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1. Distribution function and susceptibility in Fermi liquid theory (9 Points)

In this exercise we will take a closer look at two aspects of Landau’s Fermi liquid theory
that have already been discussed in the lecture.

(a) The expression for the entropy of a Fermi liquid is given by

S = −kB
∑
k,σ

[nkσ ln(nkσ) + (1− nkσ) ln(1− nkσ)] (1)

with nkσ denoting the quasiparticle occupation number. Justify Eq. (1). Show that
extremizing S at fixed particle number N =

∑
k,σ nkσ and total energy E =∑

k,σ εkσnkσ leads to

nkσ =
1

eβ(εkσ−µ) + 1
(2)

upon properly choosing the Lagrange multipliers. (3 Pts.)

(b) In the lecture, it has been shown that the change of the quasiparticle energies δεkσ =
tσl Ylm(ek) (Ylm denote spherical harmonics) resulting from a (weak) perturbation of
the bare energies δε0kσ = vσl Ylm(ek) is determined by

tσl Ylm(ek) = vσl Ylm(ek)− 1

N

∑
k′,σ′

fkσ,k′σ′δ(εk′σ′)tσ
′

l Ylm(ek′) (3)

with Landau parameter fkσ,k′σ′ . Using the orthogonality of the spherical harmonics
derive an algebraic relation between vσl and tσl from Eq. (3) involving the dimen-
sionless Landau parameters F s,a

l defined in the lecture. (3 Pts.)

(c) Show that the charge susceptibility of the Fermi liquid χc ∝ ∂N/∂µ is related to

its noninteracting limit χ
(0)
c via

χc = χ(0)
c

m∗/m

1 + F s
0

(4)

with m and m∗ denoting the bare and effective mass, respectively. (3 Pts.)

(d) Bonus question: Generalize Eq. (4) to higher angular momentum channels (l 6= 0)
and spin susceptibilities.

2. Effective mass and Galilean invariance (9 Points)

Here we will derive the relation

m∗

m
= 1 +

1

3
F s
1 (5)



between the (dimensionless) spin-symmetric l = 1 Landau parameter F s
1 and the mass

enhancement m∗/m. We will see that Eq. (5) follows from Galilean invariance. To this
end, we consider an isotropic Fermi liquid at T = 0 in a frame moving with velocity u
and calculate the quasiparticle energy ε′p in the moving frame in two different ways.

(a) First, convince yourself that the total energy E ′ of the system in the moving frame
and the total momentum P ′ read

E ′ = E − P · u +
1

2
Mu2, (6a)

P ′ = P −Mu, (6b)

where E and P are the total energy and momentum in the lab frame and M = Nm
with N denoting the number of particles in the system. (2 Pts.)

(b) Imagine adding a quasiparticle with momentum p and corresponding energy εp in
the lab frame. Use Eq. (6) to show that

ε′p ∼ εp +
m−m∗

m∗
p · u, u→ 0, (7)

for any p on the Fermi surface. (2 Pts.)

(c) Now let us calculate ε′p within the phenomenological Landau Fermi-liquid theory in
order to connect with the Landau parameters. In the moving frame, the Fermi sea
is shifted by mu. For this reason, it holds

ε′p = εp|n0
p→n0

p+mu
(8)

with n0
p = θ(−εp) denoting the Fermi-distribution function at T = 0. By expanding

Eq. (8) in u, show that

ε′p ∼ εp −
1

N

m

m∗

∑
p′,σ′

δ(εp′)fpσ,p′σ′ p′ · u, u→ 0, (9)

with the phenomenological Landau parameter fkσ,k′σ′ introduced in the lecture. (2
Pts.)

(d) Compare Eqs. (7) and (9) to show Eq. (5). (3 Pts.)


