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1. Kitaev chain and Majorana operators (9 Points)

Let us reconsider the Kitaev chain model,

H = −
N−1∑
j=1

[
t c†jcj+1 + ∆ cjcj+1 + H.c.

]
− µ

N∑
j=1

(
c†jcj −

1

2

)
, (1)

t,∆, µ ∈ R, that we encountered last week when performing a Jordan-Wigner transfor-
mation to the 1D XY model. We have already calculated the spectrum of this Hamilto-
nian in the case of periodic boundary conditions. We have thus analyzed a ring rather
than a chain. In this exercise, we will investigate what happens for a finite chain with
edges. For this purpose, it is convenient to introduce two Hermitian operators (also
known as Majorana1 operators) γjA = γ†jA and γjB = γ†jB per site j and write

cj =
1√
2

(γjA + iγjB) , c†j =
1√
2

(γjA − iγjB) . (2)

(a) Determine the anticommutation relations satisfied by the Majorana operators. (2
Pts.)

(b) Represent the Kitaev model (1) in terms of Majorana operators. (2 Pts.)

(c) For the special case ∆ = t, µ = 0, the Hamiltonian assumes a particularly simple
form in terms of the new operators

bj =
1√
2

(γjA + iγj+1B) , b†j =
1√
2

(γjA − iγj+1B) . (3)

Show that bj and b†j satisfy the usual fermionic anticommutation relations. Rewrite

H for ∆ = t, µ = 0 in terms of bj and b†j and determine the spectrum of the system.
What is the corresponding magnetic model? Check that the spectrum of the latter
agrees with the spectrum you have calculated from the Kitaev model. (4 Pts.)

(d) Taking a closer look at the Hamiltonian expressed in terms of Majorana operators
in the limit ∆ = t, µ = 0 reveals that there are exactly two out of the 2N Majorana
operators introduced in Eq. (2) that do not enter the Hamiltonian. Where are these
operators located spatially? Show that this leads to a two-fold degeneracy of the
spectrum. (Hint: Use these two Majorana operators to construct a single ordinary
fermionic operator in the same way as in Eq. (2)). Explain the degeneracy in the
corresponding magnetic model. (1 Pt.)

1Named after the Italian physicist E. Majorana (1906 – 1959).



2. Matsubara summation (9 Points)

In this exercise, we will learn how sums of the form

S = T
∑
n∈Z

h(iωn) (4)

with ωn = 2nπT for bosons (η = −1 in the following) and ωn = (2n+1)πT for fermions
(η = +1) can be very efficiently evaluated at arbitrary temperature T . This is important
as we will encounter expressions of the form (4) very frequently in the remainder of the
lecture course.

(a) As a first step, determine the poles of the Fermi (η = +1) and Bose (η = −1)
function,

nη(z) =
1

eβz + η
, β = T−1, (5)

and the associated residues. (2 Pts.)

(b) With this in mind, show that one can write

S =
−η
2πi

∮
C

dz nη(z)h(z), (6)

where the contour C encloses the infinite set of points {iωn|n ∈ Z} in a counter-
clockwise manner and h(z) is analytic in the domain bound by C. (1 Pt.)

(c) As a first example, let h(z) = f(z)ezτ in Eq. (4) with 0 < τ < β and f(z) being
finite at |z| → ∞. By appropriately choosing/deforming the contour C show that

S = η

Np∑
m=1

nη(zm)Res(f, zm)ezmτ (7)

if f(z) only has simple poles at z = zm, m = 1, . . . , Np with zm 6= iωn ∀n,m. In
Eq. (7), Res(f, zm) denotes the residue of f at zm. (2 Pts.)

(d) Use the result from (c) to calculate (both for fermions and bosons)

lim
τ→ 0+

T
∑
n∈Z

G0(iωn,k)eiωnτ , (8)

where G0(iω,k) = (iω − εk)−1 denotes the single-particle (Matsubara) Green’s
function of a noninteracting system with dispersion εk. (1 Pt.)

(e) Perform the summation in

T
∑
n∈Z

G0(iωn,k)G0(iωn + iωm,k + q), (9)

where ωn and ωm are fermionic and bosonic Matsubara frequencies, respectively. (3
Pts.)


