
Karlsruher Institut für Technologie Institut für Theorie

der Kondensierten Materie

Theorie der Kondensierten Materie II SS 2017

PD Dr. B. Narozhny Blatt 4

M. Sc. M. Bard Lösungsvorschlag

1. Ruderman-Kittel effect:

Consider a localized spin immersed into a free Fermi-gas. The spin interacts with the
local electronic spin density by means of the Hamiltonian

Ĥint = JŜiσ̂i(~r = 0),

where the local spin density is given by

σ̂i(~r) = ψ†α(~r)σiαβψβ(~r),

and σx,y,zαβ are the Pauli matrices.

Find the average spin polarization in the electronic system

σi(~r) = 〈σ̂i(~r)〉,

at large distances awayt from the impurity spin (i.e., for kF r � 1).

Show that the polarization oscillates as a function of r and find the oscillation period.
J can be assumed to be small.

The spin polarization of the electron gas can be found using the exact Green’s function
as follows

σj(~r) = −iTr
(
σ̂jĜ

)
= −i lim

t′→t+0

(
σjαβGβα(~r, t;~r, t′)

)
.

The exact Green’s function G can be found as a perturbation series in the external
potential describing the impurity spin

V̂ = J

∫
d3rSjδ(3)(~r)ψ†α(~r)σ̂jαβψβ(~r).

Consider the first-order correction

G
(1)
αβ(ε, ~r, ~r ′) = JSjσjαβG0(ε, ~r)G0(ε,−~r ′).

Here G0(ε, ~r) is the free electronic Green’s function in the coordinate representation.
This function can be found as

G0(ε, ~r) =

∫
p2dp sin θdθ

(2π)2
eipr cos θ

ε− ξ(p) + iδsignε
=

1

2π2r

∞∫
0

dp p sin pr

ε− ξ(p) + iδsignε
.

As usual, here ξ(p) = p2/(2m)− EF .



It is instructive to perform the ramining integration in two ways:

(i) first, one can evaluate the integral exactly and find

G0(ε, ~r) = − m

2πr
eisignε κr, κ =

√
2m(EF + ε+ iδsignε).

(ii) one can evaluate the integral also approximately, replacing the integral over p by
an integral over ξ

G0(ε, ~r) ≈
1

2π2r

∞∫
−∞

pFdξ

vF

sin(pF + ξ/vF )r

ε− ξ + iδsignε
= − m

2πr
eir(pF signε+|ε|/vF .

The approximate solution works well at large distances rpF � 1.

Now we can evaluate the spin polarization in the leading order. Using the above first-
order correction to the Green’s function we find

σj(~r) = −2iJSj
∫
dε

2π
G2

0(ε, ~r).

The frequency integral can be evaluated with both the exact and approximate expres-
sions for G0.

At large distances, rpF � 1, we can use the approximate form and find

σj(r) = JSi
mpF
4π3

cos 2pF r

r3
.

This solution oscillates with the pariod π/pF and decays as r−3.

Using the exact form of the Green’s function one can find the expression that is valid
for any r:

σj(r) = JSi
mpF
4π3

(
cos 2pF r

r3
− sin 2pF r

2pF r4

)
.

Again, at large distances, the two results coinside. However, the total spin polarization
given by the integral over the volume should be evaluated with the help of the exact
expression: the approximate solution yields a divergence at r = 0 which is the artifact
of the approximation; the approximate solution is invalid in that region.

2. Dynamical spin susceptibility:

Find the paramagnetic contribution to the electronic spin susceptibility χ(ω, k) at T = 0.
The spin susceptibility describes the response of the electronic system to an external
magnetic field. Consider the limit ω � EF , k � kF .

Verify that in the limit ω/k → 0, k → 0 you recover the Pauli susceptibility. Discuss
the importance of the proper limiting procedure and the order of limits.

Solve the problem in two ways - first, by a direct evaluation of the corresponding diagram,
and second, by finding the imaginary part of χ(ω, k) first, and then restoring the real
part using the Kramres-Kronig relations.



The diagram for the spin susceptibility looks very similar to the diagram for the polari-
zation operator. The obvious difference is the two spin vertices, which however, do not
yields any significant difference since

Trσiσj = δij.

However, the analytic properties of the susceptibility and polarization operator are
different

Π(−ω) = Π(ω), χ(−ω∗) = χ∗(ω).

The technical reason is that the polarization operator is given by the loop diagram with
the causal Green’s functions, while the susceptibility should be calculated with the help
of retarded and advanced functions.

This can be derived from the Kubo formula

χ(ω) = i

∞∫
0

dteiωt〈[Â(t), B̂(0)]〉.

as follows.

Consider the operator

ŝz(~r, t) = µB

[
ψ̂†↑(~r, t)ψ̂↑(~r, t)− ψ̂

†
↓(~r, t)ψ̂↓(~r, t)

]
,

and use it in the Kubo formula as both Â and B̂. Then using Wick’s theorem (note,
that the averaging in the Kubo formula does not involve time ordering) one finds

χ(ω, ~q) = 2iµ2
F

∫
dtd3reiωt+i~q~r

[
〈ψ̂†↑(~r, t)ψ̂↑(0, 0)〉〈ψ̂↑(~r, t)ψ̂†↑(0, 0)〉−〈ψ̂†↑(0, 0)ψ̂↑(~r, t)〉〈ψ̂↑(0, 0)ψ̂†↑(~r, t)〉

]
.

The averages can be calculated by the usual rules of second quantization

〈ψ̂†↑(~r, t)ψ̂↑(~r
′, t′)〉 =

∑
~p

eiξ(~p)(t−t
′)−i~p(~r−~r ′)n[ξ(~p)],

〈ψ̂↑(~r, t)ψ̂†↑(~r
′, t′)〉 =

∑
~p

eiξ(~p)(t−t
′)−i~p(~r−~r ′){1− n[ξ(~p)]}.

Making the Fourier transform we finally obtain

χ(ω, ~q) = 2iµ2
F

∫
dεd3p

(2π)4
[
GR(ε+ ω, ~p+ ~q)GA(ε, ~p)−GA(ε+ ω, ~p+ ~q)GR(ε, ~p)

]
n(~p)[1−n(~p+~q)].

For small q � pF ∫
dεGR(ε+ ω, ~p+ ~q)GA(ε, ~p) =

2πi

ω − vF qcosθ + iδ
,

and ∫
dξn(ξ)[1− n(ξ + vF q cos θ)] =

{
vF q cos θ cos θ > 0,

0 cos θ < 0.



As a result

χ(ω, q) = µ2
Bν0

π∫
0

sin θdθ
vF q cos θ

ω − vF q cos θ + iδ
.

This differs from the Lindhardt function found in the previous exercise by the sign of
the imaginary part:

χ(ω, q) = 2µ2
Bν0

[
1 +

ω

2vF q
ln

∣∣∣∣ω − vF qω + vF q

∣∣∣∣+
iπ

2

ω

vF q
θ(vF q − |ω|)

]
.

In the limit ω/k → 0, k → 0 we find the usual Pauli susceptibility

χpara = 2µBν0.

Second solution

Consider first the imaginary part of the susceptibility using the imaginary part of the
Green’s function

ImGR(ε, ~p) = −iπδ(ε− ξ~p).
Physically, the imaginary part of the susceptibility describes dissipation in the system,
that corresponds to excitation of electron-hole pairs by time-dependent field. This can
be described by the same diagram as in the above solution, but now with “on-shell”
(real) states. Then, the imaginary part of the susceptibility is given by

Imχ(ω, q) = 2µ2
Bπ

2

∫
d3p

(2π)3
dε

2π
δ(ε− ξ~p)δ(ε+ ω − ξ~p+~q)n(~p)[1− n(~p+ ~q)].

This expression describes the process where as a result of absorbtion of the energy
“quant” (ω) of the external field, an electron in a state under the Fermi surface (with
the energy ξ~p) is excited to a state above the Fermi surface (with the energy ξ~p+~q). This
yields Imχ only for ω > 0. The values at negative frequencies can be restored by using
the relation χ(−ω) = χ∗(ω).

Integrating over the frequency ε yields

Imχ(ω, q) = µ2
B

∫
d3p

(2π)2
δ(ω − ξ~p+~q + ξ~p)n(~p)[1− n(~p+ ~q)].

Focusing on the long wavelength limit q � pF , we can use the ξ integration trick that
yields qvF cos θ for cos θ > 0 and zero otherwise. The remaining angular integration can
be performed as follows

π/2∫
0

dθ sin θvF q cos θδ(ω − vF q cos θ) =

{
ω, 0 < ω < vF q,

0, ω > vF q.
.

Since the imaginary part of the susceptibility is an odd function of ω, we find

Imχ(ω, q) = µ2
Bν0

{
ω, |ω| < vF q,

0, |ω| > vF q.
.

The real part can now be restored from the analiticity, i.e. the Kramers-Kronig relation.
This results in the same integration as in the above solution with the same result.


