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1. Distribution function and susceptibility in Fermi liquid theory (9 Points)

In this exercise we will take a closer look at two aspects of Landau’s Fermi liquid theory
that have already been discussed in the lecture.

(a)

(d)

The expression for the entropy of a Fermi liquid is given by
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with ng, denoting the quasiparticle occupation number. Justify Eq. (1). Show that
extremizing S at fixed particle number N = Zk’a ngs and total energy E =

Z,w €koNko leads to
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upon properly choosing the Lagrange multipliers. (3 Pts.)

In the lecture, it has been shown that the change of the quasiparticle energies deg, =
t7Yim(ex) (Yim denote spherical harmonics) resulting from a (weak) perturbation of
the bare energies dep = v Y}, (ex) is determined by
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with Landau parameter fg, . . Using the orthogonality of the spherical harmonics
derive an algebraic relation between vy and t7 from Eq. (3) involving the dimen-
sionless Landau parameters F;* defined in the lecture. (3 Pts.)

Show that the charge susceptibility of the Fermi liquid y. oc ON/Ou is related to
its noninteracting limit XEO) via
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with m and m* denoting the bare and effective mass, respectively. (3 Pts.)

Bonus question: Generalize Eq. (4) to higher angular momentum channels (I # 0)
and spin susceptibilities.

2. Effective mass and Galilean invariance (9 Points)

Here we will derive the relation
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between the (dimensionless) spin-symmetric [ = 1 Landau parameter F} and the mass
enhancement m*/m. We will see that Eq. (5) follows from Galilean invariance. To this
end, we consider an isotropic Fermi liquid at 7" = 0 in a frame moving with velocity u
and calculate the quasiparticle energy €, in the moving frame in two different ways.

(a) First, convince yourself that the total energy E’ of the system in the moving frame
and the total momentum P’ read
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where E and P are the total energy and momentum in the lab frame and M = Nm
with N denoting the number of particles in the system. (2 Pts.)

(b) Imagine adding a quasiparticle with momentum p and corresponding energy ¢, in
the lab frame. Use Eq. (6) to show that
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for any p on the Fermi surface. (2 Pts.)

(c) Now let us calculate €, within the phenomenological Landau Fermi-liquid theory in
order to connect with the Landau parameters. In the moving frame, the Fermi sea
is shifted by mwu. For this reason, it holds
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with n = 6(—ep) denoting the Fermi-distribution function at 7' = 0. By expanding
Eq. (8) in u, show that
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with the phenomenological Landau parameter fy, x/, introduced in the lecture. (2
Pts.)

(d) Compare Egs. (7) and (9) to show Eq. (5). (3 Pts.)



