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1. Fermionic chain (Kitaev model)

Consider spinless fermions on a one-dimensional chain of sites, numbered by an index
n. The Hamiltonian reads H = H0 + V , where

H0 =
∑
n

(
ta†nan+1 + ta†n+1an − µa†nan

)
and

V =
∑
n

(
∆anan+1 + ∆a†n+1a

†
n

)
.

Here t, ∆ and µ are real constants.

(a) Find the Green’s function G0 corresponding to H0. Tip: use the Fourier
representation.

The Fourier transformation yields

H0 =

π∫
−π

dq

2π
εqa
†
qaq, V = i∆

π∫
−π

dq

2π
sin q(a−qaq + a†−qa

†
q),

with
εq = 2t cos q − µ.

The “non-interacting” problem is characterized by the “free” Green’s function

G0(ε, q) =
1

ε− εq + iδsignε
.

(b) Consider the perturbation series for the Green’s function G of the full
problem. Develop the diagrammatic rules. Sum up the series and deter-
mine the dispersion relation of the new excitations.

The interaction potential V corresponds to two vertices in the diagram technique:



The expressions corresponding to the two vertices are 2i∆ sin q and −2i∆ sin q,
respectively.

The perturbative corrections to the Green’s function form the following series:

Notice, that the signs alternate. This follows form the momentum conservation.
Because of this, only “even-order” corrections appear in the series. The elementary
block is represented by the pair of vertices and a pair of Green’s functions.

In terms of this block, the series is a simple geometric progression. This can be
summed up using the standard rule. Thus we find

G(ε, q) =
G0(ε, q)

1 + 4∆2 sin2 qG0(ε, q)G0(−ε,−q)
=

ε+ 2t cos q − µ
ε2 − [(2t cos q − µ)2 + 4∆2 sin2 q] + iδ

.

The poles of the full Green’s function give the excitation spectrum:

ε = ±
√

(2t cos q − µ)2 + 4∆2 sin2 q.

(c) Could the solution be found without perturbation theory?

Since the Hamiltonian is quadratic, one can also use the Bogolyubov trnasformation
known from the theory of superconductivity to solve the problem. This will be
discussed in more detail in one of the next assignments.

(d) The relation between the imaginary part of the Green’s function and the
occupation of the single-particle states

The sign of the imaginary term iδ in G(ε, q) points out that the upper branch of
the spectrum is empty, while the lower branch is fully occupied.

2. Heavy particle in the Fermi gas:

(a) What is the maximal momentum transfer and the corresponding trans-
ferred energy εM?
Suppose before the collision the light fermion has the momentum p0 and the heavy
particle the momentum pp. The maximal momentum transfer appears when the
collision is collinear. Considering the conservation laws of energy and momentum
in the limit M � m yields the momentum transfer ∆pp = 2p0. The corresponding
energy transfer is ∆ε = 2(p20 +ppp0)/M . If we assume that the heavy particle is not
too fast, |pp| < p0, the typical energy transfer is of the order of εM ≡ 2p20/M . Since
the momentum of the fermions is limited by the Fermi-momentum and M � m,
the transferred energy is much smaller than the Fermi-energy.



(b) Effective self-interaction of the heavy particle.
Due to the contact-interaction with fermions the Green’s function of the atom
receives corrections. Those corrections can be incorporated in the usual way via
the self-energy. The diagrams in the first and second order in λ are

Blue lines correspond to the fermions while the black line represents the free Green’s
function of the heavy particle. The correction to the Green’s function is obtained
by sandwiching the self-energy between the free Green’s functions and summing the
series. Thus the effect of the fermions is hidden in the self-energy that now describes
an effective self-interaction of the atom. The first order correction is only a constant
that can be skipped (no real interaction). The second order correction contains a
fermion bubble (polarization operator). We calculate it in real space:

Π(ω, r) = −2i

∫
dε′

2π
G(ε′ +

ω

2
, r)G(ε′ − ω

2
, r) (1)

The free fermion Green’s function in real space reads

G(ε, r) = − m

2πr
eisign(ε)κ(ε)r, r = |r|, κ(ε) =

√
p20 + 2mε. (2)

Here p0 is the Fermi momentum of the light fermions. As the above integral is
divergent at large ε′, we need to regularize it. The variable ω corresponds to the
energy transfer of the collision. If ω = 0 then there is no real collision. We thus say
that

Veff (ω, r) = λ2 [Π(ω, r)− Π(0, r] (3)

describes a real interaction process. We can now split the integral into the regions
|ε′| < p20/2m and |ε′| > p20/2m. We aim at understanding the scattering at low
transferred energy ω � EF . We can thus drop in the second region the dependence
of the integrand on ω such that from this part there is no contribution. In the
part of low energies we approximate κ(ε) ≈ p0. Because of the sign-functions the
integration region is limited to −|ω|/2 < ε′ < |ω|/2 (phase space). The result reads

Veff (ω, r) = −λ
2m2i|ω|
2π3r2

sin2(p0r). (4)

A Fourier transform to momentum space yields

Veff (ω,q) = −2iλ2m2|ω|
π2q

∫ ∞
0

dr

r
sin2(p0r) sin(qr) (5)

=
iλ2m2|ω|

2π2q

∫ ∞
0

dr

r
[sin(2p0 + q)r − sin(2p0 − q)r − 2 sin qr] (6)



If we now use ∫ ∞
0

dx

x
sin(αx) =

π

2
sign(α), (7)

we obtain

Veff (ω,q) = −iλ
2m2|ω|
2πq

θ(2p0 − q) =: −i|ω|F (q). (8)

Here we find the result from (a) that the maximal transferred momentum in the
collision is limited by 2p0.

(c) Self-energy of the heavy particle.
The self-energy is given by

Σ(ε,p) = i

∫
dω

2π

d3q

(2π)3
G0(ε− ω,p− q)Veff (ω,q). (9)

Here G0 is the free Green’s function of the atom. Since we calculated Veff only at
small energies, the integration over ω does not converge. We need to introduce a
factor that ensures convergence at large frequencies ω. We could for example replace
the interaction by

Veff (ω,q) = −i|ω|
(

iω0

iω + |ω|

)n
F (q) (10)

where n is some large power that ensures that the integral converges and the main
contribution comes from small ω; ω0 is a cutoff frequency of the order of the Fermi
energy. There is an additional subtlety related to the analytical properties of Veff .
Veff should be analytic for ω > 0 in the upper half plane while for ω < 0 it should
be analytic in the lower half plane. For ω < 0 we will therefore subtract the analytic
continuation of ω < 0. We can now write the self energy in the following form

Σ(ε,p) =

∫
d3q

(2π)3
A(ε,p− q)F (q), (11)

where

A(ε,p) = − 1

π

∫ ω0

0

dω
ω

Tε,p + ω
=
Tε,p
π

ln

(
ω0 + Tε,p
Tε,p

)
− ω0

π
, (12)

and

Tε,p =
p2

2M
− ε− i0. (13)

In the expression for A we can neglect the constant ω0/π as well as T in the nume-
rator of the argument of the logarithm. We further approximate

A(ε,p− q) =


Tε,p
π

ln
(

ω0

Tε,p

)
, |q| � |p|,

1
π

(
Tε,p + q2

2M
− qp

M

)
ln
(

2Mω0

q2

)
, |q| � |p|.

(14)

In the case of large q we can drop the term q2/2M since it produces only a constant
contribution to Σ as well the term pq/M since it vanishes when integrating over
the directions of q. We want to understand the behavior of Σ close to the pole
ε ≈ p2/2M of the free Green’s function G0. This means that in the limit ε � εM
we are in the limit p � 2p0. The integration over |q| is limited by 2p0 (see above)
such that we need to use A(ε,p − q) in the limit of small q. In the opposite limit



εM � ε� ω0 both limits contribute (split integral into two parts). We finally obtain
for the self-energy

Σ(ε,p) = αTε,p

{
ln (ω0/εM) , ε� εM ,

ln (ω0/Tε,p) , εM � ε� ω0,
α =

λ2m2p20
2π4

(15)

The Green’s function is now obtained in the usual way

G̃0(ε,p) =
1

ε− p2

2M
− Σ(ε,p)

. (16)

Let us first discuss the case ε � εM . Here, the self-energy is proportional to Tε,p
which means that the pole of the free Green’s function is not changed. We only find
a renormalization of the residuum Z of the Green’s function:

G̃0 =
Z

ε− p2

2M
+ i0

, Z = 1 + α ln(ω0/εM) +O(α2). (17)

The case of large energies is more complicated since the logarithm is large close to
the free pole ε ≈ p2/2M :

G̃0 =
1 + α ln(ω0/Tε,p) +O(α2 ln2(ω0/Tε,p))

ε− p2

2M
+ i0

. (18)

The simple perturbation theory breaks down and we should include also higher
order diagrams in the self-energy [see part c)].

(d) Renormalization of the Green’s function in the regime εM � ε� EF .
In the limit of large energies we should include also higher order diagrams into
the expansion of the self-energy. A convenient method to sum the most important
contributions of the higher order diagrams (higher powers of logarithms) is the
renormalization group. Similar to the last exercise sheet, we differentiate the Green’s
function with respect to the cutoff ω0:

∂G̃0(ε,p)

∂ω0

= G̃2
0(ε,p)

∂Σ(ε,p)

∂ω0

=
α

ω0

G̃0(ε,p). (19)

The solution is of the form G̃0 ∝ ωα0 . By considering the dimensions of the Green’s
function and the condition that for α = 0 we should obtain the free Green’s function
we find

G̃0(ε,p) =
ωα0(

ε− p2

2M
+ i0

)α+1 . (20)

Another way to qualitatively understand how the power-law emerges is to look
at the higher order contributions. If there are some diagrams that produce higher
powers of the logarithm and we include the correct combinatorics, we can sum those
contributions and find a power-law:

∞∑
n=0

αn

n!
lnn(ω0/Tε,p) = exp {α ln(ω0/Tε,p)} =

(
ω0

Tε,p

)α
. (21)


