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1. Cooper instability:

(a) The second diagram involves a bubble with the small total momentum of the two
electronic states.

In the Matsubara technique, this bubble is described by the following expression

ΠC(iωn, q) = T
∑
m

∫
d3p

(2π)3
1

iεm + iωn − ξp+q

1

−iεm − ξ−p
.

The sum over the fermionic Matsubara frequencies can be evaluated similarly to
Exercise 8.

In addition to the discussion in Exercise 8, the following basic mathematic relation
can be used in evaluating such sums is

∞∑
n=0

1

(n+ a)(n+ b)
=
ψ(b)− ψ(a)

b− a
,

where

ψ(z) =
d

dz
ln Γ(z) = C +

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
,

Γ(z) is the Eiler Gamma function, und C = 0.577... is the Eiler constant. In our
case, the following property of the digamma function ψ(z) is important:

ψ

(
1

2
+ z

)
− ψ

(
1

2
− z
)

= π tanπz.

Using the above relations, we find

ΠC(iωn, q) = −1

2

∫
d3p

(2π)3
tanh ξp

2T
+ tanh ξp+q

2T

iωn − ξp − ξp+q

.

Consider this quantity at zero frequency:

ΠC(0, q) =
1

2

∫
d3p

(2π)3
tanh ξp

2T
+ tanh ξp+q

2T

ξp + ξp+q

.

Neglecting the momentum dependence and recalling that the attractive interaction
in the BCS model exists only in a small region around the Fermi surface, we find

ΠC(0) =
ν0
2

ωD∫
−ωD

dξ
tanh(ξ/2T )

ξ
≈ ν0 ln

ωD
T
.



In the last step we have used the smallness of temperature T � ωD � EF .

Assumint that the “bare” scattering amplitude is given by a constant λ, we find
that at low frequences the whole series can be written in the form of a geometric
progression

Γ = λ+ λ2ΠC(0) + λ3Π2
C(0) + · · · = λ

1− λΠC(0)
.

The pole in the scattering amplitude indicates an instability in the system towards
formation of a new state of matter, i.e. a phase transition.

(b) Same conclusion can be reached by considering the generalized susceptibility in the
Cooper channel. The diagrams for the susceptibility can be found by “closing” the
outer lines in the diagrams for the scattering amplitude. The series has the form

χC(iωn) = ΠC(iωn) + λΠ2
C(iωn) + · · · = ΠC(iωn)

1− λΠC(iωn)
.

This is the same pole as above. Focusing on the zero-frequency terms, we can find
the transition temperature as

1− λΠC(0) = 0 ⇒ Tc ∝ ωDe
−1/(ν0λ).

The proportionality coefficient should be found by a more precise calculation of
ΠC(0). Our above result was obtained with the “logarithmic accuracy”, which means
that we have neglected possible numerical factors under the logarithm. These factors
would then translate into the coefficient in the expression for Tc.

(c) In the case, where the “bare” scattering amplitude is a function of frequencies (in-
stead of a constant), one can find an integral equation for the scattering amplitude,
that generalizes the above geometric series. Neglecting momentum dependencies
(and setting the total frequency and momentum of the Cooper pairs to zero), we
find

ΓC(iε, iε′) = Γ(0)(iε, iε′) + T
∑
ε′′

∫
d3p

(2π)3
Γ(0)(iε, iε′′)G(iε′′,p)G(−iε′′,−p)ΓC(iε′′, iε′).

Since the only the two Green’s functions are momentum-dependent, we can evaluate
the momentum integral ∫

d3p

(2π)3
1

(ε′′)2 + ξ2p
=
πν0
|ε′′|

.

As a result, the integral equation reads

ΓC(iε, iε′) = Γ(0)(iε, iε′) + πν0T
∑
ε′′

1

|ε′′|
Γ(0)(iε, iε′′)ΓC(iε′′, iε′).

(d) For a factorized bare scattering amplitude, the above integral equation can be solved
as follows. Substituting the explicit form of the bare scatterign amplitude, we find

ΓC(iε, iε′) = λv(iε)

[
v(iε′) + πν0T

∑
ε′′

v(iε′′)

|ε′′|
ΓC(iε′′, iε′)

]
.



Clearly, ΓC(iε, iε′) ∝ v(iε). On symmetry grounds, we introduce an Ansatz

ΓC(iε, iε′) = αv(iε)v(iε′),

and find the remaining constant from the integral equation:

α =
λ

1− λπν0T
∑

ε′′
v2(iε′′)
|ε′′|

.

This above result exhibits a pole at

πT
∑
ε′′

v2(iε′′)

|ε′′|
=

1

ν0λ
.

This condition defines the transition temperature, similarly to the earlier conside-
rations.

The actual values of Tc canbe obtained from the above condition by assuming a
particular form of v(iε). If

v(iε) =
ωD√
ω2
D + ε2

,

then the equation for the critical temperature becomes

2
∞∑
n=0

ω2
D

[ω2
D + π2T 2

c (2n+ 1)2] (2n+ 1)
=

1

ν0λ
.

With the logarithmic accuracy, we can solve this equation as follows. The first term
in the deniminator decays for n � n∗ = ωD/(πTc). If we assume n∗ � 1, then the
sum can be approximated by

2
∞∑
n=0

ω2
D

[ω2
D + π2T 2

c (2n+ 1)2] (2n+ 1)
≈

n∗∑
n=0

1

n+ 1/2
= lnn∗.

The resulting Tc is

Tc ≈
ωD
π
e−1/(ν0λ),

which agrees with the previous result.


