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1. Density-density response in one dimension (8 Points)

In this problem we derive the Lindhard function in one spatial dimension. The density-
density response of a free-electron gas is given in momentum space by the relation

χr
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1

L

∑
k

fk

(
1

ω + i0+ − εk + εk−q

− 1

ω + i0+ + εk − εk+q

)
, (1)

where fk is the Fermi-Dirac distribution and L is the length of the system. The energies
εk are the energies of free particles

εk =
k2

2m
− µ. (2)

(a) Replace the sum in (1) by an integral and determine Re
[
χr
q(ω)

]
and Im

[
χr
q(ω)

]
in

one dimension for T = 0. (6 Pts.)

(b) As discussed in the lecture, if the dielectric function ε(q, ω) vanishes for certain pairs
of values of (q, ω), the system reacts strongly to an arbitrarily small external field
component with the same (q, ω). These excitations are called plasmons. Using the
connection between the dielectric function and the density-density response, find
the dispersion-relation ω(q) for these excitations. (2 Pts.)

2. Thomas-Fermi Theory (10 Points)

A simple form of the static dielectric function ε(q) is obtained in the Thomas-Fermi
theory of screening. Here we start again with an extra charge density ρext and an
induced charge density ρind that produce the full potential ϕ. The Poisson equation
relates these quantities:

∇2ϕ(r) = −4π
[
ρext(r) + ρind(r)

]
, (3)

where the problem is assumed to be static, thus there is no time-dependence of
the various quantities. The extra charge density can be written via the difference
between the equilibrium particle density n0 and the local particle density n(r):

ρind(r) = −e [n(r)− n0] (4)

(a) We now assume that the potential ϕ is only slowly varying in space. Then we can
define regions in which the potential is approximately constant. This allows us to
treat these regions as a free electron gas with a Fermi wave-vector kF that varies



from region to region. The value of kF is fixed by demanding that the chemical
potential µ is a constant throughout the material. This gives the condition

k2F (r)

2m
+ eϕ(r) = µ. (5)

From these relations derive a differential equation that governs the potential ϕ(r)
with ρext(r) as source-term. You will have to use the well-known relation between
particle density n and wave-vector kF from the theory of the free electron gas. (4
Pts.)

(b) This differential equation contains a non-linear term in ϕ(r). In order to make
progress, linearize this term by assuming that ϕ/µ � 1. The resulting equation is
of the form

(∇2 − q2F )ϕ(r) = −4πρext(r). (6)

Give the expression for qF . (1 Pt.)

(c) Fourier-transform this equation and thereby find the dielectric function ε(q). (1 Pt.)

(d) Assume now that ρext(r) describes a point charge placed at the origin. Calculate
ϕ(r). The Fourier integral can be computated by using the residue theorem. (2 Pts.)

(e) Repeat exercise (d) for one and two dimensions. (2 Pts.)


