expression
for a single particle where

Û =
∑
α,α′

〈α |U |α′〉 â†αâα′ (41)

will be determined by a matrix elements of the kind:

〈αγ |V |α′γ′〉 =

ˆ
d3rd3r′φ∗α (r)φ∗γ (r′)V (r, r′)φα′ (r′)φγ′ (r) . (42)

In general there will be a two particle basis |αγ〉 where the interaction is diagonal

V̂ |αγ〉 = Vαγ |αγ〉 (43)
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where Vαγ = 〈αγ |V |αγ〉. In this basis we can proceed just like for the interac-
tion Û , where the operator was given by

∑
α 〈α |U |α〉 â†αâα. In case of a two

particle interaction we have contributions if there are two particles, one in state
α the other in state γ. This the interaction must be

V̂ =
1

2

∑
αγ

VαγP̂αγ (44)

where P̂αβ is the operator which counts the number of pairs of particles in
the states |α〉 and |γ〉. The prefactor 1

2 takes into account that each pair is
considered only once.

If |α〉 = |γ〉, the number of pairs is nα (nα − 1), while for |α〉 6= |γ〉 it is
nαnγ , where the nα are the occupation numbers of those states. It follows

P̂αγ = n̂αn̂γ − δαγ n̂α
= a†αa

†
γaαaγ = a†αa

†
γaγaα (45)

and we find

V̂ =
1

2

∑
αγ

Vαγa
†
αa
†
γaγaα =

1

2

∑
αγ

〈αγ |V |αγ〉 a†αa†γaγaα (46)

Transforming this expression into an arbitrary basis |µ〉 =
∑
α
|α〉 〈α|µ〉 , we insert

the operators in the new basis

â†α =
∑
λ

〈λ|α〉 â†λ

âα =
∑
λ

〈α|λ〉 âλ (47)

and it follows

V̂ =
1

2

∑
αγ,λµρν

〈λ|α〉 〈µ|γ〉 〈αγ |V |αγ〉 〈α|ρ〉 〈γ|ν〉 a†λa
†
µaρaν (48)

which simplifies to:

V̂ =
1

2

∑
λµρν

〈λµ |V | ρν〉 a†λa
†
µaρaν (49)

If for example

〈r, r′ |V | r′′r′′′〉 = v (r− r′) δ (r′′ − r′) δ (r′′′ − r) (50)

for an interaction that only depends on the distance between the two particles,
it follows

V̂ =
1

2

ˆ
d3rd3r′v (r− r′) ψ̂† (r) ψ̂† (r′) ψ̂ (r′) ψ̂ (r) . (51)
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4 Second quantization of noninteracting fermions

4.1 The fermionic "harmonic oscillator"
When we introduced the second quantized representation for bosons we took
advantage of the fact that the eigenstates of a free bose system

E =
∑
α

εαnα (52)

could be expressed in terms of the set {nα} of occupation numbers. In case of
bosons these occupation numbers were allowed to take all integer values na =
0, 1, · · · ,∞, reminiscent of the quantum number of the harmonic oscillator. The
latter then led to the introduction of creation and annihilation operators of the
bosons, where the occupation number operator of a given state was n̂α = â†αâa.
The Hamiltonian was then written as

Ĥ =
∑
α

εαn̂α (53)

Obviously, this approach cannot be used to describe fermions where nα = 0
or 1. In case of fermions, the single particle quantum state always includes the
spin, for example α = (k, σ).

We need to find the fermion analog to the harmonic oscillator, i.e. a state
that only allows for the two occupations nα = 0 or 1. We want to express the
Hamiltonian for a single quantum state as

ĥ = εn̂ (54)

This is easily done with the help of a (2× 2) matrix representation (note, these
matrices have nothing to do with the spin of the system). If we introduce

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
(55)

for the empty and occupied state, it holds

n̂ =

(
0 0
0 1

)
(56)

We can equally introduce lowering and raising operators

â |0〉 = 0 and â |1〉 = |0〉 (57)

as well as
â† |1〉 = 0 and â† |0〉 = |1〉 . (58)

It follows easily that this is accomplished by

â =

(
0 1
0 0

)
and â† =

(
0 0
1 0

)
. (59)
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As in case of bosons, â† is the adjoined operator of â.
The action of these operators of a state with arbitrary occupation is then

â |n〉 = n |n− 1〉 = n |1− n〉
â† |n〉 = (1− n) |n+ 1〉 = (1− n) |1− n〉 (60)

If we now determine a†a it follows

â†â =

(
0 1
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
(61)

and we have, just as for bosons,

n̂ = â†â. (62)

However, an important difference is of course that now holds

ââ† + â†â = 1 (63)

in addition we immediately see

â†â† = ââ = 0 (64)

Fermionic creation and annihilation operators do not commute, they anticom-
mute: [

â, â†
]
+

= 1[
â†, â†

]
+

= [â, â]+ = 0. (65)

Note, we could have introduced equally

â = −
(

0 1
0 0

)
and â† = −

(
0 0
1 0

)
. (66)

with the only change that now â |1〉 = − |0〉 and â† |0〉 = − |1〉 and all other
results remain unchanged.

4.2 Many fermi states
To generalize the single fermi result to many fermions we the any body wave
function in occupation number representation

|n1, n2, . . . , nα, . . .〉 (67)

We then need to analyze the creation and annihilation operators â†α and âafor
the individual states, respectively.

At first glance it is natural to introduce(1− n) |n+ 1〉

âa |n1, n2, . . . , nα, . . .〉 = nα |n1, n2, . . . , nα − 1, . . .〉
â†a |n1, n2, . . . , nα, . . .〉 = (1− nα) |n1, n2, . . . , nα + 1, . . .〉 (68)
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(Note, these equations will turn out to be incorrect!)
This implies however that [

âα, â
†
α

]
+

= 1 (69)

while for different states α 6= α′ follows[
âα, â

†
α′

]
+

= 2âαâ
†
α′ (70)

a result that follows from
[
âα, â

†
α′

]
= 0 for α 6= α′. If we now want to transform

from one basis to another, with

|l〉 =
∑
α

|α〉 〈α|l〉 (71)

Just like in case of bosons the new operators should be linear combinations of
the old ones, which yields

âl =
∑
α

〈l|α〉 âα (72)

and the corresponding adjoined equation

â†l =
∑
α

〈l|α〉∗ â†α. (73)

We now require [
âl, â

†
l

]
+

= 1 (74)

which leads to
1 =

∑
α,α′

〈l|α〉 〈α′|l〉
[
âα, â

†
α′

]
+

(75)

For a complete set of states 〈l|α〉 this is only possible if[
âα, â

†
α′

]
+

= δα,α′ (76)

i.e. for α 6= α′ the anticommutator and not the commutator must vanish. We
conclude that Eq.68 cannot be correct.

Jordan and Wigner realized that a small change in the definition of these op-
erators can fix the problem. To proceed we need to order the quantum numbers
in some arbitrary but fixed way. We then introduce

να =

α−1∑
α′=1

nα (77)

as the number of occupied states that precede the α-th state. We can then
introduce

âα = (−1)
να

(
0 1
0 0

)
and â† = (−1)

να

(
0 0
1 0

)
(78)
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The matrix acts on the occupation of the α-th state. As shown above, a prefactor
−1 in the definition of these operators causes no problem. It then follows

âa |n1, n2, . . . , nα, . . .〉 = (−1)
να nα |n1, n2, . . . , nα − 1, . . .〉

= (−1)
να nα |n1, n2, . . . , 1− nα, . . .〉

â†a |n1, n2, . . . , nα, . . .〉 = (−1)
να (1− nα) |n1, n2, . . . , nα + 1, . . .〉

= (−1)
να (1− nα) |n1, n2, . . . , 1− nα, . . .〉 (79)

It obviously holds that [
âα, â

†
α

]
+

= 1 (80)

We next analyze (assume α′ prior to α)

âa′ â
†
a |n1, . . . , nα′ , . . . , nα, . . .〉 = (−1)

να (1− nα) âa′ |n1, . . . , nα′ , . . . , 1− nα, . . .〉
= (−1)

να+να′ nα′ (1− nα) |n1, . . . , 1− nα′ , . . . , 1− nα, . . .〉

On the other hand:

â†aâa′ |n1, . . . , nα′ , . . . , nα, . . .〉 = (−1)
να′ nα′ â†a |n1, . . . , 1− nα′ , . . . , nα, . . .〉

= (−1)
να+να′−1 nα′ (1− nα) |n1, . . . , 1− nα′ , . . . , 1− nα, . . .〉

It then follows

âa′ â
†
a + â†aâa′ = (−1)

να+να′ (nα′ (1− nα)− nα′ (1− nα)) = 0 (81)

The same holds of course if we assume α′ to occur after α.
Thus, we find [

âα, â
†
α′

]
+

= δα,α′ (82)

as desired, yielding after a unitary transformation[
âl, â

†
l′

]
+

=
∑
α,α′

〈l|α〉 〈α′|l′〉
[
âα, â

†
α′

]
+

= δl,l′ (83)

i.e. the anticommutation relation of fermionic operators is independent on the
specific representation.

The Hamiltonian of noninteracting fermions is then

H =
∑
α

εαâ
†
αâα (84)

which in case of free particles reads

H =
∑
k,σ

εkâ
†
k,σâk,σ (85)

where k goes over all momentum values and σ = ± 1
2 .
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5 Interacting fermions
To incorporate interaction effects is now rather similar to the case of bosons.
We start from the two particle basis |αγ〉 where the interaction is diagonal

V̂ |αγ〉 = Vαγ |αγ〉 . (86)

Here Vαγ = 〈αγ |V |αγ〉. In this basis we can proceed just like for bosons. In
case of a two particle interaction we have contributions if there are two particles,
one in state α the other in state γ. This the interaction must be

V̂ =
1

2

∑
αγ

VαγP̂αγ (87)

where P̂αβ is the operator which counts the number of pairs of particles in
the states |α〉 and |γ〉. The prefactor 1

2 takes into account that each pair is
considered only once. It follows again

P̂αγ = n̂αn̂γ − δαγ n̂α
= a†αaαa

†
γaγ − δαγa†αaα

= −a†αa†γaαaγ + a†αδαγaγ − δαγa†αaα
= a†αa

†
γaαaγ (88)

and we find
V̂ =

1

2

∑
αγ

Vαγa
†
αa
†
γaγaα (89)

just as in case of bosons. Transforming this expression into an arbitrary basis
|µ〉 =

∑
α
|α〉 〈α|µ〉 where âµ =

∑
α
〈µ|α〉 âα it holds

V̂ =
1

2

∑
λµρν

〈λµ |V | ρν〉 a†λa
†
µaρaν (90)

If for example

〈r, r′ |V | r′′r′′′〉 = v (r− r′) δ (r′′ − r′) δ (r′′′ − r) (91)

for an interaction that only depends on the distance between the two particles,
it follows

V̂ =
1

2

ˆ
d3rd3r′v (r− r′) ψ̂† (r) ψ̂† (r′) ψ̂ (r′) ψ̂ (r) . (92)

5.1 Example 1: free electron gas
We want to derive the ground state wave function of the free electron gas. The
Hamiltonian of an individual electron is

h = −~2∇2

2m
(93)
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which leads to the single particle eigenvalues

εk =
~2k2

2m
. (94)

The Hamiltonian of the many fermion system is then

H =
∑
k,σ

εkâ
†
k,σâk,σ. (95)

The ground state wave function is the state where all single particle states with
energy

εk < EF (96)

are occupied and all states above the Fermi energy are empty. ,

EF =
~2

2m

(
3π2 〈N〉

V

)2/3

(97)

was determined earlier. The ground state wave function is then

|Ψ0〉 =
∏

k,σ(εk<EF )

â†k,σ |0〉 (98)

This state is normalized:

〈Ψ0|Ψ0〉 =

〈
0

∣∣∣∣∣∣
∏

k,σ(εk<EF )

âk,σâ
†
k,σ

∣∣∣∣∣∣ 0
〉

=

〈
0

∣∣∣∣∣∣
∏

k,σ(εk<EF )

(
1− â†k,σâk,σ

)∣∣∣∣∣∣ 0
〉

=
∏

k,σ(εk<EF )

〈0|0〉 = 1 (99)

and it is indeed the eigenstate of the problem

H |Ψ0〉 =
∑
k,σ

εkâ
†
k,σâk,σ |Ψ0〉 (100)

It follows immediately that

â†k,σâk,σ
∏

q,σ(εq<EF )

â†q,σ |0〉 = θ (EF − εk) |Ψ0〉 . (101)

Either k is among the states below the Fermi surface or it isn’t. This yields

H |Ψ0〉 = E0 |Ψ0〉 (102)
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with
E0 =

∑
k,σ

θ (EF − εk) εk (103)

The states that contribute to the ground state energy are all those with an energy
below EF . Since εk = ~2k2

2m is implies that the magnitude of the momentum
must be smaller than a given value

~2k2

2m
<

~2k2F
2m

= EF (104)

Here kF is the so called Fermi momentum. All momentum states inside the
sphere of radius kF are occupied. Those outside are empty. Our above result
for the Fermi energy yields

kF =
(
3π2ρ

)1/3 (105)

where ρ = 〈N〉 /V is the electron density.

5.2 Example 2: two particles
The natural state of two noninteracting particles is

|ψα,α′〉 = â†αâ
†
α′ |0〉 (106)

Applying the Hamiltonian
H =

∑
α

εαâ
†
αâα (107)

to this wave function gives

H |ψα,α′〉 =
∑
γ

εγ â
†
γ âγ â

†
αâ
†
α′ |0〉

= −
∑
γ

εγ â
†
γ â
†
αâγ â

†
α′ |0〉+ εαâ

†
αâ
†
α′ |0〉

= −εα′ â†α′ â
†
α |0〉+ εαâ

†
αâ
†
α′ |0〉

= (εα + εα′) |ψα,α′〉 (108)

The eigenvalue is Eα,α′ = εα + εα′ . The wave function can also be written as

|ψα,α′〉 =
1√
2

ˆ
d3rd3r′φα (r)φα′ (r′) ψ̂† (r) ψ̂† (r′) |0〉 (109)

Since a labelling of the particles is not necessary within the second quantization,
there is no need to symmetrize φα (r)φα′ (r′) in this formulation.

To determine the wave function in real space we analyze

Ψαα′ (r, r′) = 〈r, r′|ψα,α′〉 (110)
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It holds

|r, r′〉 = ψ̂† (r) ψ̂† (r′) |0〉 (111)

such that
〈r, r′| = 〈0| ψ̂ (r′) ψ̂ (r) (112)

and we can analyze

〈r, r′|ψα,α′〉 =
1√
2

ˆ
d3r′′d3r′′′φα (r′′)φα′ (r′′′) (113)

×〈0| ψ̂ (r′) ψ̂ (r) ψ̂† (r′′) ψ̂† (r′′′) |0〉 (114)

It holds

〈0| ψ̂ (r′) ψ̂ (r) ψ̂† (r′′) ψ̂† (r′′′) |0〉 = −〈0| ψ̂ (r′) ψ̂† (r′′) ψ̂ (r) ψ̂† (r′′′) |0〉
+δ (r− r′′) 〈0| ψ̂ (r′) ψ̂† (r′′′) |0〉

= −δ (r− r′′′) 〈0| ψ̂ (r′) ψ̂† (r′′) |0〉
+δ (r− r′′) 〈0| ψ̂ (r′) ψ̂† (r′′′) |0〉

= −δ (r− r′′′) δ (r′−r′′) + δ (r− r′′) δ (r′−r′′′)

Inserting this yields

Ψαα′ (r, r′) =
1√
2

(φα (r)φα′ (r′)− φα (r′)φα′ (r)) (115)

This is of course the correct result for the wave function of two indistinguishable
fermions.
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