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I. REAL SYSTEMS: SYSTEMS WITH INTERACTIONS

A. Classical limit

Consider a gas of N interacting classical indistinguishable particles. The Hamilton func-

tion reads

N 2
P 1
For the partition function we obttain

1 d*Np AN
_ = —BH({pi}{r:})
=i /(27rh)3 /d re . (2)

We can separate the integrals over momenta from those over coordinates:

_ L ﬂe—mmﬂpm 3N o= BHpor({ri}) o= BHini({r:}) (3)
N!' J (27h)? '

The first integral (over momenta) can easily be calculated using

/ dp.dpydp. _gp2 1
—re 2m 3
(2mh)3 A

where A\p = 4/ ég—z; is the thermal length. We obtain, thus

1 1

_ 3N ,. ,—BHpot({r; —BHint ({r;
_MW/CZ o= BHpor (1)) —BHins({x:}) (5)

The remaining integral over coordinates is very complicated and cannot be evaluated exactly.

Thus we have to resort to approximative methods.

B. Quantum regime

In the quantum case the situation is even worse. The part of the Hamiltonian corre-
sponding to the kinetic energy does not commute with the rest [Hyin, Hpot + Hint] # 0.

Thus e #H £ ¢=BHiane=AHpot+Hint) apd
Z =Tr [efﬁH} 7é Tr [e*BHkin} Tr [efﬁ(HpotJrHint)] ) (6)

We have to find proper approximations.



II. THERMODYNAMIC PERTURBATION THEORY

Assume the Hamilton operator can be split into a relatively simple ”zeroth order” part
Hy and a perturbation ¢V, i.e., H = Hy + gV. Here g is a small dimensionless coupling

constant. We have to calculate the density matrix

r
P:EG o (7)

as well as the (canonical) partition function

7 = Trle "] (8)
and the free energy
1
F=—1n(2). 9)
B
The idea is that these three objects can be expanded in series of powers of g. That is
p=pot+gpit..., (10)

Note that 7, Zs etc. have a completely different meaning here as compared to the following
section about the virial expansion (Sec. III). The zeroth order is easy to calculate: py =
(1/Zy)e PHo | Zy = Tr[e PHo], Fy = —(1/B) In(Zy). Our task is to calculate the corrections.
We investigate the exponent e~7#. In particular we are interested in its value for 7 = .
itH

We observe that 7 can be thought of as an imaginary time, i.e. e 7 = =™ for t = —ir.

We have e= ™ = e~ ™Ho G (1), where
S(r) = o™ (13)

The operator S satisfies the following differential equation

0
— S(T) — 67'Ho(]_!0 _ H)G—TH — eTHO (HO _ H)e—THoeq—HOe_TH

or
= eTHO(—gV)efTHOS(T) = —gVi(1)S(7) , (14)

where V;(7) = e™ Ve ™Ho This is nothing but the interaction representation (recall the
lecture course QM II). The formal solution (Dyson series) reads

—g [ dr1 Vi(m1)
0

S(r)="T;e , (15)



where T}, is the "time” ordering operator. Expanding to the first order we get

T

S(T)zl—g/dﬁVI(Tl)—l—... : (16)

Thus we obtain

B
7 = Tr[e ] = Tr[e PH0S(B)] = Zy — g/dTTr[eBHOeTHOVeTHO] +...
0

B
= Zy— g/dT Trle PHV] + ... = Zy — gBTr[e PHoV] + ... . (17)
0
This we have obtained the first order correction to the partition function
7y, = —fBTrle PHoy] . (18)
It is straightforward to calculate the correction of the first order to the free energy. We have

F=—(1/8) In(Z) = —(1/8) n(Zy + gZ1 +...)

= —(1/8) ln[Zo <1+g%+...>} :Fo—g—2+~~:Fo+g(V)o+... . (19)
Here
1 _8H,
(Vo = Z)Tr[e Aoy (20)

ITI. VIRIAL EXPANSION

This method allows to obtain an expansion of the kind
PV = NkgT(1+ Bn+Cn®+...), (21)

which modifies the classical equation of state of the ideal gas PV = NkgT'. It usually works
for nA3. < 1 or equivalently z = e’ < 1, that is in the case of diluted gases. The main
idea is to use the expansion of the grand canonical partition function Zg via the canonical

ones Zy, where N is the number of particles. This expansion reads

Zg =Y Zne" =1+ Zye™ + Zye® 4 (22)
N=0



If z = e®# < 1 it might be sufficient to retain only the few first terms in the expansion. Then
the problem reduces to calculating the canonical partition functions with small numbers of

particles, e.g., Z; and Z,.

We want to calculate the grand canonical potential 2 = —kgT In Z,. We use the expan-
sion
> (_1)n—1xn
In(1 = -t 23
)= 3 (23)

which leads to

(Z1ePP + Zye?Pr 4. )2

InZg = (Z1e°" + Zpe® .. ) — 5 (24)
Collecting the powers of the fugacity z = e* we get
ZQ
InZg = Zye’ + (22—71) e (25)
For the grand potential we obtain
Z2
Q= —kBTZleﬁ“ — k’BT (ZQ — 71) GQBM + ... . (26)
This expression allows us to calculate the particle number:
i1 ZyePr + (229 — Z3) *Pr + (27)
aM V7T 1 DY .
From (26) and (27) we obtain
Z2
PV:—Q:kBT[N—(ZQ—Tl)e%“—i—...} : (28)
With ef* ~ Zﬁl we get
Z?\ N?
PV=-Q=kgT |N—(Zo— ) —+...| . (29)
Finally
PV =kgTN[1+Bn+...], (30)
where
Zy 1
B=-V|=-=-]. 31
(7-3) o



A. Van der Waals gas

2

H:Zpi —l—%ZV(ri—rj). (32)

2
mo L

3N
Zy = / d”"p / Iy e BHUP D)

NI J (27h)?
1 1 N_. —Bi3>. . V(ri—ry
- m@/dg rePaie N (33)
For N =1 this gives
v
7y = — . 34

Limiting the virial expansion at N = 1 we would obtain
Q= —kgTZe . (35)

This would then give

o0 Q PV
N=— (=) =ger=— " "
(a/L)TV 1 /{ZBT k’BT (36)

Thus we recover the ideal gas relation PV = NkgT.
For N = 2 we obtain

11 3 3 —BV(ri—r 1V 3 —BV (r
Zgzé—)\% dTldTgeﬂ(l 2):§E d’f‘@ﬁ() (37)
1 3 —BV(r)
B:—§ d’r [e —-1] . (38)

We choose the interaction potential as shown in Fig. 1. For r» > 2ry the potential is week,

so that SV (r) < 1. Then

eV _ 1~ -1 for r<2r,

e PV _ 1~ —pV(r) for r>2rg. (39)
This gives
14
B=§§(2T0)3+§ / drV(r)=b—af, (40)
[r|>2rg
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FIG. 1: Interaction potential in VW gas.

where
b:%%(2r0)3>0 and a:—% / Ervi(r)>0. (41)
|r|>2r0
Finally, we obtain
PV = ksTN {1 +bn — kC;—”T] . (42)
This is equivalent to
(P + an®*)V = kgT N[l + bn] . (43)

Since bn < 1 we can replace (1+bn) =~ (1—0bn)~! and we obtain the van der Waals equation

of state

(P +an®)(1 —bn)V = (P +an*)(V — bN) = kgTN . (44)

The physical meaning of the condition bn < 1 can be understood if we notice that b is
roughly the "excluded” volume per particle. It is excluded because particles cannot get
closer to each other than 2ry. On the other hand 1/n is the total volume per particle. Thus
bn < 1 es equivalent to Vigtal/IN > Vixeludea /N

The derivation provided here is limited to the regime of diluted gases (bn < 1). However,

the van der Waals equation turns out to be valid in a wider parameter regime.



B. Quantum corrections for ideal gases

Consider again the ideal Bose and Fermi gases at high temperatures, such that nA\3, < 1.

We can apply the virial expansion in order to clearly see the role of Bose/Fermi statistics.

We have

_gr> V
Zi=Y =25+ )53, (45)
p.o T
and
/ p%er%
Z — 75 m . 4
2 ZP1,017P2,02 ¢ ’ ( 6)

Here the prime in Y’ means that the quantum (Bose of Fermi) statistics has been taken

into account. For Fermions this gives

Zy = e Z Z eiﬁpi;p% - 126725% = 122 - 1Zl (47)
2 Sy 22 |

m—m/2
P1,01 P2,02

where the second term subtracts the contributions of the doubly occupied states. Analo-

gously, for Bosons we get

1 _p%ﬂ)% 1 _op P> 1 1
n=y Y L e nh g, W

m—m/2
P1,01 p2,02 /

Here the second term corrects for the 1/2 factor in the first term for the doubly occupied
states. A state here is {p,c}. Using (45) we obtain

1 1 1 Z
B/F L2 + _ - 2 1
2" =7+ 2Zl‘mﬁm/z . (21 + 57 /2) . (49)

Recall that the virial expansion produces the equation of state PV = kgT'N[1+ Bn...]
with B = -V (é — l). We obtain

zz 2

Vo A3,
227, 922 1)

B = 5 (50)

For Bosons B < 0. This corresponds to an effective attraction. In contrast, for Fermions,

BT > 0, which means effective repulsion.
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IV. MAGNETIC SYSTEMS

A. Thermodynamics of magnetic systems

We recall the magnetic relations. The magnetic inductance is defined via B = rotA,

whereas the magnetic field is given by H = B — 47M. Here M is the magnetisation.

E.dD + H.dB
AU — / dV( ;‘T ) .

A work performed by a magnetic system reads

H-dB
AT

W = —dUpgq = — [ dV
Assuming H is controlled, we have dH = 0 and dB = 47dM. Thus
5W——/dVH~dM.

We will shorten this as
oW =-H-dM .

The first law of thermodynamics reads

AU =6Q —dW =TdS+H-dM .

(55)

Thus for the inner energy the proper variables are S and M, i.e., U(S,M). The usual

Legendre transformation leads to free energy F' = U — T'S. We obtain

dFF =dU —TdS = —-SdT'"+H -dM .

(56)

Since M is difficult to control, we prefer to control H. To do so one has to perform another

Legendre transformation leading to the free enthalpy: G = F' — H - M. We obtain
dG = —-SdT — M -dH .

The proper variables of G are G(T,H) and

0G
M—‘(a—H)T'

(57)

(58)

Usually the full field H is not controlled either. It is only the externally applied field

that is controlled. The other part of H, the so called demagnetising field (or the field

11



created by M) is not controlled. Here we neglect the demagnetising effects and approximate
H ~ Heyr = Bews

The Hamiltonian of the magnetic systems usually contains the term —H - M. That is,
usually, H = Hy — H.,; - M, where Hy can be associated with the inner energy of the

system. Thus H corresponds to enthalpy rather than to inner energy. That’s why we have
G=—-kgThhZz, (59)

where Z has been calculated with the full Hamiltonian, Z = T'r [exp (—5H)].

B. Exchange interaction

Consider two sites a and b. If an electron is at site a it has a wave function ,(r).
Accordingly, at cite b the wave function is ¥,(r). (The other levels at sites a and b have
very high energy and are disregarded.) We consider two interacting electrons in an external
potential V) (r), i.e., the Hamiltonian reads

= 2p_rln 2}7_7; + VO + VO (ry) + VO (1, 1) (60)

For example V) can be the Coulomb repulsion, i.e., V) (ry,7y) = €?/|r; — 1|, whereas V(1)
has two minima at sites r, and r.
The wave function of two electrons must be antisymmetric. That is, if we exchange both

the coordinates and the spins, the wave function should get a minus sign:

@/)(7“1,81,7“2782) = _¢(T27327T1731) . (61>

We can achieve in two ways. Either the spatial part is symmetric and the spin part is

anti-symmetric, or vice versa. The symmetric/anti-symmetric spatial wave functions are

Us(71,72) = —= (halra) (1)) + ()l (62)

by, ) = % (Balr) (1)) — n(r1)a(r)) - (63)

The indexes S and T will become clear below. There are four possible spin states. One is

anti-symmetric, it corresponds to the total spin 0 and is called singlet:

1

1
Xs(81,82) = 7 (st =M [s2 =) = |s1 =) [s2=1)) = —= () [1) = L) D) - (64)

S

2

12



The other three are symmetric, correspond to the total spin 1 and are called triplet states:

X7 (s1,82) = D) 1),

5:=0 _ 1
X7 (51,82) = ﬁ(lﬂ )+ 1) 1))
X7~ (ss2) = 1D 1) (65)

Thus, the relevant Hilbert space consists of four states:

Ys(ri,ra)xs ¢T(T17T2)X§rz:_1’o’1‘ (66)

The expectation value of the energy takes two values, since the Hamiltonian is spin-

independent. For the singlet state it reads

Es = (ys| H |¢s)

1

= Q/drldﬁ [ (r) vy (ra) + 95 (r2) ¥y (11)] H [Ya(r1)tn(r2) + ta(r2)ibs(r1)] - (67)

For the triplet states it is

Ep = (Yr| H |¢r)

1

= 5/057”1017“2 (s (r) vy (re) — Yo (r2)dp (r)] H [a(r1)s(re) — Yalre)n(ri)] . (68)

We obtain
Es — Er = 2/617’16”2 (5 (1) (r2)] H [ (r2)by (r1)] (69)
The effective Hamiltonian can be written as

Es — Er)

1
Heff = Z(ES -+ 3ET> — ( h2 S-S, . (70)
Indeed, using
1
S1-8, =3 ((S1+8S2)*—87—83) , (71)
we conclude that in the singlet state
39
(xs|S1-S2|xs) = -1 (72)
whereas in the triplet states
1
(F[S1-Sa ) = 777 (73)

13



Disregarding the unimportant constant we obtain the effective Hamiltonian of the exchange
interaction

Hea:ch - _JSI : SQ ; (74)

where
(Es — Er)

J =

(75)

C. Ising model in 1D, exact solution
1. FEwvaluating partition function

The Hamiltonian of the model reads

:—JZ SiSi —BY S:, (76)

where v = gre/2mc is the gyromagnetic ratio (g, is the Lande factor), B = HZ,, is the

applied external magnetic field. For the spin operators we have S = %E. Thus, we can

rewrite
= —gX:ananJrl hZafl , (77)

where g = Z,il and h = 27;”3 . Since only the ¢* operators are involved, the model is

classical. For brevity we use o,, = 07}..
We assume periodic boundary conditions, oyy; = 01, meaning that the spins are placed

on a ring. For the partition function we get

2.5, 8) = Y e = 3 [[ lmonsssbisone] (78)

{on} {on} n=1

We have written the contribution of the external field in a symmetric fashion: %(an +0nt1).

We obtain
Z(T,B,N) Z T(01,09)T (02,03) ... T(on_1,08)T(oN,01) , (79)
where
1
T(o,0") = exp {gaa’ - 5(0 +d)| . (80)

14



Since both ¢ and ¢’ can assume two values ¢ = +1, ¢/ = =1, the function T can be

represented as a matrix

Ta’,o" - P (8]—>
e 9 ed=h
and it is easy to see that
Z="Tr[TV] . (82)

The matrix 7' can be diagonalised, i.e., there exists an (orthogonal) matrix U, such that

At 0
vrut = . (83)
0 Ao

Thus
Z =M+ 2. (84)

The eigenvalues A; and A, are obtained from det(7 — A1) = 0. This gives

(9 — \)(e9™" —\) —e™ =0, (85)

A? — 2¢9 cosh(h) A + 2sinh(2g) = 0 , (86)

Aja = e cosh(h) % /e cosh’(h) — 2sink(2g) | (87)
Aijp =€ {cosh(h) + \/sinhz(h) + 649] : (88)

We observe A\; > \o, thus for N — oo we have AY > AY and we can approximate

Z AV (89)

2. Thermodynamic results

We can now calculate the free enthalpie
G(T,B,N)=—kgTInZ = —kgTN1In ), . (90)

For the magnetisation this gives

M:_(g_g) _ N sinh(h) ‘
T.N \/sinhQ(h) +e g

Two very different cases: ferromagnetic ¢ > 0 and antiferromagnetic g < 0. See Fig. 2.

(91)
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FIG. 2: Magnetisation in 1D Ising model. Left figure: Ferromagnetic case, g = 2. Right figure:

Antiferromagnetic case, g = —2.

For the linear susceptibility we obtain

(é)M) VN ., *N 2.J
X = e = exp
B=0

kT

- — = 2
oB kgT kgT ’ (92)

where J = Jh%/4. In the ferromagnetic case (J > 0) we get an exponentially high suscepti-
bility for 7' — 0. On the other hand, for kT > J we recover the Curie law: y — Z;—JYY
For the entropy we get

oG 1 oM
=—| = =kgNIn\; + kgT'N—— . 93
S <0T)BN kpNIn Ay + kTN -7 (93)
At at B=0 (h=0) we get \; = €[l + ¢ 29 = 2cosh(g). Thus

S = kgNIn[2cosh(g)] + kgTN tanh(g)%

oT
= kpgN |In |2 cosh i
B kT

kT kT

In particular, for 7' — oo we obtain S — kpN In 2, i.e., the entropy of N free spins-1/2. See

(94)

Fig. 3(left). For the specific heat we get

oS J 1
C=T— =kgN - ) (95)
or <k3T> cosh (lmLT)

See Fig. 3(right).

16



kg N kg N
log(2) - 0.41
0.3
0.2}
0.1
ke T ke T
1 2 3 4 1J] 05 10 15 20 25 3.0 [J]

FIG. 3: Left figure: Entropie of the 1D Ising model. Right figure: Heat capacitance.

3. Correlation function

We are interested to calculate

(0i0;) = Z oi0j€ . (96)
{Un}

This can be again done using the transfer matrix method. We use again
e P =T(01,09)T(09,03) ... T(on_1,08)T (0N, 01) . (97)
Thus (assuming i < j)

0,035 G_ﬁH = T(O’l, 0'2) c. T(O’i_l, O'i)O'iT(O'i, Uz’—i—l)

. T(O'j_l, O'j)O'jT(O'j, Uj—l—l) N T(O'N_l, O'N)T(O'N, 0'1) . (98)

As a result we obtain (for i < j)

Tr [T o TV 0" TN

1 i—1 _z j—i _z mN—j+1
(0i05) = - T [T o TV o* TV = T[T (99)
We introduce the eigenvectors of T
T = M) | (100)
where [ = 1,2 and the eigenvalues have been calculated above. Then
To [T [1) (1] 0% [m) {m| T |m) {m| o® |0) (1] TN+]
i0j) = : 101
This gives
)\|i*j| )‘lNih;jl
; (1 P - 102

17



For N — oo we must take [ = 1. Thus we get

(.0) = 3 1 (1] 0% m) I if“ . (103)
m 1
In particular for B = 0 we obtain
=) m=g( ] (104)
and ]
() = iy = anbl) . (105)
This can be written as
(0:0;) = eli=ilnltanb(o)] (106)
In the ferromagnetic case (g > 0) we obtain
(oi05) = e , (107)
where the inverse correlation length is given by
¢! = —Inftanh(g)] = In lcoth (%) (108)
In the antiferromagnetic case (g < 0)
(0i0;) = (—1)i~dle T (109)

For T' — 0 the correlation length diverges, £ — oo. This will play an important role later,

as we discuss the phase transitions.

D. Cluster expansion

We consider, e.g., a 2D Ising model with B = 0 with nearest neighbours interaction. We

obtain

Z=> e =3"{o} ][] e* . (110)
(i.7)

{o}

Here (i, j) stands for nearest neighbours pairs. Further
e971% = cosh(g) + 0,0, sinh(g) = cosh(g) [1 + o;0; tanh(g)] . (111)

18



This gives

Z = (cosh(g))” Y "T] [1 + oj0; tanh(g)] . (112)
{o} (i)

Here P is the number of pairs of nearest neighbours. For lattices P ~ Nz/2, where z is the

number of nearest neighbours. For a 2D model on a square lattice z = 4. We obtain

Z
s = Z 1 + tanh(g) Z 00
(combg) 2

{o}
+ tanh?(g) Z 0j0;0k0m | + ... (113)
(1,9) 7 (kym)
Combinatoric gives
_Z 2" [1 + tanh?(g)Cy + tanh®(g)Cs + . . .| (114)
(coh ()" : el

where C} is the number of 4-clusters etc.

E. Mean field approximation: ferromagnetic Heisenberg model.
Consider the ferromagnetic Heisenberg model in d dimensions. The Hamiltonian reads
W= I3 55 - ABYS. (115)
(,9) i

Here v = gup = ge/(2mc) is the gyromagnetic ratio and B = H,,; is the external field.
The ferromagnetic regime means J > 0. The operators S stand for spin-1/2 operators,
S; = (h/2)&;. The notation ) (ij) means that each pair of nearest neighbours is counted

only once. In terms of the Pauli matrices we obtain
(i.7) i

where J = h2J /4 and 4 = hvy/2. For brevity we rename J — J, 7% — ~ and the Hamiltonian

reads

19



1.  Free spins in a magnetic field

Let us first consider the case J = 0, i.e., free spins in the magnetic field B:
H=-1B) 5. (118)

The partition function is easy to calculate. We denote by |1) the eigenstate of B& with
the eigenvalue B = |§ | and by [{) the eigenvector of B& with the eigenvalue —B. Most

convenient is to think that B || Z, i.e. B = BZ. Then we obtain for one single spin
7y =B 4 7B = 9cosh (ByB) . (119)

The "magnetisation” of one single spin is given by

o F 1 0ln~z o
My = 4(5) = — aaBl f;Blwtanh(mB)b, (120)

where b = B /B. For the expectation value of the spin operator we have

(7) = tanh(8vB) b . (121)
For N spins we get
Z = (Z) = (2cosh (ByB))" (122)
Thus
VZ Zg g al;BZl = Nytanh(3yB)b = N(5) . (123)

Expectation values of all spins are equal, (7;) = (7).

2. Mean field approzimation (intuitive way)

The idea of the mean field approximation is in the fact that every spin, e.g., spin 7;,

"sees” the effective magnetic field created by all its nearest neighbors:

’Yéeff’i = 75—}- Z J(?] . (124)

JE(3)
This is however an operator which cannot be reduced to a simple vector. The approximation

is thus to replace it by
YBeri =vB+ Y J(@) . (125)

JE(i,7)

20



Here (¢;) is the expectation (average) value of spin j. In turn, the expectation value (7;) is
found easily because spin 7 "sees” the field ’}/B)eﬂ"j. It is obvious that all spins are polarised
in the direction of b. Moreover all spins have the same expectation value and thus all spins

"see” the same effective field. Thus we remove the vector notation and get
(o) = tanh(BvyBeg) - (126)

On the other hand
VBt = vB + Jz(0o) . (127)

Here z is the coordination number, i.e., the number of nearest neighbours. Finally, we get

the self-consistency (Curie-Weiss) equation

(o) = tanh [fyB + pJz(0)] . (128)

3. Mean field approzimation (formal way)
The more formal way is to write ¢; = (d;) + d7;, where 6d; = &; — (7;). Then

One assumes the fluctuations §; to be is some sense small. Therefore one drops the last

term, as it represents a product of two small quantities (fluctuations). Thus
= (6:)0; + (05)0: — (0:)(;) - (130)
Assuming all spins are polarised equally (¢;) = (&) we obtain the mean-field Hamiltonain

Har = = 1B+ 200 Y60+ 3 (0 = B a6, (13)
i (@.5) ‘

where again vBes = 7B + Jz(d). This model is that of free spins in a magnetic field and

we obtain (we drop the vectors as all spins are polarised in the direction of b)

5JzN<

7 = Ze’ﬁﬁMF — e TE@ N cosh™ (ByBeg) = e 2
{oi}

9 9N cosh™ (BB + Jz(0)) .

(132)
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The free enthalpie reads

GT,B) = —~(1/H)Z = T2 (6) — (N/B) In [2cosh (7 Bur)]
_ 7 ZN ()% — (N/B)In[2cosh(ByB + BJ=(0))] . (133)
For the magnetisation we obtain
oG
M= - (aBeff>T = N~y tanh(SvBeg) - (134)

(This is not yet the true thermodynamic relation as we do not know (o), which is also
a function of B. However, differentiating with respect to B assuming (o)(B) being some
function of B gives the same.) On the other hand M = Nv(o) and we obtain the self-
consistency equation

(o) = tanh [fyB + pJz(0)] . (135)

From now on we denote m = (o) (later we will call this quantity the order parameter).
Assuming this self-consistency equation is solved, we can further investigate the free enthalpy

given by Eq. (133). We get

1 1
cosh [fyB + BJzm| = = = . (136)
\/1 — tanh® [8yB + B.Jzm)| vi-m
This gives (B = H)
1 2 N 2
G(T,H) = NkgT —ln2+§1n[1—m] + 5 Jam’ (137)

Here we should consider m = m(H,T'), which is obtained from the self-consistency equation
m = tanh [vH + BJzm] . (138)

We can also calculate the free energy F(T, M) = G(T, H) + M H, where the magnetisation
reads M = N~(o) = Nym. In this case we should eliminate the field H using the self-

consistency equation. This gives

1 1
fvH = arctanh[m| — fJzm = ~In <ﬂ) — pJzm . (139)
2 1—m
For the free energy this gives
B 1 9 . m 1+m N 9

and m = M/(yN). We will discuss, both G(T, H) and F(T, M) below.
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FIG. 4: Graphic solution of the self-consistency equation.
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FIG. 5: Solutions of the self-consistency equation.
4. Solution of the self-consistency equation

We denote m = (o) (later we will call this quantity the order parameter) and attempt
a graphical solution of the self-consistency equation. We start at B = 0. Then the self-
consistency equation reads

m = tanh [BJzm] . (141)

This equation can be easily solved graphically (see Fig. 4). For fJz < 1 there is only one
solution m = 0. For 8Jz > 1 there are three solutions. Thus there is a critical temperature,
determined by the condition fzJ = 1, that is kg1, = zJ. For T' > T, we have only the
trivial solution m = 0. For T' < T, there are also non-trivial solutions with |m| # 0 (see

Fig. 5).
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5. Critical behaviour

We consider the vicinity of the critical point T" = T,.. The self-consistency equation can

be rewritten as

vB T,
= h|—+ = . 142
m = tan {kBT—i—Tm] (142)
1)B=0,T <T., (T. — T)/T. < 1. We have
T,
m = tanh [?m} . (143)

The order parameter should be small, m < 1. Therefore we can expand the RHS using

tanh(z) =z — 2%/3 +.... We get

T, 1(T.\° ,
Further ,
T.—-T 1 /T, 3 1 4
S ~—m . 14
I (T) mesgm (145)
Finally
T, — T\
m R~ (3 T ) o (T, = T)"? . (146)
2) T =T,, B#0,vB < kT
vB vB 1 vB s
= tanh — | = _— — = — . 147
m = tan [m—i— k:BT] m + T 3 (m+ T (147)
We see that 13
3vB
m A (IJ—T> o« BY3 (148)
B

3T >T, (T—T.)/T. <1, B— 0.

T, vB T, vB

= tanh | — — |~ = — 4 ... 14

m = tan {ijthT] Tm+kBT+ (149)
vB
~ _ 150
T k(T =T (150)
Therefore, for magnetic susceptibility, using M = Nym and H = B, we obtain
oM v2N 1
== ~ x : 151
* (8H>T,H:0 kB(T - Tc) (T - Tc) ( )
4) Specific heat. Having defined T, we can rewrite Egs. (137) and (138) as follows
1 NkgT,

G(T,H) = NkgT [— In2+ 3 In [1—m?] QB m? (152)
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where m = m(H,T) is obtained from the self-consistency equation
T
m = tanh {ﬁ*yH + T m} : (153)

For the specific heat we obtain

Cy=-T (%)H . (154)
For T' > T, we have m = 0 and
G(T,H =0) = —-NkgTIn(2) , (155)
and for T' < T, we get
G(T,H =0) = ]@% m? + %Nk;BTln(l —m?) — NkgTIn(2) . (156)
We substitute
m? & (3 TCQ:C T) (157)

and obtain for ' < T and T, — T < T (the term In(1 — m?) should be expanded up to the

2

second order in m?, i.e., up to m?)

3kpN
AT,

G(T,H =0) ~ —NkgT1In(2) — (T —T.)* . (158)

Thus, Cy(T =T, —0) = (3/2)kpN, whereas Cy(T =T, + 0) = 0 and we obtain a jump in

the specific heat.

6. G(T,H) vs. F(T,M) above and below the transition.

Thermodynamic stability. In equilibrium the free energy is minimal for given 7" and M.
Thus, the stability requires d?F > 0. We know that dF = —SdT + HdM. Thus, upon

variation of M we have

2
doF = 1 (a F> e = (a—H) dM? . (159)
2 T T

OM? “ 2\ oM

Thus, stability requires (0H/OM)r > 0. Note that the stability conditions are obtained
upon variations of extensive variables, e.g., U or M but not of the intensive ones, e.g., T or

H. That’s why we use F(T, M) and not G(T, H).
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FIG. 6: G(T,H) and F (T, M) obtained by graphical integration at 7' > T..
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FIG. 7: G(T,H) and F (T, M) obtained by graphical integration at 7' < T.

The thermodynamic potentials G(T', H) and F(T, M) can be obtained by a ”graphical
integration” of the M(H) and H(M) curves. For T' > T, this is shown in Fig. 6. In this
case the solutions M (H) and H (M) are unique and the functions G(7, H) and F(T, M) are
continuous and smooth.

The situation changes drastically at 7' < T, (Fig. 7). For small enough values of H there
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are three possible values of M. One corresponds to an unstable solution (OM/0H < 0).
The two others are locally stable. Among this two the one with smaller G' should be chosen.
This causes a kink in the function G(7, H) at H = 0. For F(T, M) a double-well potential
is obtained. Here a Maxwell construction becomes necessary. Namely, at T' < T, we have a

first order transition once H = 0 is crossed. We will discuss this below.

V. LANDAU THEORY OF 2-ND ORDER PHASE TRANSITIONS.

The theory developed by Landau in 1937 and further expanded by Ginzburg and Landau
in 1950. This is a phenomenological theory.

A. General considerations

The most important new concept is that of order parameter m(7) (it can be a scalar or

a vector).
Z=tr[e?] = /D[m(f)] tr' [e7?] ’

Here tr’ means a trace over all (other) degrees of freedom by a given configuration m(7),

(160)

m(7)
whereas f D]m| means a summation (functional integration) over all configurations m(7).
For example m(7) can be a coarse-grained magnetisation density.

For every configuration m(7) there is a number of microscopic states in which m(7) is
realised N[m(7)] = exp[S[m(7)|/kg]. Here S[m(7)] can be interpreted as entropy of the

configuration m(7). Thus
tr' [e=PH] ‘ — S /ks o ~BUIMERP] (161)

—
Y

where h is the conjugate to m field, e.g., the magnetic field, and U [m(7), h(7)] is the (properly
averaged) energy of the configuration m(7) in the field A(7). We introduce the free energy

functional (Landau functional)
Flm,h] = U[m,h] — TS[m] , (162)
so that

tr/ [ PH] ’ = Tmon (163)
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and
7= tr [ = / Dim(f)] e #F @) (164)

Assuming the external field is constant h(7) = h we have, by definition, Z = e=#¢(T")_ Thus
G(T,h) is the true thermodynamic potential (enthalpy), whereas F[m(7), h] is not.

In this phenomenological theory F is chosen on the basis of very general considerations.
These are:

i) symmetries: a) translations and rotations of the space; b) internal symmetries: SO(3)
rotations of m for Heisenberg model or m — —m for Ising model.

ii) Locality:

F = /ddrf[m(r),Vm(fr), .., h(r)]. (165)

iii) The theory holds only in the vicinity of the phase transition, thus m is small.

B. Landau-Ginzburg functional

After all these discussions we write down the Landau-Ginzburg functional
. (1, 5 1. 1 - 2 .
F=[d th (7) + me () + §K [Vm(r_’)} —hm(r)| . (166)
The coeflicient ¢ is chosen as t = a(T — T,) with a > 0, whereas b > 0 and K > 0.

One has now to perform the functional integration
7 = / D[m/()] e~ BFIm@:RO.T] (167)

The mean-field approximation consists in approximating Z as follows

Z ~ B_B}—min(th) , (168)

where Foin (T, h) = ming,q Fm, h,T| = G(T, h).

We look for a homogeneous solution providing the minimum of F[m, h,T]. Then we use
Foot b

T,h) == =-—m*+-m'

f(m7 ) ) V 2 m + 4 m

The variation gives an equation for the mean-field solution my:

— hm . (169)

tmo +bmg —h =0 . (170)

At h = 0 we obtain

0 for T'> T, , (171)
moy =
4,/ = 4, /alle=T) forT'< T, .



f(m)
T>T,

/ T<Te

FIG. 8: Landau functional at T" > T, and T < T..

Mg

C. Phase transition at T =T,. Critical exponents.

The Landau functional both at T > T, and T' < T, is shown in Fig. 8. Below the critical
temperature two minima at m = +|mg| appear. We investigate the critical behaviour:

e For the order parameter we have
mo o< (T, — T)" | (172)

where the Landau theory predicts the critical exponent /3 to be given by 5 = 1/2.

e For the magnetisation at T'= T, i.e., t = 0 we obtain

h 1/3
mo = (5) o h/9 (173)

Thus 6 = 3 in the Landau theory.
e To calculate the susceptibility at 7' # T, we differentiate Eq. (170) with respect to h.

This gives
(t + 3bmg) % -1=0. (174)
Thus, for T > T, and my(h = 0) = 0 we obtain
X:%:%:ﬁ. (175)
For T < T, we have mo(h = 0) = /[t|/b. Thus
L Omo 1 1 1 1 | 176)

Oh — t+3bm2  t+3t] (=2t) 2a(T.—T)
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The critical behaviour is characterised by x o< |[T' — T.|~7 with v = 1.
e Heat capacitance for h = 0: C' « |T — T,|7®. In Landau theory o = 0. To show
that we notice that the thermodynamic potential (free enthalpy) is given in the saddle-point

approximation by

1, 1, 0 for T>T,
G(T h=0) = Funlm] =V ( Stmg +2bmg ) =0 o e e
— = g for T<T,
(177)
This gives
092G 0 for T >T,
Ch=-T % = . : (178)
orT Vol for T<T,

Thus the heat capacitance ”jumps”, but there is no divergency and Cj, o |T' — T.|~® with

a=0.

D. Correlations and fluctuations

We aim at finding the order parameter m(r) for an imhomogeneous weak external field

h(r). We have to minimise F = [ d%r f, where

1 1 1 - 2
f= 523 m?(7) + Zb m*(7) + §K [Vm(f”)} — hm(F)} : (179)
For this one has to solve the Euler-Lagrange equation
o g 9 _y (180)
om d(Vm)
This gives
tm(r) +bm?(r) — KNV?*m(r) = h(r) . (181)

We assume m = mg + dm and linearise. This gives
t
mg = % for T <T.,
mo =0 for T>T,, (182)

and

(t + 3bm2)dm(r) — KV2m(r) = h(r) . (183)
Applying the Fourier transform we obtain

(t +3bm2)om(q) + Kq*0m(q) = h(q) , (184)

where e.g., h(q) = [ d% h(r) e™" and, respectively, h(r) = (2r)~% [ d%q h(q) e".
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1. Susceptibility

Thus
dm(q) 1
= = , 185
x(a) Oh(q)  t—+3bmd+ K¢? (185)
We get
— 1 for T>T.
x(q) = O : (186)
m for T < Tc
This result can be rewritten as
X0 1 1
-0 - - 187
X(Q) 1 + €2q2 K qQ + 672 ? ( )
where
—L__ for T>T,
Yo = a(TITC) , (188)
m for T < TC
as obtained above, and
—K__ for T>T
a(T—-T, c
¢ = ( _ ) . (189)
m for T < TC

The length ¢ is called the correlation length (will be explained below) and shows the critical
behaviour € o< |T' — T,.|7", where v = 1/2.
The physical meaning of the correlation length £ is easier to understand in the r space.

The linear response relation dm(q) = x(¢)h(q) becomes upon the Fourier transform

dm(r) = /ddr'x(r —r"h(r') , (190)

where

diq &7 1
) = —_— . 191
X7 /(27T)d K ¢ +&72 (191)
The function x(7) describes the response to point-like perturbation. Indeed for A(7) =
A6(7 — 0) (a delta-like field centered in the origin) we obtain dm(#) = A\x(7). Introducing a

dimensionless wave vector § = £7 we get

. 1 dis e/ 1 r\ 2 dls eis/e)
(") = i / 2m)l 1+s2  Kri? (Z) / (2m)1 1+ 52

- v, e
where N dls 58 1
Y(r/€) = (g) /(gﬁ)d K 1+s2° 19
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The behaviour of Y () is well known

1 for zx1
-3

Y(x) ~ (194)

d

zze?® for z>1

Thus, for » < ¢ the susceptibility shows a power low dependence x(r) ~ r~(4=2) whereas
for r > £ it crosses over to the exponential decay x(r) ~ e~"/¢. Thus, ¢ is the spacial extent
of the domain in which the system responds to a delta-like field.

At the critical point, T = T,., we have £ = oo and for arbitrary large r we obtain
x(r) ~ r=(@=2)which corresponds to x(q) ~ ¢2. The general form is y(r) ~ r~(¢=2+7) or

x(q) ~ ¢~ In Landau theory the critical exponent 1 vanishes, 7 = 0.

2. Correlation function.

Next we calculate the correlation function of fluctuations, i.e.,
C(r—r") = (m(r)m(r)) — (m(r)) (m(r')) = (Om(r)om(r')) . (195)

Per definition
(mir)) = [ (D] m{rye 27 (196)
and

(m(rym(r')) = = /[Dm] m(r)m(ﬂ)eiﬁf[m] ) (197)

Here the partition function is given by

Z = / [Dm] e=#7ml (198)
In our case
F = /ddr [%t m?(7) + ib m*(7) + %K [ﬁm(ﬁr - hm(?*)} : (199)

The only thing important to us now is the linear coupling to the external field A(r). The
rest of F can be arbitrary. We thus obtain

1 6Z 16z
(m(r)) = BZoh(r) ~ Boh(r)

(200)

and
182
mm(r) = 5 Shemeht)

(201)
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Here we use the variational derivative which is defined as follows: assume there

is a functional A[n(r)] with the function/argument 7(r). Then

A gy Al 80 =)= At o0
Let us calculate the nonlocal susceptibility:
)= = iy o = 5 )
Further
1 6§ [1 62 1 82z 1 [62 7] 67
¥ = S |z 03] = 72 e~ 5 ) s 2
This, finally, gives
X(r, ) = B (Fm{r)om(r")) = BC(r, 1) (205)

This relation is a special case of the Fluctuation-Dissipation-Theorem (FDT). Thus knowing
the susceptibility x(r,7’) we also know the correlation function C' = x/f. Of course one can

also calculate C'(r,r’) directly (exercise).

E. Validity of the mean-field approximation, Ginzburg criterion.
1. Relative strength of fluctuations

We define the fluctuations in the correlation volume

dme = ! d%r om(r) . (206)
Ve Jv,

Here V; = . We are interested in the strength of fluctuations

(5m§> = ‘; ddrl/ dd'r’g (om(ry)om(ra))
Ve Vi

€
= /dd’ﬁ/ d'ry C (r1—12) . (207)
Ve Ve

Up to coefficients of order unity we get

(6m2) ~ é /Vg dir C(r) = —— / dir (r) (208)
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Using (192) and (194) we obtain

1
Smg) ~ ——— / dr r 209
We now compare (dmg) with mg. We obtain

(dmg) &b

~ . 210
g~ K —
Substituting |t| = a|T — T,| and £ ~ /K /|t| we obtain
<5m§> o b Ny T—T. = (aTc)%b (211)
mg K428t T K23
Finally, we can replace 5 by 1/(kgT.), since we investigate the vicinity of 7.
(6m2) b T—T,|% (al,)% bkpT, |T—T,|7 s 212)
= ~ = T,
mg - K2plst | T K72 T, ¢
where we have introduced the dimensionless Ginzburg parameter 7 given by
_2
(aT.) T bkgT.| ™"
o= — (213)
(6m3)

We see that for d > 4 the mean field theory works well and

= —0asT —1T,.. Ford <4
the situation is more involved. The mean field theory works well as long as |7 —T.|/T. > 7.
Closer to the critical point, that is for |7 — T.|/T. < 7¢ the mean field theory does not
work. Fortunately, in some materials like, e.g., the superconducting aluminum, the Ginzburg
parameter is very small (~ 107'%). This makes the mean field theory applicable almost

everywhere. In other systems (e.g., ferromagnets) it is not so and one has to take into

account fluctuations.

2.  Fluctuation correction to the heat capacitance

We can obtain Ginzburg criterion differently. We consider fluctuations around the mean

field solution at A = 0. That is we write

F—Fo+0F, (214)
where
= 2
Fo / iy Bth(F) + }me‘l(f) + %K [Fm(m)] } | (215)

34



Fo=Flmg], where m=|t|/b. (216)

We assume m(r) = mg + dm(r) and keep only the second order in dm terms (the first order

vanishes because my is the saddle-point. We obtain

1 1 e 2
SF = / dr [§t5m2(f) + gbmgémz(F) + 5K [v(sm(f)} }

1 - 2
= §/ddr {A(sz(F) + K [V(Sm(f’)] 1 : (217)
where A =t + 3bm3. In Fourier space this gives
1 diq
OF =5 @) [A+ K¢*] dmgdm_, . (218)
For the partition function this gives
Z = /[Dm]e‘ﬁf: 6_’8F0/[Dm]e_ﬁéf. (219)
We get
_alp —
/Dm —BoF — H/ C,dmy) e ~m 2K omadm—g (220)

The integration measure C; is impossible to guess now. From the exercise about the deriva-
tion of the Landau functional from the Ising model we know that C, o< /3, whereas the

rest of the constants are not important. This gives

(221)

§F
/ [Dmle 7 = N H \/m
where N contains all the constants (independent of 3). The constant N as well as the
product after it are dimensionful. Before calculating the logarithm it is convenient to make
both dimensionless. We extract a dimensionful constant as follows A = aT.Ag, where

|T—T]

T—T. 3bm? == for T >T,
Ay = + 2 )T . (222)
T. al, WL for T < T,

Analogously K = aT,&2, where & = K/(aT,). Then we obtain

(223)

[Dmle —BF — N
/ H Vi Ao + &og®
where N’ is the new dimensionless constant, which is independent of temperature. For the

partition function we thus get

7 =e PN H (224)

vV Ao + &o¢?
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and for the thermodynamic potential (free enthalpie)

G(T,h:O):—%IHZ:‘FO ZIH A0+£ 2 —]{ZBTIHN/ (225)

For the heat capacity this gives

092G 6A0) 1 kpT? <8A0>2 1
C_o=—-T[Z= = Cy—kpT + —_—
h=0 <8T2>h0 v ( ZA0+5061 2 \or Zq: (Ao + &8¢)?

(226)

2 0 for T>T.
Co=—T (8 fo) - o . (227)
h=0

or* VeT  for T <T,

where

is the mean-field contribution and we have used the fact that 92A,/9T? = 0. Making sums

into integrals we obtain

%G 04, dq 1
Cheo = —T [ == —Cy — kgT 1%
h=0 <8T2>h 0 B <aT> / (2m)e Ay + E2¢2

kpT? [040\° dq 1
e . 22
T (aT) V[ i rem e @

We consider the vicinity of the phase transitions, Ay ~ 0. In this limit both integrals diverge

either at ¢ — oo (ultra-violet divergency) or at ¢ — 0 (infra-red divergency) or in both limits
logarithmically. The ultra-violet divergency is unrelated to the phase transition and might
be an artefact of us using the long wave length theory (GL theory) for all ¢. Thus we
will disregard the ultra-violet divergency and focus on the infra-red one. This divergency is
cut-off at ¢ ~ €71 = /Ay /&, where £ is the correlation length introduced earlier. Here the

second integral is more dangerous. Indeed

ddq 1 B Qd i qd—ldq 1
| oy e ‘f_/ @l @2+ P (229)

This integral has an infra-red divergency for d < 4 and is given in this case

o0

& ! qd_ldq 1 N Qd -5 Qd€4_d
& 0/ (2m)* (§72+ ¢2)° (2ﬂ)d§§€[ 444 enid—d)& (230)

The first integral has an infra-red divergency for d < 2 and, even in that case, would diverge

"weaker” than the second one. Thus it can be neglected.
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Taking into account (QA,/0T)* ~ T2 we obtain the contribution of fluctuations for

d < 4:
d—4
2

T -1,
1.

kﬁBVT2 547d k:BVT2 A% kJBVTQ
2 & &grz 172
Thus Clyye diverges at T — T, as Cpye ~ |T — Tc|d%4 and becomes bigger than Cy close

(231)

Cfluc ~

enough to T.. Comparing with Cy at T < T, (Cy ~ Va?T/b) we see that the contribution
of fluctuation dominates at

‘T—TC T, 2K, K? (232)
T. kb kpb(aT.)¥?  kpT.b(aT,)d=9/2 "

Thus we recover again Ginzburg’s criterion.

3. Lower and upper critical dimensions

As we have seen for d > 4 the MF theory is correct whereas for d < 4 it is not and one
has to take into account fluctuations around the mean field value of the order parameter.
Thus d, = 4 is the upper critical dimension of this theory.

There is also a lower critical dimension. It turns out that the phase transition becomes
impossible at 7" > 0 (the fluctuations are too strong) if the dimension is low. For the Ising
model the lower critical dimension is d; = 1. Indeed as we have seen the one-dimensional
Ising model does not have a transition at any finite temperature (actually strictly 7. = 0).

For the Heisenberg model d; = 2.

F. Classification of phase transitions.

1) Analyse again G(T,H) and F(T, M) (see Figs. 6,7) for Ising model or, equivalently,
for Landau theory. Introduce 1-st order and 2-nd order transitions and the critical point,
where the 1-st order line terminates by a 2-nd order point.

Explain coexistence domain around the line of the 1-st order transition. The Landau
F(t, m, h) functional has two local minima as a function of m in this case.

Maxwell construction for F(7, M). Assume the system separates into tow phases with
magnetisation pro volume (or per spin) m; and volume V; and magnetisation per spin msy

and volume V5. We have
M miVi+maVs

V=Vith . m=g= (233)
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Clearly m is between m; and my. We can extract V; (and V3) as a function of m:

m — Mo m —m

Vi=———V | Vo=—-—-V. (234)
mi — Moy my; — My
The free energy of the mixture is then given by

where f = F'/V is the free energy density of a pure phase. We obtain

Frpin(T, M)V = % (T, ml)+% F(T,my)
—m f(Ta ml) - f(T, mZ) + my f(Tv mZ) — Mo f(T> ml) ) (236)
myp — Mo myp — Mo

Thus, F,;. is a linear function of M. Maxwell construction.

2) The same for van der Waals gas. From the van der Waals equation of state
(P +an®)(V —bN) = kgTN (237)

we get
P n an’?

ksT ~ 1—bn kT’
At T < T, there are three possible values of n for a given P. Maxwell construction for

F(T,V) (equivalently for F(T,n = N/V).

(238)

Latent heat: it appears if the entropies (entropy densities) of the two phases are different.
Then
0Q =T.(S1—S2)=T.[S(T. +¢€)—S(T. —¢)] . (239)

Recall that G(T,p, N) = U + pV — T'S (or in magnetic case G(T,H) = U — MH —T5S).
At the phase transition G is continuous and so is pV. Therefore a discontinuity in S means
discontinuity in U. There is latent heat in the case of van der Waals gas/liquid. There is
no latent heat in the case of the 1-st order ferromagnetic transition driven by H. This is
because of the symmetry H — —H. The 1-st order transition line is parallel to the T axis.
Thus, no entropy difference in two phases.

3) Superconductivity.

There exist two classifications:

1) The most popular is the classification according to the behaviour of the order pa-
rameter. In phase transitions of the 1-st order the order parameter jumps discontinuously,

whereas in the phase transitions of the 2-nd order the order parameter is continuous.
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2) Another classification is due to P. Ehrenfest. Here one looks and the behaviour of the
thermodynamic potential at the transition point. The phase transitions are labeled by the
lowest derivative of the free energy that is discontinuous at the transition.

Cy(T) for transitions of 1-st, 2-nd and 3-d order transitions. Latent heat from the delta
function in Cy (7).

The Ehrenfest classification should be generalised if fluctuations around mean field are
taken into account, and, e.g., & # 0. We remind C' ~ |t|~®*. Thus a more appropriate
Ehrenfest criterion would be that n-th derivative of the thermodynamic potential has a
singularity of some kind, whereas lower order derivatives are continuous. For example, if
a = 1/2 (like in our calculation above) then G ~ [¢t|*~“ is continuous, S ~ 0G /Ot ~ |t|'=
is continuous, but C' ~ 9*G/0t? is singular and the transition is of the 2-nd order.

Interestingly, the Bose-Einstein condensation of the ideal Bose gas is a transition of the
3-d order. To understand this consider the free energy F(T', N, V') as the function of 7" and
N (and V constant and large). Indeed, as we have seen Cyy = —T (0*°F/9T?)  is continuous
but has a kink, i.e., (9°F/0T?), is discontinuous. Analogously, u = — (9F/ON); has a

discontinuity in the second derivative, i.e. in 9?u/0T?.

G. Ciritical exponents, universality classes

Thus far we have introduced several critical exponents characterising a 2-nd order phase
transition and calculated them in the mean field (MF) approximation. Systems with d; <
d < d, can be characterised by completely different critical exponents. There families of
systems (models) having the same set of exponents. These are called universality classes.
In the following table the critical exponents are shown for MF' theory as well as for the 3D

Ising class.

Exponent| Controlled quantity Scaling Conditions |MF value|3D Ising
a Heat capacity Ch o [t~ [t|] -0, h=0 0 0.11
o} Order parameter m o [t]P t—0—€ h=0 1/2 0.33
v Susceptibility X o |t]77 [t|] =0, h=0 1 1.24
) Order parameter m oc |h|'/° [t}=0,h—0 3 4.8
v Correlation length € o [t [t|] =0, h=0 1/2 0.63
n Correlation function|C(r) oc |r|=#277| |¢t| =0, h =0 0 0.04
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As we will see below the critical exponents are not independent.

H. Scaling hypothesis. Relations between critical exponents.
1. Scaling in the mean field theory

The thermodynamic potential G(T', H) can be written in the vicinity of the phase tran-
sition as G = G(t, h), where t o< (T'—T,) and h < H. In the mean field (Landau) theory

we have

b
= min,, |=m?*+-m* —hm| . (240)

The optimal value m(t, h) is found by solving the equation
tm +bm?® =h . (241)

In this equation we can rescale t — t' = s*t and h — h’ = s¥h and look for m’ which satisfies
t'm’ +bm’ = R’ (b is not rescaled). Choosing m’ = s*m we obtain z+ 2 = 3z = y. Choosing

x=1we get z=1/2 and y = 3/2. Thus we obtain

m(t',h) = s"?m(t,h) or m(t,h) = s m(st, s3*h) . (242)
This gives
t b .
Gur(t,h) =V {§[m(t, h))? + Z—l[m(zs, h)* — hmlt, h]} — 572G yp(st, s°%h) . (243)
Since s is arbitrary, we can choose s = 1/|t|, which then gives
GMF(ta h) 2 h
—= =t . 244
e (244

Here g+(z) = Gyp(£l,2)/V.

2. Scaling hypothesis (Widom, 1966)

Near the critical point there is a scaling relation

G(t,h) | 9w h

G s (s ) (245
Equivalently

G(t,h) = s*72G(st, s°h) . (246)
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This scaling relation can be used to derive the critical exponents. So, for the order parameter

1 (0G won, [ h
— (&) = —ppe ) 24
m=y (%) 4 gi(mA) (247)

Since at h = 0 and ¢ # 0 the function G is regular, we have ¢/, (z — 0) — const.. We obtain,

at h = 0 we obtain

thus, the first critical exponent

B=2—a—-A. (248)

For t = 0 we can use directly (246). The function G(t, h) is finite at ¢ = 0. Thus we have

G(0,h) = s*72G(0,5°h) . (249)
We can choose s = h~'/2. Then
G(0,h) = K3 G(0,1) . (250)
Differentiating we obtain
m e~ hTET (251)

and we obtain the second critical exponent

A A
0= —— = — . 252
2—a—A [ (252)
Finally, for the heat capacitance at h = 0 we have
G(t,0) = s*2G(st,0) . (253)
Choosing s = 1/[t| we get G(t,0) ~ [t]*"* and
0*G
~ =T — | ~|t|>. 254
o~ -1 (55 ~1 (251)

Thus, the notation o was chosen properly.
We see that all critical exponents can be expressed as functions of only two, i.e., a and
A. Thus, they are not independent. For example, from A = 3§ we obtain f =2 —a — 3 or

_2—a

5_1+6'

(255)

The scaling hypothesis was justified using the renormalisation group (RG) technique

(Wilson 1971). The RG also allows to calculate the critical exponents.
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VI. ELEMENTS OF PHYSICAL KINETICS
A. Langevin Equation

The Brownian motion is usually described by the Langevin equation:

oU(X)

MX + M~yX
+7+8X

= &(t) . (256)

Here U(x) is the potential energy. The stochastic force £ is zero on average (£(t)) = 0 and
is delta correlated (£(t1)&(t2)) = qo(t1 — t2). Moreover £(t) is assumed to be a Gaussian

distributed random function:
p({E(D)}) oc e 2 @O (257)
We solve for U(X) = 0. Introducing the velocity, V = X, we obtain
MV + M~V =£(t) . (258)

The homogeneous equation has a solution V() = Vpe ', thus we look for a particular

solution of the inhomogeneous equation in the form V(t) = C(t)e™"". Substituting we get
MC(t)e™" = £(1) , (259)

and .

C(t) = Co + (1/M) / e (260)

The general solution reads (constant Cj included in V)

V(t) = Voe "' + (1/M) / dt'e(t")e 1) (261)

0

For the average velocity this gives
(V(t)) = Voe ™" . (262)

For the correlation function we obtain

t1 to

]_ / /
VeV (1) = Ve 4 o [ty [atfeeas) e et o)
0 0
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Using (£(¢))E(t5)) = qo(t) — t) we obtain
min(t1,t2)

(V(t)V(t2)) = Vye 7t 4 % / dt’ e=7(t=t) g=(ta=t")

[e=]

— V2€7'y(t1+t2)+ t1+t2 / dl 2’Yt’
0
_ V2 —y(t1+t2) N S 27M2 —7(t1+t2 [ 2ymin(t1,t2) ]

= V2t 4 ﬁ el —tal _ e(titta)] (264)

For tq,t > 1/ we obtain the stationary (depending only on ¢; — t3) correlation function

)V (ty)) = —lta—tel 265
V() = 5 (265)
In particular
2(1)) = —L 266
V) = 74 (266)
In equilibrium the equipartition means
M(V? 1
(Brin) = <2 ) _ 3 kpT . (267)
Thus
q=2M~kgT . (268)

This is again the classical case of the fluctuation-dissipation theorem (FDT).

Now let us investigate the coordinate:
t
X(t) = Xo +/ at'v(t') . (269)
0

We get
(X(8) — Xo)?) = / dt, / dts(V(0)V (£2)) (270)

Assuming ¢ > 1/ we can disregard all the transient terms and substitute (265), which gives

t
q —Alt1— q
<(X(t) —X0)2> - W /dt1/dt2€ Wltl t2‘ - Wt . (271)
0 0

43



We obtain diffusion, (X (t) — Xy)?) = 2Dt, where for the diffusion coefficient we obtain the

Einstein relation
. q . k BT
292 M2 T My
The quantity g = 1/(M~) is called mobility. If an external force F' is applied the Langevin

(272)

equation reads

MV + M~V = F 4+ £(t) . (273)

Averaging we get

(V) =pk . (274)

1. RCL circuits

Introduce flux in the coil ®. The voltage is given by V = & (Faraday).

> P

P — =4I .
o+ — = + T Wy (275)
Johnson-Nyquist relation
, 2kgT ,
(0I(t)oI(t) = I St —1t). (276)

2. Caldeira-Leggett model

This is a popular model describing interaction of a "heavy” particle with the bath of oscil-
lators. The "heavy” particle is characterised by the coordinate X, momentum P, and mass

M. This model is equivalent to a particle with multiple attached springs. The Hamiltonian

n (70— X)2] . (277)

reads
2

P
H= o+ UX +Z

mnw
Zmn 2

We generalize slightly

2
mnwg (:Un — X )

mpw?2

P2
H= 1+ UX Z an 5 . (278)

The original model is obtained by choosing \,, = m,w?.
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Equations of motion:

. 0H P
X =op T
OH U A
P= X 9X ;)\n (In a mnng) ’
i OH o
" Opn Mg
OH 5 An
), = — = — — X | . 2
Pn = =g = T, (xn " ) (279)

This gives

y oU A2
MX = —a—X+Z)\na:n—X;

My + M2y = A X . (280)

n

The second equation is solved by the Fourier transform. We obtain
T, (t) = / dt' o, (t — )X (') + 2o (), (281)

where
An
an(w) = = @t ) (282)

The sign of the id term is chosen to make «,, retarded, i.e., o, (7 < 0) = 0. We obtain

S Aralt) = / dtalt — ) X(#) + () | (283)
where
/\2
_ n 284
=2 ) 20
and
E(t) =Y Az () . (285)
We introduce the spectral density
T A2
J(v) = B Z mnwn5(u —wy) - (286)
This gives
2 vJ(v)



and, finally,

J >0
Ima(w) = o’ (w) = ) for w : (288)
—J(—w) for w<0
An Ohmic bath is defined by

J(w) = Myw , (289)

up to some cutoff frequency w,.. We disregard, first, Re a(w) = o/ (w) and obtain

dw -y 0
Mg 4\ —iw(t—t') _ Y
a'(t—1t") /_271'6 iMyw My—atﬁ(t t') . (290)
Thus
/dt’o/’(t — )X () = —MAX(t) . (291)

The equation of motion now reads

. oU )
MX_—a—X—MyX—in:

)\2

Mmpw2

+ / di'e/ (t — )X (t) + £(t) (292)

The second term of the RHS is the friction force due to the oscillators (resistor). The third
and the fourth terms represent the renormalisation of U(X). Our choice of coupling to the
oscillators was such that these two terms mostly cancel each other. Finally, the last term
of the RHS is the Langevin random force. We see that this is due to the free motion of the
oscillators.

Let us investigate & closer. Since
JOEDPPHTLION (293)

it is defined by the behaviour of the bath of free oscillators. Thus we consider such a
bath (equivalent to the bath of photons in a cavity) and omit the superscript ”free”. It is
much easier to calculate quantum mechanically. We consider z,,(t) as an operator in the

Heisenberg picture. We have

h
= . 294
2 =\ g (0 ) (294)
Thus in the Heisenberg picture
T,(t) = f (ay e ™! + af e™nt) . (295)
2m,wn, "
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We use the usual equilibrium density matrix of the bath

1

_ —BHpath
Pbath = &5 € .
Z

(296)

It is easy to show that (x,(t)) = Tr(x,(f)ppatn) = 0. For the correlation function we get

A . ‘

Calts, t2) = (alt)n(tz)) = 5 [e7tontt2) ((q,,)?) + entti2)((af )?) ]
myWn

bR et aly et ol )
My,

_ 5 h [e—iwn(tl—t2) (nn+1)+eiwn(t1—t2) nni| )
myWn

Thus C,,(t1,t2) = Cp(t; — t2). The occupation numbers are as usual

1

Ny = —F57— .
n eﬁhwn_l

For the Fourier transform we get

h

2mpywy,

Crn(v) 276(v — wy) (N, + 1) + 2700 (V 4wy

Finally,
Cltr — t2) = (E(0)E(2)) = Y ALCu(tr — 1) .

For the Fourier transform we obtain

Cv) = Z 2:2& 27m0(v — wy)(np(wy) + 1) + 208(v + wp)np(wy)]

= Z QZiZJn [271'(5(1/ — wn)(nB(V) + 1) + 27r5(y + Wn)nB(—l/)]

2hJ(v)(np(v)+1) for v >0
2hJ(Jv|)(np(lv])) for v <O

For v < kgT'/h we get
C(v) =~ 2M~kgT .

Thus C(t — t') = 2M~kgT 6(t — t'), as above.

B. Master equation

(297)

(298)

(299)

(300)

(301)

(302)

Consider a system with N quantum states. In general, the system is described by a

density matrix p(n,n’). Frequently it is sufficient to consider only the diagonal matrix
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elements p(n) = p(n,n). Due to a coupling to other degrees of freedom or due to external
excitation the system undergoes transitions between the states. In the Markovian limit (will
be explained later) the transitions are described by transition rates. So W(n/,n) denotes a
rate of transition from the state n’ to the state n. Then the probability to be in the state n

satisfies the following differential equation
d
Zo(n) =Y W' n)p(n') =y W(n,n)p(n) . (303)

This equation is called "master equation”. It is Markovian because dp(t)/dt depends only
on p(t), i.e., it depends on the state of the system at the same time.
If the transition processes are due to the coupling to an equilibrium reservoir (bath) then

the stationary solution of the master equation should be the equilibrium density matrix:

d
FEn and —p® =0 . (304)

dt

ploce”

These conditions are satisfied if, e.g., for each pair of states (n,n’) the following relation

holds

W(n',n)e PEn' = W(n,n)e PEn | (305)
or
W(n',n) —B(En—E, )
—_ = nT8nt) 306
W(n,n') ‘ (306)

This is a sufficient but not necessary condition. It is called the ”detailed balanced condi-
tion” (the balance is satisfied for every pair (n,n’)). If the system is driven by an external

excitation it can be in a non-equilibrium stationary state.

1. Example: random walk on a 1D lattice

The states n are in this case the particle being in a lattice cite number n. There are only

transitions one step to the right or one step to the left. Thus
W(nl, TLQ) = FL(Snl,n2+1 + FRénth,l . (307)

Assume that in the beginning the particle is on the lattice cite n = 0, i.e. p(n,t = 0) = J,.

We write down the master equation

pr (n,t) =Tgrp(n—1,t) + Trpn+1,t) — (T + Tr)p(n,t) . (308)
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This equation is very convenient to solve using the Fourier transform. Let us introduce
=Y o), (309)
n

so that

p(n,t) = / ;i—kcb(k: t) e (310)

—T

We multiply Eq. (308) with e~#*" and sum over n. This gives

%(I)(k:,t) =Trle™™ = 1D)®(k,t) + Tp(e* — 1)®(k, 1) . (311)

The initial condition reads ®(k,0) = 1. Thus the solution reads

In®(k,t) =t [Lr(e™™ — 1) + Tp(e™ —1)] (312)

It is easy to find the moments

Zn o(n,t) = i (Zf—mé(k )‘kzo. (313)
In particular
(n)=Tr—-Tr)t. (314)
(n*) — (n)* = (Cr+Tp)t . (315)
In general _
p(n,t) = /%elnq}(k’t) etk (316)

—Tr

If ¢ is large it is a good approximation to expand In ®(k,t) around & = 0. We obtain
1

Then the Fourier transform gives

p(n,t) = ! ) exp [— n—tlp—T0)] ] . (318)

27(T + TRt 2(Cr+Tp)t

We obtain a Gaussian distribution.
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2. Fokker-Planck equation, diffusion

The index n is substituted by a continuous index z (e.g., position of a particle). The

master equation reads

d

ap(x) = /dx'W(a:',x)p(w’) — /dx'W(x,x')p(:p) : (319)

Introduce £ =z — 2.

d
Gole) = [ W = eopla =) - [ deWiaz - (o) (320)
Introduce new rates W (z,&) = W(z,z + &). Then
d - -
o) = [dEW =€ 0pla~ ) ~ [ AW, ~€)pla). (321)
In the second term we can replace under the integral £ — —¢£. Thus
d - -
Gole) = [ de W= €. €)ota — )~ Wiz, ()] - (322)
Assuming the substantial transition rates exist only for small values of £ we can expand.
This gives
= [age g W o) +5 [dee o [V 0ow] +.o . 629
We define the moments
o™ (z) = / deEm W (z,€) . (324)
This gives ,
d 0 10
e pl@) = —— [aV(@)p(e)] + 5 55 [e@(@)p()] + .. (325)

Generalisation to multiple dimensions

@) = 5 [ UeDotiah)] + 5 oo o (ot +o . @)
The moments o) and ® can be presented as
1 B 1
aW(z) = A (x(t 4+ At) — x(t)) s (327)
2y _ 1 2
a?(z) = A7 ((x(t+ At) — z(t))7) i1 (328)
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If these moments are xz-independent we obtain the simplest form of the Fokker-Planck equa-

tion
dp(x) _ _0p(x) pr(@)

dt R ox?
where the drift velocity is given by © = a(!) and the diffusion constant is D = (1/2)a(?.

(329)

For example, in the 1D random walk model we introduce the lattice constant a. In one
time step At the particle makes one step right with probability ¢ or one step left with
probability 1 — ¢. Then

—all =
qm_w—all—q a

A7 = Az (2q—1)=0. (330)

2 201 _ 2
a(2):CLQ+a(1 q):a_:
At At

The Fokker-Planck equation (329) can be easily solved by Fourier transform.

2D (331)

pla) = [ ket (332)

27
dp(k
% = —(ivk + DE*)p(k) . (333)
Thus
p(k,t) = p(k,0)e (PFEPRIL (334)

For the initial condition p(z,0) = §(z) we have p(k,0) = 1. Thus
p(/f,t) _ e—(z’ﬁk-ﬁ-Dkz)t _ (335)

The inverse Fourier transform gives

1
p(‘T?t) = \/m exp {_W

(336)

3. Master equation for a two-level system coupled to a bath

We analyse the dissipative processes in two-level systems (qubits). Let us consider a

purely transverse coupling between a qubit and a bath

1 1
H= —§AE Oy — §Y Oy + Hbath s (337)

where Y is a bath operator. For example, for a bath of oscillators, as in Caldeira-Leggett

model, Y =Y A,z,. We denote the ground and excited states of the free qubit by |0) and
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|1), respectively. In the weak-noise limit we consider Y as a perturbation and apply Fermi’s
golden rule to obtain the relaxation rate, I') = I';1y_0), and excitation rate, I'y = I'jg_1).
For the relaxation the initial state is actually given by |1) |i), where |¢) is some state of the
environment. This state is not known, but we assume, that the environment is in thermal
equilibrium. Thus the probability to have state |i) is given by p; = Z7te 5 (Hypam i) =
E;|i)). The final state is given by |0) | f), where |f) is the state of the environment after the
transition. To obtain the relaxation rate of the qubit we have to sum over all possible |i)

states (with probabilities p;) and over all |f). Thus, for I'| we obtain

r, = sz | (1] Y0x10>|f>\2 0(E; + AE — Ey)

2m 1
= > —sz i|Y|f)[? 6(E; + AE — Ey)

2 )
B : Z’O’ |Y|f <f’Y|> /dt ci (BitAE—Ey)

h o4
- 5 /dt Zpl YOV i) e
1 1,
=2 Cy(w=AFE/h) = e (Yo_ap/m) - (338)
Here we have defined the correlation function (correlator) Cy(t) = Tr(prY (t)Y) and its
Fourier trasform (Y;?) = Cy (w) = [ dt Cy(t) ™. Similarly, we obtain
= Oyl = —AB/) = T (2 ) (339)

How is this all related to the relaxation time of the diagonal elements of the density

matrix (77)?. To understand this we write down the master equation for the probabilities
Po = poo and p1 = pi1:

po = —I4po + 1T ;m

pr = —Typr+Typo . (340)

We observe that the total probability pg + p; is conserved and should be equal 1. Then for

po we obtain

po=—(4+Typo + T4, (341)
which gives
Fi Fi _
t) = + [ po(0) = =—— ) e~ Tt 342
Po(t) T +1, (po( ) FT"‘R) (342)



and pi(t) = 1 — po(t).
For the relaxation time we thus find
L= L s w=AE/M (343)
il _ W =

and for the equilibrium magnetization

o F\L—F¢ . Ay(w = AE/h)

(0.) =00 = Po(t = 00) — py(t = 00) = T, T~ Sy(w = AE/R) (344)

where we have introduced symmetrized correlator, Sy (w) = 3(Cy(w) + Cy(—w)), and the

the antisymmetrized correlator Ay (w) = 3(Cy (w) — Cy (—w)).

4. Fluctuation Dissipation Theorem (FDT)

Are Cy(w) and Cy(—w) related? In other words, what is the relation between the sym-
metrized correlation function Sy (w) and the anti-symmetrized one Ay (w)? We use the
spectral decomposition in the eigenbasis of the Hamiltonian of the environment Hyup [n) =

En |n):
Crlt) = TrlpsY () = 5 3™ (Y (Y o
= I Gl Y () ) (] Y o) = o S eI (] ) 2 (345)
Thus
Crlw) = [ Oy (B = 23 PP (] Y ) P2mbo = (B~ E)) . (310
For Cy(—w) we obtain
Cr(-) = 7 e (Y o) 200w = (B~ F2)
-~ Sl Y ) 2000 — (5, )
- 32 ¥ ) 258 — (B — E2)
- 3o B Y )P 2700 — (B — E2)

= e—ﬁ‘; Cy(w) . (347)
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The relation Cy(—w) = e #Cy(w) is the fully quantum version of the Fluctuation-
Dissipation-Theorem. A simple algebra then gives Sy (w) = coth (%‘") Ay (w). Thus we
obtain the detailed balance relation as introduced above (see Eq. 306)

r
L = PAE (348)
Iy

We also observe that the probabilities py(t = o00) = % and pi(t = 00) =1 —po(t = 00)

are the equilibrium ones. Finally,

<0_z>t:oo =

C. Linear response theory

Consider a system described by a Hamiltonian Hy. The system is perturbed by an external
time-dependent force, so that the full Hamiltonian reads H = Hy + V(). The perturbation
Hamiltonian reads V(t) = —f(¢)B. Here f(t) is the time-dependent parameter (force)
and B is an observable of the system. Clearly f(¢) is a real function of time, while B is
a Hermitian operator. We want to know how the expectation value of another system’s
operator A responds to the perturbation. That is we expect that without the perturbation
(in equilibrium) (A) = Ag, whereas with the perturbation (A) = Ay + 0A(t). Without
the perturbation the system is in equilibrium, i.e., it is described by the equilibrium density
matrix pg and, thus, Ag = Tr(Apg). Due to the perturbation either the density matrix of the
system changes (Schrédinger picture) or the operator A acquires an extra time dependence

(Heisenberg representation).
(A) = Tr(Aps(t)) = Tr(An(t)po) (350)

(A = Ag is the operator in the Schrodinger picture). We can now go to the interaction
picture, in which

(A4) = Te(Ar(t)pr (1)) - (351)
Here A;(t) = efot/h Ae=Hot/h i e the Heisenberg operator with respect to Hy. On the
other hand

pi(t) = Ur(t) po U (1) , (352)
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where

—(i/h [ dr Vi(r
Uy(t) = [Te Gm arvit )] | (353)
Thus we obtain
(A) = Tr(A(t) Us(t) po UL (1)) = Te(UJ () Ar(t) Us(t) po) - (354)
In other words
Ap(t) = US(t) As(t) Ur(t) . (355)
Expanding up to the first order in the perturbation we obtain
. t
7
Au(®) = 41(0) ~ . [ dr [4:(0), Vi(r)
0
. t
7
= 40~ 5 [ dr A0, Bil)] 7). (356)
0
Finally, this gives
t
i
(A) = Ao+ ﬁ/ dr ([As(t), Bi(m)])o f(7) (357)
0
where (...)o = Tr(po...). Taking the initial time ¢y = 0 to ty = —oo we get
s = [ atnt) i) (358)
where the linear response susceptibility is defined as
/ Il / /
x(t,1) = = ([Ar(t), Bi(t)])o O(t — ') . (359)

h
Since A; and By are essentially the Heisenberg operators with respect to Hy, one can write

X1, t) = 1 (AW, BE) o0l — ) (360)

We see that the linear response is determined exclusively by the equilibrium correlation

function ([A(t), B(t')])o.

1. Linear response and FDT

Frequently one is interested in the case when A = B. For example, for magnetic suscep-

tibility f(¢) oc H(t) (magnetic field), whereas A = B = M (magnetisation). The same is for
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the polarisability (dielectric response). In this case f(t) o ¢(r,r) (scalar potential), whereas

A = B = p(r,t) (electronic density). Thus

1

X(8:1) = 2 ([A(t), AT Ot — 1) . (361)

This susceptibility is related to the correlation function
Ca(t,t') = Ca(t —t') = (A(t)A(t))o - (362)

Once again, A(t) is the Heisenberg operator with respect to Hy and (...)g = Tr(pg...) is

the averaging in the equilibrium state. We obtain
Tix(t,t") = hx(t —t") =0t —t") [Ca(t — ") — Ca(t' —1)] . (363)
Using the notations introduces around Sec. VIB 4 we write
hx(r) = i0(7) [Ca(7) = Ca(7)] = 2i6(7) Aa(T) (364)

where A4(7) is the anti-symmetrised correlator introduced in Sec. VIB4. For a Hermitian
operator A, A4(7) is purely imaginary and y(7) is real. We now perform the Fourier

transform:

o0

hx(w) = /de(T)e“” :22'/ dr Ay(1)e™ "

0
00

d ) )
— Qi/ dr éAA(V)e*WTeWT*‘;T

0

_ @ AA<V)

TV—w—10

(365)

Since A4(v) is real (a Fourier transform of a purely imaginary anti-symmetric function) we

obtain y(w) = x'(w) + ix"(w), where
hx"(w) = Aa(w) . (366)

Finally, the FDT in this case gives for the symmetrised correlator

Bhw

Sa(w) = Aa(w) coth (T) = hy/(w) coth (@) . (367)

This is the ultimate relation between fluctuations S4(w) and dissipation x”(w).
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D. Boltzmann equation

This is a famous kinetic equation describing relaxation and transport in gases. One
considers the quantity f(r,p,t). This is proportional to the average number of particles
having the coordinate r and the momentum p (we have to do it quasi-classically, otherwise
one could not define sharp values for r and p simultaneously. More precisely

1

W fr,p, ) ArtAp? (368)

is the number of particles in the phase space volume element Ar?Ap?. The particles satisfy

the equation of motion

ar Lo

E = U(@ y U= p/m ) (369)
i -
T-F. (370)

Here F is the external force (it can be r and even p dependent, e..g, Lorentz force). If these

equations of motion would provide the full description we would have

f(r(t),p(t), t) = f(r(to), p(to), to) , (371)

or equivalently the vanishing of the full ¢-derivative:

df
= =0. (372)

This is equivalent to the Liouville theorem about the conservation of the phase volume. This
would give

() S+ F70) G =

Collisions between the partlcles lead to transitions into and from the volume element of

af 0. (373)

the phase space. The equation is then modified as

af of

(3—+F( pit) 5o =141, (374)

where the functional I[f] is called the collision integral. We will not derive or specify I[f] but
just mention that in many cases it can be reduced to a very simple form I[f] = —(f — fo)/T,
where fj is the equilibrium distribution and 7 is the relaxation time.

Boltzmann has proven the so called H-theorem. He has introduced a quantity of the type

entropy
H(t) = — [ 'ty f(r.p.1) W0 (11 (375)
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Further, Boltzmann has shown that the entropy does not decrease, i.e.,

dH
>

— 20, (376)

Moreover, if there are no collisions, i.e., I[f] = 0, then dH/dt = 0. Historically, this was the

starting point of the modern statistical physics.
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