Karlsruher Institut für Technologie

Institut für Theorie der Kondensierten Materie

Theorie der Kondensierten Materie II SS 2017

PD Dr. B. Narozhny	Blatt 13
M.Sc. M. Bard	Besprechung 28.07.2017

1. Specific heat in 1D:

Find the specific heat of a free electron gas in 1D. Calculate the specific heat using the canonical aproach and compare to the result obtained within the bosonic representation.

2. Free Fermi gas on a finite-size ring: (15+15+15=45 Punkte)

Consider a free Fermi gas in the finite region 0 < x < L with periodic boundary conditions.

- (a) Find the discrete signle-particle energy level. Explain how would you construct many-body states. Show that they will also be discrete.
- (b) Linearize the spectrum. Show, that the discrete spectrum of many-body states has the form $E_m = m\Delta$, with $\Delta = 2\pi v_F/L$. Find the degeneracy N_m for a few lowest levels.
- (c) Repeat the above considertions within the bosonic representation. Show, that this leads to identical results.

3. Tunneling density of states

 $\begin{array}{c} k,\sigma & k+q,\sigma\\ \hline k',\sigma' & k'-q,\sigma'\\ \hline g_2 = V(q\sim 0) \end{array}$

Consider now a point contact between to Luttinger liquids. Each liquid is characterized by the interaction terms

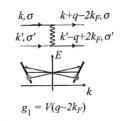
$$g_2^{A(B)} R_{k+q,\sigma}^{\dagger} R_{k,\sigma} L_{k'-q,\sigma'}^{\dagger} L_{k'\sigma'}.$$

Tunneling through the point contact can be described by the Hamiltonian

$$\hat{H}_{tun} = t\psi_B^{\dagger}(x=0)\psi_A(x=0) + h.c.$$

(15 Punkte)

how that this


(40 Punkte)

ost using the

Show that at T = 0 the tunneling current is given by a power law $I \propto V^{\alpha}$ and relate the exponent to the coupling constants.

** Extra exercise

(40 Punkte)

What would happen to your results if you take into account g_1 interaction processes as well?

$$g_1 L_{k+q-2k_F,\sigma}^{\dagger} L_{k',\sigma'} R_{k'-q+2k_F,\sigma'}^{\dagger} R_{k,\sigma}.$$