(10 Points)

Übungen zur Theorie der Kondensierten Materie II SS 16

Prof. J. Schmalian	Blatt 3
M. S. Scheurer, B. Jeevanesan	Besprechung 13.05.2016

1. Density-density response in one dimension (8 Points)

In this problem we derive the Lindhard function in one spatial dimension. The densitydensity response of a free-electron gas is given in momentum space by the relation

$$\chi_q^r(\omega) = \frac{1}{L} \sum_k f_k \left(\frac{1}{\omega + i0^+ - \epsilon_k + \epsilon_{k-q}} - \frac{1}{\omega + i0^+ + \epsilon_k - \epsilon_{k+q}} \right),\tag{1}$$

where f_k is the Fermi-Dirac distribution and L is the length of the system. The energies ϵ_k are the energies of free particles

$$\epsilon_k = \frac{k^2}{2m} - \mu. \tag{2}$$

- (a) Replace the sum in (1) by an integral and determine Re $[\chi_q^r(\omega)]$ and Im $[\chi_q^r(\omega)]$ in one dimension for T = 0. (6 Pts.)
- (b) As discussed in the lecture, if the dielectric function $\epsilon(q, \omega)$ vanishes for certain pairs of values of (q, ω) , the system reacts strongly to an arbitrarily small external field component with the same (q, ω) . These excitations are called plasmons. Using the connection between the dielectric function and the density-density response, find the dispersion-relation $\omega(q)$ for these excitations. (2 Pts.)

2. Thomas-Fermi Theory

A simple form of the static dielectric function $\epsilon(\mathbf{q})$ is obtained in the Thomas-Fermi theory of screening. Here we start again with an extra charge density ρ^{ext} and an induced charge density ρ^{ind} that produce the full potential φ . The Poisson equation relates these quantities:

$$\nabla^2 \varphi(\boldsymbol{r}) = -4\pi \left[\rho^{\text{ext}}(\boldsymbol{r}) + \rho^{\text{ind}}(\boldsymbol{r}) \right], \qquad (3)$$

where the problem is assumed to be static, thus there is no time-dependence of the various quantities. The extra charge density can be written via the difference between the equilibrium particle density n_0 and the local particle density $n(\mathbf{r})$:

$$\rho^{\text{ind}}(\boldsymbol{r}) = -e\left[n(\boldsymbol{r}) - n_0\right] \tag{4}$$

(a) We now assume that the potential φ is only slowly varying in space. Then we can define regions in which the potential is approximately constant. This allows us to treat these regions as a free electron gas with a Fermi wave-vector k_F that varies

from region to region. The value of k_F is fixed by demanding that the chemical potential μ is a constant throughout the material. This gives the condition

$$\frac{k_F^2(\boldsymbol{r})}{2m} + e\varphi(\boldsymbol{r}) = \mu.$$
(5)

From these relations derive a differential equation that governs the potential $\varphi(\mathbf{r})$ with $\rho^{\text{ext}}(\mathbf{r})$ as source-term. You will have to use the well-known relation between particle density n and wave-vector k_F from the theory of the free electron gas. (4 Pts.)

(b) This differential equation contains a non-linear term in $\varphi(\mathbf{r})$. In order to make progress, linearize this term by assuming that $\varphi/\mu \ll 1$. The resulting equation is of the form

$$(\nabla^2 - q_F^2)\varphi(\mathbf{r}) = -4\pi\rho^{\text{ext}}(\mathbf{r}).$$
(6)

Give the expression for q_F . (1 Pt.)

- (c) Fourier-transform this equation and thereby find the dielectric function $\epsilon(q)$. (1 Pt.)
- (d) Assume now that $\rho^{\text{ext}}(\mathbf{r})$ describes a point charge placed at the origin. Calculate $\varphi(\mathbf{r})$. The Fourier integral can be computated by using the residue theorem. (2 Pts.)
- (e) Repeat exercise (d) for one and two dimensions. (2 Pts.)