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1. The Green’s functions G<
l (t− t′) and G>

l (t− t′) (30 Points)

In the lecture you encountered the retarded, advanced and causal Green’s functions
Gr, Ga, Gc. Here we will introduce two further Green’s functions that will be useful in
the second problem below.
We restrict ourselves to fermions and assume that the Hamiltonian of the problem
respects homogeneity in time. The two new Green’s functions are defined as

G>
α,β(t− t′) ≡ −i〈cα(t)c†β(t′)〉 = −iZ−1tr

[
e−βHcα(t)c†β(t′)

]
G<
α,β(t− t′) ≡ i〈c†β(t′)cα(t)〉 = iZ−1tr

[
e−βHc†β(t′)cα(t)

]
,

where cα(t) and c†β(t) are respectively fermionic annihilation and creation operators in
the Heisenberg picture.This defines the so-called greater and lesser Green’s functions.
By carrying out the trace in the exact eigenbasis of the Hamiltonian, prove that in
frequency space G< and G> are related to the retarded Green’s function Gr via the
relations

G>
l (ω) = 2i(1− nF (ω))Im [Gr

l (ω)]

G<
l (ω) = −2inF (ω)Im [Gr

l (ω)] ,

where l labels a complete set of quantum states, G>
l (t−t′) = −i〈cl(t)c†l (t′)〉 and nF (ω) =

(1 + eβω)−1 is the Fermi function. Recalling that Jl(ω) = −2nF (ω)ImGr
l (ω), it is clear

that these relations connect the spectral function Jl(ω) to G<
l (ω) and G>

l (ω).

2. Differential conductance (5 + 15 + 30 + 20 Points)

In this problem we study how the spectral function J(ω), that was introduced in the
lectures, can be related to differential conductance measurements. Consider the setup
shown in the figure. We have two metallic conductors 1 and 2 that are in close proximity
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to each other, seperated by an insulating material (black). Upon bringing the systems to
different electrostatic potentials, V1 and V2, an electric current will flow between the two
conductors. This happens by a process where electrons tunnel between systems 1 and
2. The Hamiltonian of the combined system is given by three parts H = H1 +H2 +HT .
The first two terms characterize the two metals, whereas the third term describes the



tunneling process. The quantum states in the two metallic systems are well-described by
a non-interacting theory, thus we write Hi =

∑
l(εi,l + eVi)c

†
i,lci,l, where l are the labels

of the conductors’ single-particle states, Vi is the electrostatic potential on conductor i,
i = 1, 2. Also c†i,l and ci,l are fermionic creation/annihilation operators for system i and
state l. The coupling between the two systems is described by the tunneling Hamiltonian

HT =
∑
l,m

[
Tl,mc

†
1,lc2,m + T ∗m,lc

†
2,mc1,l

]
.

In the following we want to calculate the tunneling current I that flows between the
two conductors as a result of the potential difference V = V2 − V1. Then we will relate
the so-called differential conductance dI

dV
to the spectral function J(ω).

(a) Check that the total Hamiltonian H is Hermitian. Why is this important? (1 pt.)

(b) The current between the conductors can be calculated as the rate of change of the
number of occupied states of either conductor. The total number of occupied states
of system 1 is N1(t) =

∑
l c
†
1,l(t)c1,l(t), where we work in the Heisenberg picture.

Using the Heisenberg equation of motion, show that

I ≡ d

dt
N1(t) = −i

∑
l,m

[
Tl,mc

†
1,lc2,m − T

∗
m,lc

†
2,mc1,l

]
and interpret the two terms. (3 pts.)

(c) We are interested in the thermal average of this operator, i.e. 〈I(t)〉. We will assume
that the tunneling barrier between the metals is so high that the Tl,m can all be
considered small. In this case the Kubo formula, that was derived in the lectures,
can be applied with HT being the perturbation. The Kubo formula in this case
reads

〈I(t)〉 = −i
∞∫

−∞

dt′θ(t− t′)〈[I(t), HT (t′)]〉0,

where all operators are expressed in the Heisenberg picture with H1 +H2 as Hamil-
tonian.
Insert the expressions for I and HT into this formula and obtain

〈I(t)〉 = 2Re

∞∫
−∞

dt′′θ(−t′′)
∑
lm

|Tlm|2eieV t
′′ [
G>

1,l(−t′′)G<
2,m(t′′)−G<

1,l(−t′′)G>
2,m(t′′)

]
,

where G>
i,m(t) = −i〈ci,m(t)c†i,m(0)〉 etc. You will need to use the so called Wick

theorem, which says that mean values of four, or more creators and annihilators
can be written in terms products of mean values of two operators. For our purposes
you will need to use the identities (special case!)〈

c†2,m (t) c1,l (t) c
†
1,j (t′) c2,k (t′)

〉
0

=
〈
c†2,m (t) c2,k (t′)

〉
0

〈
c1,l (t) c

†
1,j (t′)

〉
0〈

c†1,j (t′) c2,k (t′) c†2,m (t) c1,l (t)
〉
0

=
〈
c†1,j (t′) c1,l (t)

〉
0

〈
c2,k (t′) c†2,m (t)

〉
0
.



Transform 〈I(t)〉 to frequency space and use the relation derived in problem 1 to

replace the Green’s functions by J
(i)
l (ω), where i refers to system 1 or 2. Obtain the

formula

〈I(t)〉 =

∞∫
−∞

dω

2π

∑
l,m

|Tl,m|2
J
(1)
l (ω)

nF (ω)

J
(2)
m (ω + eV )

nF (ω + eV )
[nF (ω + eV )− nF (ω)]

as the final result. (5 pts.)

(d) Finally we come to the conductance dI
dV

. Let us assume that system 2 has a constant

density of states. In this case J
(2)
m (ω+eV )
nF (ω+eV )

does not vary much with V . In carrying out
the derivative with respect to V we can treat this factor as a constant. Also ignore
the l dependence of

∑
m |Tl,m|2. Argue that at low temperatures the relation

dI

dV
∝
∑
l

J
(1)
l (−eV )

holds. (3 pts.)

Thus by measuring dI/dV for varying V the spectral function of system 1 can be
determined.


