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1. Peierls Instability:

(a) Calculate the polarization operator of free fermions (the so-called Lindhardt functi-
on) in three dimensions d = 3.

First, we evaluate the frequency integral, which can be done in arbitrary dimensions.
Noticing, that the integral is nonzero only if the two poles lie in different half-planes,
we find

Π(ω, q) = 2

∫
ddk

(2π)d
n~k − n~k+~q

ω + ξ~k − ξ~k+~q + iδ(signξ~k+~q − signξ~k)

Now, there are two possibilities.

1. Often one is interested (as we will be in the next questions) in small momenta
q � kF . Then the exact form of the spectrum is not important, since one can use
the expansion

ξ~k+~q ≈ ξ~k + vF q cos θ, ξ~k+~q − ξ~k ≈ vF q cos θ.

where θ is the angle between ~k and ~q.

In this case (hereafter ξ = ξ~k)

n~k − n~k+~q =


−1, cos θ < 0; 0 < ξ < vF q| cos θ|,
1, cos θ > 0; −vF q cos θ < ξ < 0,

0, otherwise.

The integral over ξ is then trivial.

2. One can choose a spectrum and try to evaluate the momentum integral exactly.
A common choice is the quadratic spectrum. For details of this calculation see the
book by Giuliani, Vignale, “Quantum theory of the electron liquid”, Chapter 4.4.

Here we continue with the first option and evaluate the polarization operator for
small q. Integrating over ξ, we find (for the three-dimensional case)

Π(ω, q) = ν0

π∫
0

sin θdθ
vF q cos θ

ω − vF q cos θ + iδ sign cos θ
,

where ν0 = mkF/(2π
2) is the “density of states”. Denote z = cos θ. Then the

remaining integral can be evaluated as

Π(ω, q) = ν0

1∫
−1

xdx
ω
vF q
− x+ iδ signx

= −2ν0

[
1 +

ω

2vF q
ln

∣∣∣∣ω − vF qω + vF q

∣∣∣∣+
iπ

2

|ω|
vF q

θ(vF q − |ω|)
]
.



(b) Use the Lindhard function and the phonon Dyson equation to calculate the change
(often called the “renormalization”) of the speed of sound due to electron-phonon
interaction

c2 = c20(1− 2ζ), ζ = g2ν0,

where g is the electron-phonon coupling constant and ν0 is the electronic density of
states (ζ is the dimensionless coupling constant in the problem).

The phonon spectrum can be found from

D−1(ω, q) = 0,

where the phonon Green’s function D(ω, q) is given by the Dyson’s equation (g is
the electron-phonon coupling constant)

D−1(ω, q) = D−10 (ω, q)− g2Π(ω, q).

The polarization operator was found in the previous question.

Since the osund velocity is much smaller than vF , we are interested in the limit
ω � vF q. In this limit, the polarization operator is given by

Π(ω, q)→ −2ν0.

Therefore, the phonon Green’s function is given by

D−1(ω, q) ≈ ω2 − c20q2

c20q
2

+ 2ζ.

As a result, we find the phonon dispersion relation as

ω = cq, c2 = c20(1− 2ζ).

(c) Consider now the polarization operator in one dimension, d = 1. For large momenta
q ≈ 2kF , the polarization operator exhibits a logarithmic singularity. Show that this
leads to the phonon frequency becoming imaginary.

In one dimension, the polarization operator is given by the same expression

Π(ω, q) = 2

∫
dk

2π

n~k − n~k+~q
ω + ξ~k − ξ~k+~q + iδ(signξ~k+~q − signξ~k)

Here we’re looking to evaluate the integral for arbitrary values of q. Assuming
parabolic spectrum,

ξ~k =
k2 − k2F

2m
, ξ~k+~q =

k2 − k2F
2m

+
kq

m
+

q2

2m
.

The integrand is nonzero when either (i) ξ~k > 0, ξ~k+~q < 0, or (ii) ξ~k < 0, ξ~k+~q > 0.

Let us consider (for brevity) momenta q belonging to the interval 0 < q < 2kF .
Then the above two cases can be realized of the momentum k is confined to the
following intervals: (i) −kF − q < k < −kF , (ii) kF − q < k < kF .

Consequently,

Π(ω, q) = − 1

π

−kF∫
−kF−q

dk

ω − kq/m− q2/(2m)− iδ
+

1

π

kF∫
kF−q

dk

ω − kq/m− q2/(2m) + iδ
.



The intergals can now be easily evaluated.

Consider now the static limit ω = 0 with q = 2kF (1 − x/2), x � 1. The integral
simplifies and we find

Π(ω = 0, q = 2kF − kFx) ≈ m

πkF
ln
x

4
.

The result is diverging!

Consider now the phnon spectrum. Obtaining the phonon Green’s function from
the Dyson’s equation, we find the following equation for the phonon spectrum near
q ≈ 2k − F :

ω2 − c204k2F
c204k

2
F

+
g2m

πkF
ln

kF
|q − 2kF |

= 0.

Thus

ω2 = ω2
2kF

(
1− g2m

πkF
ln

kF
|q − 2kF |

)
.

If q is close enough to 2kF then the second term exceeds the first and the phonon
frequency becomes imaginary.

What does it mean? What happens to the system?

The true excitation frequency cannot be imaginary. The above result indicates that
the system exhibits an instability and the perturbative approach is no longer valid.

Physically, we can argue, that since the instability develops near the wavevector
2kF , the lattice experiences a corresponding deformation, which has a period π/kF .
Sometimes this processis called “dimerization”. The density in that state exhibits
modulation with the same period. The transition to the dimerized state is called
the Peierls transition.

If the lattice exhibits the periodic modulation, then the electrons see this as a
periodic potential. In periodic potential electrons form bands and typically open
gaps in the spectrum. This is illustrated in the next question.

(d) In order to clarify the physics of the previous question, consider the one-dimensional
model of electrons subjected to a periodic potential

H = H0 + V, V (x) = V (x+ a),

where H0 describes non-interacting electrons with the usual kinetic energy p2/2m.
Overall we assume the system to contain N ions, i.e. to have the length L = Na.
We also assume periodic boundary conditions. Arrive at the same instability as in
the previous question by making the following steps:

1. Consider fermions without the potential: find the normalized wave functions and
the energy spectrum.

For free fermions on a chain of length L = Na (where N is the number of lattice
sites and a is the lattice spacing), the wavefunctions are given by the plane waves

|k〉(0) =
1√
L
eikx,



with the usual additional assumption of periodic boundary conditions that yields

eikL = 1 ⇒ k =
2πn

L
,

n being an integer.

The energy spectrum (assuming the usual parabolic dispersion) is

H(0)|k〉(0) = E
(0)
k |k〉

(0), E
(0)
k =

k2

2m
.

2. Consider the situation where there are exactly 2N particles in the system. Find
the allowed values of electronic momenta and the values of the Fermi momentum
(do not forget the electronic spin).

For 2N particles with spin, precisely N orbital (or k) states must be occupied. At
T = 0 this amounts to filling states with n up to N/2 (the slight subtleties here
have to do with the exact boundary conditions and the exact number of sites, which
in turn determine the allowed values of n. Here we disregard these details) or with
momenta up to

kF =
π

a
.

3. Find the Fourier components of the periodic potential. Determine the allowed
values of the wave vector (i.e. those values of q for which Vq 6= 0). Justify, why one
can disregard the q = 0 term.

The potential matrix elements are just the Fourier components

(0)〈k′|V |k〉(0) =
1

L

∫
dxV (x)ei(k−k

′)x.

Since V (x+ a) = V (x), the nonzero matrix elements correspond to

Vq 6= 0⇒ q = mK, K =
2π

a
,

where m is an integer.

The matrix element with m = 0 describes the uniform potential which can be
disregarded.

4. Consider only the matrix elements Vq with the smallest values of |q|. Find the
second-order perturbation theory correction to the fermionic spectrum.

Consider the two matrix elements Vq with the lowest values of q, corresponding to
m = ±1:

Vq → V−1 + V1.

This way we replace a generic periodic potential with some particular function,
which is however sufficient for our exercise.

The second-order perturbation theory then reads

E
(2)
k =

∑
k′ 6=k

∣∣ (0)〈k′|V |k〉(0)∣∣2
E

(0)
k − E

(0)
k′

=
|VK |2

E
(0)
k − E

(0)
k+K

+
|V−K |2

E
(0)
k − E

(0)
k−K

.



5. Show that the result might contain a singularity.

The free spectrum has a feature for k = π/a:

E
(0)
π/a = E

(0)
π/a−K = E

(0)
−π/a.

Then the standard perturbation theory is inapplicable and we have to use the
“degenerate perturbation theory”.

Again, depending on the precise boundary conditions these states might be not
exactly degenerate, but any possible difference is small in the thermodynamic limit,
which is why we disregard such details here.

6. Attempt to rectify the problem by focusing on the subspace of the electronic states
that involves the two states giving the singularity. These two states have almost
identical energy. Use the degenerate perturbation theory to find the spectrum in this
subspace.

Consider now the subspace formed by the two states |k〉(0) and |k − K〉(0), for
k ≈ π/a. In this subspace, the Hamiltonian is given by the 2× 2 matrix

H →

(
E

(0)
k V ∗K
VK E

(0)
k−K

)
.

Diagonalizing this matrix yields the following eigenvalues

E± =
E

(0)
k + E

(0)
k−K

2
±

√√√√(E(0)
k + E

(0)
k−K

2

)2

+ |VK |2.

Exactly for k = π/a this lifts the above degeneracy and opens a gap in the spectrum

E± = E
(0)
π/a ± |VK |.

What is the relation between the two calculations? What is the resulting ground state
of the system?

Both calculations demonstrate that the system of electrons and phonons is unsta-
ble: taking into account electron-phonon interaction leads to a gap opening in the
electronic spectrum and to appearance of imaginary phonon frequencies pointing
towards deformation (or dimerization) of the original lattice. This is known as the
Peierls instability. As a result of the gap opening, the system may undergo a phase
transition - at low temperatures the gap prevents thermal excitations and thus the
system shows no linear response to weak probes, i.e. behaves as an insulator. The
exact nature of the ground state and the transition will be considered later in this
course.


