
Karlsruher Institut für Technologie Institut für Theorie der

Kondensierten Materie
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1. Scattering in Fermi liquids (18 Points)

In this exercise we will calculate the diagram

which plays a central role in the microscopic theory of the Fermi liquid as will be
discussed both in the lecture and during the tutorial. Here the straight line represents
the fermionic single-particle Green’s function which we take to be of the form

G(iωn,k) =
Zk

iωn − εk
, 0 < Zk ≤ 1. (1)

For simplicity, you can assume the dispersion to be parabolic, εk = k2/(2m), although
this is not necessary to solve the following problems. Furthermore, k = (iωn,k) and
q = (iΩn, q) are used to comprise Matsubara frequencies and momenta with ωn and
Ωn being fermionic and bosonic, respectively. The wiggly lines in the diagram refer to
the four-fermion-interaction amplitude Uq that in general depends on the transferred
momentum q.

(a) In order to understand the physical meaning of Zk, often referred to as “quasiparticle
residue”, calculate the spectral function and the occupation number of the single
particle state k associated with G(iωn,k) in Eq. (1). (1 Pt.)

(b) Returning to our ultimate goal of evaluating the diagram Σ(iωn,k) shown above,
write down its analytical form (in Matsubara formalism) following from the Feyn-
man rules discussed in the lecture. Identify the particle-hole bubble Π(iΩn, q) that
has been a central building block in many calculations of the lecture course. (3 Pts.)

(c) Using the residue theorem with a properly chosen integration contour in the complex
plane and subsequent analytic continuation iωn → ω + i0+ to the real axis, show



that the retarded form ΣR(ω,k) of the diagram is given by

ΣR(ω,k) =

∫
ddq

(2π)d
U2
q

[
P
∫

dΩ

2π
coth

(
Ω

2T

)
GR(ω + Ω,k + q) ImΠR(Ω, q)

+

∫
dΩ

2π
tanh

(
Ω + ω

2T

)
ΠA(Ω, q) ImGR(ω + Ω,k + q)

] (2)

with d denoting the dimensionality of the system, P
∫

the principle value integral,
GR/GA the retarded/advanced Green’s function, and ΠR(Ω, q)/ΠA(Ω, q) the retar-
ded/advanced particle-hole bubble determined by

ΠR(Ω, q) = 2

∫
ddk

(2π)d

∫
dω

2π

[
tanh

( ω
2T

)
GR(ω + Ω,k + q) ImGR(ω,k)

+ tanh

(
ω + Ω

2T

)
GA(ω,k) ImGR(ω + Ω,k + q)

] (3)

and similarly for ΠA(Ω, q). (6 Pts.)

(d) Let us first focus on the imaginary part of ΣR(ω,k). Convince yourself that ΠR(Ω, q)
enters ImΣR(ω,k) only in the form of its imaginary part ImΠR(Ω, q). Focusing on
small T and ω (compared to the Fermi energy EF ), which allows neglecting ω and
Ω in the delta functions appearing in the expression for ImΠR(Ω, q) following from
Eq. (3), show that

ImΠR(Ω, q) ∼ Aq Ω (4)

and find the explicit form of the prefactor Aq. To obtain Eq. (4) you can take the
density of states to be independent of the direction normal to the Fermi surface. (3
Pts.)

(e) Using this result, we obtain

ImΣR(ω,k) ∼ Bk

(
ω2 + π2T 2

)
(5)

for ω, T � EF . This is the typical behavior of a Fermi liquid. Determine an expres-
sion for the prefactor Bk in terms of the quasiparticle residues? (3 Pts)

(f) Show that ReΣR(ω,k) ∼ Ckω using Kramers-Kronig relations (a cutoff is required
to make the integrals convergent). (1 Pt.)

(g) The concept of quasiparticles is meaningful as long as ImΣR(Ω, q) goes faster to zero
than ω in the limit ω → 0. The case ImΣR(ω) ∼ D|ω| is thus sometimes referred
to as “marginal Fermi liquid”. What is the asymptotic behavior of ReΣR(ω) in a
marginal Fermi liquid? (1 Pt)


