Übungen zur Theorie der Kondensierten Materie II SS 16

Prof. J. Schmalian	Blatt 9
B. Jeevanesan, M. S. Scheurer	Besprechung 24.06.2016

1. Distribution function and susceptibility in Fermi liquid theory (9 Points)

In this exercise we will take a closer look at two aspects of Landau's Fermi liquid theory that have already been discussed in the lecture.

(a) The expression for the entropy of a Fermi liquid is given by

$$S = -k_B \sum_{\boldsymbol{k},\sigma} \left[n_{\boldsymbol{k}\sigma} \ln(n_{\boldsymbol{k}\sigma}) + (1 - n_{\boldsymbol{k}\sigma}) \ln(1 - n_{\boldsymbol{k}\sigma}) \right]$$
(1)

with $n_{k\sigma}$ denoting the quasiparticle occupation number. Justify Eq. (1). Show that extremizing S at fixed particle number $N = \sum_{\boldsymbol{k},\sigma} n_{\boldsymbol{k}\sigma}$ and total energy $E = \sum_{\boldsymbol{k},\sigma} \epsilon_{\boldsymbol{k}\sigma} n_{\boldsymbol{k}\sigma}$ leads to

$$n_{\boldsymbol{k}\sigma} = \frac{1}{e^{\beta(\epsilon_{\boldsymbol{k}\sigma}-\mu)}+1} \tag{2}$$

upon properly choosing the Lagrange multipliers. (3 Pts.)

(b) In the lecture, it has been shown that the change of the quasiparticle energies $\delta \epsilon_{k\sigma} = t_l^{\sigma} Y_{lm}(\boldsymbol{e}_k) (Y_{lm} \text{ denote spherical harmonics})$ resulting from a (weak) perturbation of the bare energies $\delta \epsilon_{k\sigma}^0 = v_l^{\sigma} Y_{lm}(\boldsymbol{e}_k)$ is determined by

$$t_{l}^{\sigma}Y_{lm}(\boldsymbol{e}_{\boldsymbol{k}}) = v_{l}^{\sigma}Y_{lm}(\boldsymbol{e}_{\boldsymbol{k}}) - \frac{1}{N}\sum_{\boldsymbol{k}',\sigma'}f_{\boldsymbol{k}\sigma,\boldsymbol{k}'\sigma'}\delta(\epsilon_{\boldsymbol{k}'\sigma'})t_{l}^{\sigma'}Y_{lm}(\boldsymbol{e}_{\boldsymbol{k}'})$$
(3)

with Landau parameter $f_{\boldsymbol{k}\sigma,\boldsymbol{k}'\sigma'}$. Using the orthogonality of the spherical harmonics derive an algebraic relation between v_l^{σ} and t_l^{σ} from Eq. (3) involving the dimensionless Landau parameters $F_l^{s,a}$ defined in the lecture. (3 Pts.)

(c) Show that the charge susceptibility of the Fermi liquid $\chi_c \propto \partial N/\partial \mu$ is related to its noninteracting limit $\chi_c^{(0)}$ via

$$\chi_c = \chi_c^{(0)} \frac{m^*/m}{1 + F_0^s} \tag{4}$$

with m and m^* denoting the bare and effective mass, respectively. (3 Pts.)

(d) Bonus question: Generalize Eq. (4) to higher angular momentum channels $(l \neq 0)$ and spin susceptibilities.

2. Effective mass and Galilean invariance (9 Points)

Here we will derive the relation

$$\frac{m^*}{m} = 1 + \frac{1}{3}F_1^s \tag{5}$$

between the (dimensionless) spin-symmetric l = 1 Landau parameter F_1^s and the mass enhancement m^*/m . We will see that Eq. (5) follows from Galilean invariance. To this end, we consider an isotropic Fermi liquid at T = 0 in a frame moving with velocity \boldsymbol{u} and calculate the quasiparticle energy ϵ'_p in the moving frame in two different ways.

(a) First, convince yourself that the total energy E' of the system in the moving frame and the total momentum P' read

$$E' = E - \boldsymbol{P} \cdot \boldsymbol{u} + \frac{1}{2}M\boldsymbol{u}^2, \tag{6a}$$

$$\boldsymbol{P}' = \boldsymbol{P} - M\boldsymbol{u},\tag{6b}$$

where E and P are the total energy and momentum in the lab frame and M = Nmwith N denoting the number of particles in the system. (2 Pts.)

(b) Imagine adding a quasiparticle with momentum p and corresponding energy ϵ_p in the lab frame. Use Eq. (6) to show that

$$\epsilon'_{\boldsymbol{p}} \sim \epsilon_{\boldsymbol{p}} + \frac{m - m^*}{m^*} \boldsymbol{p} \cdot \boldsymbol{u}, \qquad \boldsymbol{u} \to 0,$$
(7)

for any \boldsymbol{p} on the Fermi surface. (2 Pts.)

(c) Now let us calculate ϵ'_p within the phenomenological Landau Fermi-liquid theory in order to connect with the Landau parameters. In the moving frame, the Fermi sea is shifted by mu. For this reason, it holds

$$\epsilon'_{\boldsymbol{p}} = \epsilon_{\boldsymbol{p}}|_{n^{0}_{\boldsymbol{p}} \to n^{0}_{\boldsymbol{p}+m\boldsymbol{u}}} \tag{8}$$

with $n_{\boldsymbol{p}}^0 = \theta(-\epsilon_{\boldsymbol{p}})$ denoting the Fermi-distribution function at T = 0. By expanding Eq. (8) in \boldsymbol{u} , show that

$$\epsilon'_{\boldsymbol{p}} \sim \epsilon_{\boldsymbol{p}} - \frac{1}{N} \frac{m}{m^*} \sum_{\boldsymbol{p}', \sigma'} \delta(\epsilon_{\boldsymbol{p}'}) f_{\boldsymbol{p}\sigma, \boldsymbol{p}'\sigma'} \, \boldsymbol{p}' \cdot \boldsymbol{u}, \qquad \boldsymbol{u} \to 0, \tag{9}$$

with the phenomenological Landau parameter $f_{k\sigma,k'\sigma'}$ introduced in the lecture. (2 Pts.)

(d) Compare Eqs. (7) and (9) to show Eq. (5). (3 Pts.)