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1. Drude conductivity

(a) Use the rules of the diagrammatic technique to evaluate the Drude con-
ductivity.

In the lecture, we have derived an expression for the Drude conductivity in the low
frequency limit ω → 0:

σαβ(q = 0, ω)=
1

ω

∫
dε

4πV

[
th
( ε

2T

)
−th

(
ε−ω
2T

)]∫
ddr3ddr1j

α
1G

R
13(ε)jβ3G

A
31(ε−ω),

This expression depends on the realization of the disorder. We need to average the
expression w.r.t. the distribution function of the disorder potential which we assume
to be the Gaussian white noise disorder. In order to obtain the Drude result, we
need to take into account only the term where both Green’s functions are avera-
ged separately. After the disorder average the Green’s functions are translational
invariant and can thus be Fourier transformed:
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The current operators can now easily related to the velocity operators vα = pα/m.
Using the definition of the current operators we find, e.g. for the operator jβ3 :
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Then the spatial integration yields the delta function requiring pβ1 = pβ2 , which leads
to the simple velocity operator.

In the low frequency limit, we expand the distribution functions (since this is the
term that vanishes in this limit)
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and then neglect the ω-dependence in GA. We now arrive at
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The angular integration can be performed by using the isotropy of the problem:∫
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Since the derivative of the hyperbolic tangent function has peak at ε = 0 with the
width ∼ T , the integral over p is dominated by the region close to the Fermi energy.
We re-write this integral with the help of the density of states and find∫
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which is independent of ε. The remaining integral over ε is now trivial. We finally
find
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(b) Discussion in 3D and 2D and the diffusion constant.

The density-density correlation function of a disordered system in the long-wavelength
and low energy limit has a pole structure corresponding to the diffusion equation

(∂t −D∇2)ρ = 0,

where the diffusion coefficient reads D = v2
Fτ/d. We can thus easily rewrite the

expression for the conductivity obtained in part (a) as

σ0 = e2ν0D.

This form is called Einstein relation.

There is another representation making use of the (particle-number-)density n. In
three spatial dimensions we have ν0 = mpF/π

2 and n = p3
F/(3π

2). Using these
relations we can express the conductivity as
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In 2D we have ν0 = m/π and n = p2
F/(2π). We can again find the same result as in

3D:
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In 2D it is also possible to express the result as
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e2

π
EFτ.

Restoring the Planck’s constant in the prefactor: e2/(π~) = 2e2/h, where the factor
e2/h is known as the conductance quantum.



2. Non-crossing approximation

(a) Extra smallness of the diagrams with crossed impurity lines.

Let us first analyze the left diagram of Fig. 1.

Abbildung 1: Second order contributions to the self-energy.

The structure of this diagram is∫
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The main contribution of the integrand come from the region where all Green’s
functions are close to the Fermi surface. Here, the integrations are decoupled. We
can estimate the phase space by two independent spherical shells with radius pF.
The width of the shells in a disordered system is given by the inverse mean free
path ∆p ∼ 1/l. Thus the phase space scales as

Ω1 ∼ (4πp2
F/l)

2.

Abbildung 2: Restricted phase space for the integration over q̃2.

If we now look at the right diagram of Fig. 1 (crossed impurity lines), we need to
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We have now an additional constraint compared to the other diagram. One integra-
tion (say over q̃1) is again restricted to a spherical shell, while the integration over q̃2

is restricted to the intersection of two spherical shells (see Fig. 2). The intersection
can be approximated by a ring of radius ≈ pF and a cross section ∆p2 = 1/l2. The
phase space for this diagram scales as
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We can thus neglect the diagrams with crossed impurity lines if the mean free path
is much larger than the Fermi-wavelength or equivalently if the scattering time is
much larger than the inverse Fermi energy.
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Abbildung 3: Diagrammatic summation of the rainbow diagrams (self-consistent Born ap-
proximation).

(b) Self-consistent Born approximation

We can sum up a whole class of diagrams of the self-energy containing no crossed
impurity lines. Those diagrams are depicted in Fig. 3 (a). If we calculate the Green’s
function, we need to insert this self-energy between two free Green’s functions, see
Fig. 3 (b). A few diagrams contributing to the full Green’s function are shown
in Fig. 3 (c). The self-consistency equation is depicted in Fig. 3 (d). It can be
easily checked that replacing the full Green’s function in (d) by the diagrams in (c)
reproduces the series in (a).

In order to see the self-consistency explicitly, we use the standard representation of
the full Green’s function by the self-energy:
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.

We can thus write the self-consistency equation corresponding to the diagram in
Fig. 3 (d) as
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For simplicity, we assume Gaussian white-noise disorder: W (q) = Γ = const. Shif-
ting the momentum q, we can make the RHS independent of p. Thus, we conclude
that in this situation the self-energy is momentum independent.



Abbildung 4: Analytic structure of f and integration contour γ.

We actually are only interested in the imaginary part of Σ since it will introduce a
finite lifetime. The real part can typically be absorbed into the chemical potential.
We neglect the real part in the following and additionally set ε = 0 since we are
interested only in the lifetime of the particles close to the Fermi energy. Denoting
the imaginary part of ΣR by x, we can write

x = Γx
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This integral can be simplified (after the integration over the angles) by the substi-
tution ξ = q2/(2m)− µ:
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A quick estimate of the result can be obtained by observing that in this integral
the dominant contribution comes from small ξ (i.e. momenta at the Fermi surface).
This yields the usual relatoin between τ and Γ, meaning that in the leading order
taking into account the rainbow diagrams does not change the result. Below we
describe a more precise calculation.

Now we show how the above integral can be performed using the methods of the
complex analysis. First of all we define the function

f(z) =

√
z + µ

z2 + x2

in the complex plane, where we choose the following branch of the square root:

√
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Here θ ∈ [0, 2π) is the (unique) argument of the complex number z + µ. With this
definition of the square root, the function f has a discontinuity along the real axis
for z ≥ −µ (branch cut). There are furthermore two first order poles at z = ±ix.
The analytic structure of f as well as the integration contour in the complex plane
are depicted in Fig. 4.



We perform now the integration along the contour γ. We can use the Residue
theorem to evaluate the integral. On the other hand we can parametrize the path
and perform the integration explicitly. The large circle as well as the small circle
(around the branch point) give no contribution. Above the branch cut we have θ = 0
and below θ = 2π. Hence, we can write
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The order of integration limits can be interchanged in the second integral such that
we can solve the equation for the unknown integral:
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We can now simplify the square roots under the conditions µ > 0 and x < 0
(retarded self-energy has negative imaginary part).
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Using simple trigonometric relations we can establish the following equations for
α ∈ (0, π/2):
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We can finally express the integral as
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We can now solve the self-consistency equation and find
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From the imaginary part of the self energy we can read off the scattering time as
x = −1/(2τ). With the help of the DOS at the Fermi level we can write
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In the lecture we only considered the first Born approximation which yields the
prefactor of the square root. In the self-consistent calculation we now get a slightly
different result originating from the higher order diagrams. The parameter that
controls the smallness of the higher order contributions can be estimated by plugging
the first order result Γ = (2πν0τ)−1 into the ratio inside the square root:
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