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1. Thermodynamics from the single-particle Green’s function (6 Points)

In this exercise we will show that all thermodynamic properties of an in general interac-
ting system are determined by the imaginary part of its single-particle Green’s function.
To this end, consider the interacting Hamiltonian

H =
∑
kσ

εkc
†
kσckσ +

1

2

∑
kk′qσσ′

vkk′(q)c†kσc
†
k′σ′ck′+qσ′ck−qσ, (1)

where c†kσ and ckσ denote fermionic creation and annihilation operators (σ is the spin
index).

(a) Express the energy E := 〈H〉 at arbitrary temperature T = β−1 in terms of retarded
and advanced 2-fermion and 4-fermion Green’s functions of the schematic form
〈[c, c†]+〉 and 〈[c†cc, c†]+〉 where [·, ·]+ denotes the anticommutator. (1 Pt.)

(b) The explicit dependence on 4-fermion Green’s functions can be eliminated by taking
advantage of the equations of motion of the Green’s functions. Show that one can
write

E(T ) =
1

4π

∑
kσ

∫ ∞
−∞

dω
ω + εk
eβω + 1

A(k, ω), A(k, ω) = −2Im
(
GR

ckσc
†
kσ

(ω)
)

(2)

with GR

ckσc
†
kσ

(ω) representing the retarded single-particle Green’s function as defined

in the lecture. (3 Pts.)

(c) Convince yourself that Eq. (2) reproduces the correct result in the noninteracting
limit vkk′(q) = 0. (1 Pt.)

(d) Why does Eq. (2) determine all thermodynamic properties of the system? (1 Pt.)

2. Jordan-Wigner transformation (12 Points)

In the following we will explore how spin-models can be expressed in terms of fermio-
nic creation and annihilation operators. We will be investigating the anisotropic 1D
Heisenberg magnet in an external magnetic field h which is defined by the Hamiltonian

H = −
N−1∑
j=1

(
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
jS

z
j+1

)
+ h

N∑
j=1

Szj , (3)

where Saj , a = x, y, z, are spin-1/2 operators satisfying the usual commutation relations

[Saj , S
b
j′ ]− = iδj,j′εabcS

c
j . (4)



(a) For simplicity, let us first investigate a single site and, hence, drop the index j
for the moment. Show that S+ := Sx + iSy, S− := Sx − iSy and Sz satisfy the
same commutation relations as c†, c and c†c − 1/2 where c and c† are fermionic
annihilation and creation operators. (1 Pt.)

(b) With this observation in mind, it is natural to introduce fermionic operators cj for

every site j = 1, 2, . . . N of the Heisenberg chain in Eq. (3) and assign S+
j = c†j,

S−j = cj and Sz = nj−1/2 with nj = c†jcj. However, the problem is that the fermio-
nic operators at different sites anticommute while spatially distinct spin operators
commute. This can be reconciled by adding “string operators”, exp(±iπ

∑
j′<j nj′),

as suggested by Jordan and Wigner:

S+
j = c†j e

−iπ
∑
j′<j nj′ , S−j = cj e

iπ
∑
j′<j nj′ , Sz = nj − 1/2. (5)

Show that Eq. (5) yields indeed the correct behavior. (3 Pts.)

(c) Insert this transformation into the Heisenberg chain model (3) and show that it can
be brought into the form

H =−
N−1∑
j=1

[
t c†jcj+1 + ∆ cjcj+1 + H.c.

]
− µ

N∑
j=1

(
nj −

1

2

)

+ U
N−1∑
j=1

(
nj −

1

2

)(
nj+1 −

1

2

)
.

(6)

Express the parameters t, ∆, µ and U in terms of the parameters of the original
magnetic model. Eq. (6) represents a system of spinless fermions hopping (with
amplitude t) on a 1D lattice with chemical potential µ and superconducting nearest-
neighbor pairing ∆ and additional nearest-neighbor interaction U . (4 Pts.)

(d) In the following we will focus on U = 0. What is the corresponding limit in Eq. (3)?
In this case, Eq. (6) assumes the form of a noninteracting model1 and can, hence,
be readily diagonalized which also reveals the spectrum of the associated magnetic
model in Eq. (3).

To diagonalize Eq. (6), first rewrite it in terms of the Fourier-transformed operators,
cj → ck, −π/a < k ≤ π/a, assuming periodic boundary conditions (a denotes the
lattice constant and k is the 1D crystal momentum). As a second step, perform a
Bogoliubov transformation, i.e., introduce new operators ak and a†k as superpositions
of electrons and holes, (

ak
a†−k

)
= Uk

(
ck
c†−k

)
. (7)

The 2 × 2 matrix Uk is chosen such that the Hamiltonian becomes diagonal in
the new operators. Calculate the eigenvalues that determine the spectrum of the
system. (3 Pts.)

(e) Plot the spectrum for the special case of µ = 0. Under which conditions does the
gap close? Do you understand this behavior in terms of the original magnetic model
in Eq. (3)? (1 Pt.)

1This model is known as the Kitaev chain model.


