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This course is concerned with phenomena in quantum condensed matter systems that can be most effi-
ciently analyzed and solved using quantum field theoretical methods. To this end we first physically motivate,
introduce, and investigate retarded Green’s functions. Next we will introduce the Feynman-diagram technique
of thermal Green’s functions and apply these techniques to problems such as itinerant ferromagnetism, super-
conductivity, and dynamical screening of the Coulomb interaction. Finally we will discuss the non-equilibrium
version of many-body theory by using the Schwinger-Keldysh approach. As example, we investigate quantum
transport of graphene. Thus, the course is concerned with learning techniques and applying them to solve
given many-body problems.

In case of the screening of the Coulomb interaction, we consider for example the Hamiltonian of non-
relativistic electrons (no spin-orbit interaction) in a crystalline potential U (r) and with electron-electron
interaction V (r− r′):

H =

ˆ
ddr
∑
α

ψ†α (r)

(
−~2∇2

2m
− µ+ U (r)

)
ψα (r)

=
1

2

∑
αβ

ˆ
ddrddr′ψ†α (r)ψ†β (r′)V (r− r′)ψβ (r′)ψα (r) . (1)

Here ψα (r) is the fermionic field operator that annihilates an electron with spin α at position r, obeying
standard fermionic anti-commutation relation[

ψα (r) , ψ†β (r′)
]
+

= δαβδ (r− r′) . (2)

If we include a similar Hamiltonian for the motion of the nuclei, along with the electron-nucleus Coulomb
interaction, we pretty much have a complete description of a solid within the non-relativistic limit. Thus, it is
possible to fully define the standard model of condensed matter physics in the introductory lines of a lecture.
One might then be tempted to conclude that this area of physics must be conceptually pretty trivial. All that
seems to be left to do is to solve for the eigenstates and eigenvalues of H, a task that one leaves to a gifted
programmer or a clever mathematician. However, except for small systems or systems with a large number
of conserved quantities, these many-body systems simply cannot be solved exactly. We need to find ways
to analyze such an Hamiltonian, or a simplified version of it, that allow to make as rigorous a statement as
possible. In fact, the beauty of condensed matter theory is to make predictions about new states of matter and
universal behavior that are emergent, i.e. that are not obvious if one looks at the initial degrees of freedom of
the Hamiltonian. If nothing else, these considerations reveal that simply writing down a fundamental theory,
doesn’t yield a whole lot of insight that goes beyond the understanding of what the elementary building blocks
of this theory are. Emergent phenomena, such as spontaneous symmetry breaking, composite particles, new
topological states of matter etc. etc. require a detailed analysis that is primarily guided by experiment,
synnetry arguments and, of course, by good physical intuition. This is the same, regardless of whether we
talk about the physics of a piece of metal, a neutron star, or the universe as a whole.
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Chapter 1

Linear response

We consider a system that is, at least initially, in thermodynamic equilibrium. The expectation value of a
physical observable is then given by

〈A〉 = tr (ρA) , (1.1)

with density operator (often called density matrix)

ρ =
1

Z
e−βH . (1.2)

Z = tre−βH is the partition function and β = 1
kBT

the inverse temperature. In what follows we will use
a system of units where kB = 1, i.e. we measure temperatures in energy units. The generalization to the
grand canonical ensemble with chemical potential µ is straightforward. The density operator is then given
as ρeq = 1

Zg
e−β(H−µN), where N is the particle number operator. As we will mostly use the grand canonical

ensemble, we will often call H − µN the Hamiltonian and continue to use the letter H. Determining such an
expectation value is a formidable task in many body theory and we will do this during this course.

A scenario that occurs very frequently and that offers significant insight into the inner workings of a
complex condensed matter systems is based on the measurement of an observable that follows some external
perturbation. Such an approach yields dynamical information, in fact it even allows to theoretically study
the stability of a state of matter with regards to a spontaneous symmetry breaking. To this end we consider
a system coupled to an external field that is characterized by the interaction part of the Hamiltonian W (t),
i.e. the Hamiltonian

Htot = H +W (t) (1.3)

consists of the Hamiltonian H that describes our system in isolation and the external time-dependent pertur-
bation W (t).

A specific example for W (t) is the coupling

W (t) = −µB
∑
i

Si ·B (t) (1.4)

of an external magnetic field to the electron spins

Si =
~
2

∑
αβ

c†iασαβciβ (1.5)

of a magnetic system. Another example is the interaction

W (t) = −
∑
i

Pi · E (t) (1.6)

between the electrical polarization
Pi = e

∑
α

c†iαRiciα (1.7)
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CHAPTER 1. LINEAR RESPONSE 5

of electrons at lattice sites i and an external electrical field.
As for the time dependence of W (t), we have in mind a scenario where the system is not affected by the

perturbation in the infinite past, i.e. W (t→ −∞)→ 0. A convenient way to realize this is via

E (t) = lim
δ→0+

E0 exp (−i (ω + iδ) t)

B (t) = lim
δ→0+

B0 exp (−i (ω + iδ) t) , (1.8)

i.e. we include an infinitesimal positive imaginary part to the frequency of an oscillatory time dependence.
In the case of a more general time dependence we would write

W (t) = lim
δ→0+

ˆ ∞
−∞

dω

2π
W (ω) e−i(ω+iδ)t. (1.9)

Next we consider the time evolution of the observable that follows as a consequence of the applied external
perturbation

〈A〉t = tr (ρ (t) A), (1.10)

where the density matrix obeys the von Neuman equation

i~
∂

∂t
ρ (t) = [H +W (t) , ρ (t)] . (1.11)

Note, in case of ρ (t) and W (t) we are analyzing the time dependence of operators that are in the Schrödinger
picture. As a reminder, the von Neuman equation follows for an arbitrary density matrix ρ (t) =

∑
i |Ψtot,i (t)〉 pi 〈Ψtot,i (t)|

from the Schrödinger equation of the many body wave function |Ψtot,i (t)〉 with Hamiltonian Htot. The dy-
namics of observables is then a consequence of the time dependence of the density matrix. This is indicated
by the subscript t of 〈A〉t.

As discussed, the perturbation is absent in the infinite past and we assume the system was in equilibrium
for t→ −∞:

ρ (t→ −∞) = ρ =
1

Z
e−βH . (1.12)

In most cases the external perturbation is small and we can confine ourselves to changes in 〈A〉t that are
linear in W (t). This regime is referred to as linear response. The subsequent formalism can be (and has
been) extended to include higher order non-linearities. Here we will, however, only consider the leading order,
linear effects.

To proceed we go to the interaction representation

ρ (t) = e−iHt/~ρ(I) (t) eiHt/~. (1.13)

Note, ρ(I) (t) corresponds to the interaction picture of the Hamiltonian Htot. The Hamiltonian of our system
of interest is of course H (W (t) is only used to probe this system). If considered with regards to H, ρ(I) (t)
corresponds to the Heisenberg picture. This is the reason why we will below state that operators are taken
in the Heisenberg picture.

Performing the time derivative gives

i~
∂ρ (t)

∂t
= [H, ρ (t)] + e−iHt/~i~

∂ρ(I) (t)

∂t
eiHt/~. (1.14)

Inserting the von Neuman equation yields

i~
∂ρ(I) (t)

∂t
=
[
W (I) (t) , ρ(I) (t)

]
, (1.15)

which is formally solved by (better, its solution is equivalent to the solution of)

ρ(I) (t) = ρ− i

~

ˆ t

−∞
dt′
[
W (I) (t′) , ρ(I) (t′)

]
. (1.16)
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If we return to the Schrödinger picture, it follows

ρ (t) = ρ− i

~

ˆ t

−∞
dt′e−iH(t−t′)/~ [W (t′) , ρ (t′)] eiH(t−t′)/~. (1.17)

One can now generate a systematic expansion with regards to W (t) if one solves this integral equation via
recursion. At zeroth order holds of course ρ (t) = ρ = e−βH

Z
. At first order we can insert this zeroth order

solution in the right hand side and obtain

ρ (t) = ρ− i

~

ˆ t

−∞
dt′e−iH(t−t′)/~ [W (t) , ρ] eiH(t−t′)/~. (1.18)

We can now determine the expectation value of A:

〈A〉t = 〈A〉 − i

~

ˆ t

−∞
dt′tr

([
W(I) (t′) , ρ

]
A(I) (t)

)
. (1.19)

One can cyclically change the order under the trace operation:

tr [(Wρ− ρW) A] = tr [(AW −WA) ρ], (1.20)

which gives

〈A〉t = 〈A〉 − i

~

ˆ t

−∞
dt′
〈[
A(I) (t) ,W (I) (t′)

]〉
. (1.21)

It is useful to introduce (the retarded Green’s function)〈〈
A(I) (t) ;B(I) (t′)

〉〉
= − i

~
θ (t− t′)

〈[
A(I) (t) , B(I) (t′)

]〉
(1.22)

such that

〈A〉t = 〈A〉+

ˆ ∞
−∞

dt′
〈〈
A(I) (t) ;W (I) (t′)

〉〉
. (1.23)

These considerations demonstrate that the linear response of a physical system is characterized by retarded
Green’s functions. The interesting result is that we can characterize the deviation from equilibrium (e.g.
dissipation in case of the electrical conductivity) in terms of fluctuations of the equilibrium (equilibrium
correlation functions). Among others, this will lead us to the fluctuation-dissipation theorem. It offers a
compact and unifying approach to study the response of a system with regards to an arbitrary external
perturbation.

Example, conductivity: as discussed, we have an interaction between the electrical field and the electrical
polarization:

W (I) (t) = −
∑
i

P
(I)
i · E (t) . (1.24)

with (we will frequently not write down explicitly the limit δ → 0+)

E (t) = E0 exp
(
−i
(
ω + i0+

)
t
)
. (1.25)

If we are interested in the electrical current it follows

〈jα〉t = −
∑
i

ˆ ∞
−∞

dt′
〈〈
j(I)α (t) ;P

(I)
β,i (t′)

〉〉
E0,βe

−i(ω+iδ)t′ (1.26)

Before we give further examples and discuss the physical implications of our linear response analysis, we will
therefore discuss in some detail the mathematical properties of such functions.



CHAPTER 1. LINEAR RESPONSE 7

1.1 Properties of retarded and advanced Green’s functions
We learned that the linear response of a physical system that is initially in equilibrium can be formulated in
terms of retarded Green’s functions:

Gr
A,B (t, t′) = 〈〈A (t) ;B (t′)〉〉r

≡ −iθ (t− t′)
〈

[A (t) , B (t′)]η

〉
. (1.27)

To simplify our notation we will from now on use a convention where ~ = 1, i.e. frequencies and energies are
measured in the same units. We further dropped the superscript (I) for the interaction representation. Keep
in mind, that it is the Heisenberg picture if we refer to the Hamiltonian H of the system we are interested in:

A (t) = eiHtAe−iHt. (1.28)

Finally, we introduce
[A,B]η = AB + ηBA (1.29)

to simultaneously analyze the commutator for η = −1 and the anti-commutator for η = +1. We will see very
soon that the generalization to anti-commutators is sometimes a very sensible thing to do if one considers
fermions.

The prefactor θ (t− t′) emerged as a natural consequence of causality. The response of the quantity 〈A〉t
was only influenced by W (t′) for t′ < t. It is however possible, at least formally, to introduce other Green’s
functions. Important examples are advanced Green’s functions:

Ga
A,B (t, t′) = 〈〈A (t) ;B (t′)〉〉r

≡ iθ (t′ − t)
〈

[A (t) , B (t′)]η

〉
(1.30)

and the time-ordered (sometimes called causal) Green’s functions:

Gc
A,B (t, t′) = 〈〈A (t) ;B (t′)〉〉c

≡ −i 〈TηA (t)B (t′)〉 , (1.31)

with time ordering operator

TηA (t)B (t′) = θ (t− t′)A (t)B (t′)− ηθ (t′ − t)B (t′)A (t) . (1.32)

Because of our insight that retarded Green’s functions determine the linear response, we predominantly
investigate this function. The advanced and time-ordered functions can be easily analyzed along the same lines.
In fact knowing one of these functions allows to determine the others. They contain the same information.

1.1.1 Homogeneity of time

An important property of all of those Green’s functions is that they are only functions of the difference t− t′.
To demonstrate that this is the case we start from the definition:

Gr
A,B (t, t′) = −iθ (t− t′)

〈
[A (t) , B (t′)]η

〉
= −iθ (t− t′) (〈A (t)B (t′)〉+ η 〈B (t′)A (t)〉) (1.33)

The correlation functions are explicitly given as

〈A (t)B (t′)〉 =
1

Z
tr
(
e−βHeiHtAe−iHteiHt

′
Be−iHt

′
)

=
1

Z
tr
(
e−βHeiH(t−t′)Ae−iH(t−t′)B

)
= 〈A (t− t′)B (0)〉 (1.34)
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and similar for 〈B (t′)A (t)〉 = 〈B (0)A (t− t′)〉. Thus, it follows

Gr
A,B (t, t′) = Gr

A,B (t− t′) . (1.35)

The reason why we could demonstrate this behavior is that the thermal average, with Boltzmann weight
e−βH and the unitary time evolution, with e−iHt commute. They are both governed by the same Hamiltonian.
Physically it corresponds to the fact that there is no preferred absolute time in a system that is in equilibrium.
An implication is that any stationary distribution function, even those that are not in equilibrium but that
yield states without preferred time point must have a density matrix ρ = ρ (H,Xi) that only depends on the
Hamiltonian and maybe on other conserved quantities Xi of the system with [H,Xi] = 0.

1.1.2 Equation of motion

The fundamental equation of motion of quantum mechanics is the Schrödinger equation. For operators that
are not explicitly time dependent in the Schrödinger picture, the Schrödinger equation is equivalent to the
Heisenberg equation1:

i∂tA (t) = [A (t) , H]− . (1.36)

This enables us to determine the equation of motion that follows from the Schrödinger equation.
We start from

i∂tG
r
A,B (t) = ∂t

{
θ (t)

〈
[A (t) , B (0)]η

〉}
= δ (t)

〈
[A,B]η

〉
+ θ (t)

〈
[∂tA (t) , B (0)]η

〉
= δ (t)

〈
[A,B]η

〉
− iθ (t)

〈[
[A (t) , H]− , B (0)

]
η

〉
, (1.37)

where t now refers to the relative time. The last expression can itself be written as a retarded Green’s function

Gr
[A,H]−,B

(t) =
〈〈

[A (t) , H]− ;B (t′)
〉〉r

= −iθ (t)
〈[

[A (t) , H]− , B (0)
]
η

〉
and we obtain the equation of motion for retarded Green’s functions.

i∂tG
r
A,B (t) = δ (t)

〈
[A,B]η

〉
+Gr

[A,H]−,B
(t) . (1.38)

Thus, in order to determine one Green’s function one needs to know another one. We will see that in case of
non-interacting systems the newly generated Green’s functions can be expressed in terms of the initial one,
which allows, at least in principle, for a full solution. On the other hand, for a generic interacting many body
system a closed solution only exists if one analyzes conserved quantities with [A,H]− = 0 or at least densities
of conserved quantities. These aspects will all be discussed in greater detail below.

Because of Eq.(1.35) follows that we can Fourier transform the Green’s function

Gr
AB (ω) =

ˆ ∞
−∞

dtGr
AB (t) eiωt. (1.39)

The equation of motion for the Fourier transforms are then easily obtained as

ωGr
A,B (ω) =

〈
[A,B]η

〉
+Gr

[A,H]−,B
(ω) . (1.40)

It is now only an algebraic equation.
If one repeats the same analysis for the advanced and time-ordered Green’s functions, one finds identical

expressions as in Eqs.(1.38) and (1.40). On the other hand, the detailed time dependence of Gr (t), Ga (t), and
1Recall, that we use a system of units with ~ = 1.
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Gc (t) is obviously very different. From the definition of these quantities follows for example that Gr (t < 0) =
0, while Ga (t > 0) = 0. Thus, if one wants to determine the correct solution of the equation of motion
one must incorporate those boundary conditions appropriately. This implies that the Fourier transform in
Eq.(1.39) has to be performed with some care. To address these issues we will next analyze the analytic
properties of Green’s functions in some detail.

1.1.3 Lehmann representation

In what follows we determine a rigorous representation of Gr
AB (ω) that reveals a lot about the analytic

structure of Green’s functions. Let {|l〉} be the exact eigenfunctions of the Hamiltonian with eigenvalues
{El}, i.e.

H |l〉 = El |l〉 . (1.41)

Then, we can write a thermal expectation value as

〈A〉 = tr (ρA) =
1

Z

∑
l

e−βEl 〈l |A| l〉 . (1.42)

For a correlation function follows accordingly

〈A (t)B (0)〉 =
1

Z

∑
l

e−βEl 〈l |A (t)B (0)| l〉

=
1

Z

∑
l

e−βEl
〈
l
∣∣eiHtAe−iHtB∣∣ l〉

=
1

Z

∑
l.m

e−βEleit(El−Em) 〈l |A|m〉 〈m |B| l〉 (1.43)

The same analysis can be performed for 〈B (0)A (t)〉 and yields

〈B (0)A (t)〉 =
1

Z

∑
l.m

e−βEle−it(El−Em) 〈l |B|m〉 〈m |A| l〉

=
1

Z

∑
l.m

e−βEmeit(El−Em) 〈l |A|m〉 〈m |B| l〉 (1.44)

In order to analyze the frequency dependence of the Fourier transform of the Green’s function we first
consider the Fourier transform of the correlation functions

〈B (0)A (t)〉 =

ˆ ∞
−∞

dω

2π
J (ω) e−iωt. (1.45)

For the inverse transform J (ω), which we also call the spectral function, follows

J (ω) =

ˆ ∞
−∞

dteiωt 〈B (0)A (t)〉

=
1

Z

∑
l.m

e−βEm 〈l |A|m〉 〈m |B| l〉
ˆ ∞
−∞

dteit(ω+El−Em). (1.46)

We use
´∞
−∞ dte

itω = 2πδ (ω) and obtain:

J (ω) =
2π

Z

∑
l.m

e−βEm 〈l |A|m〉 〈m |B| l〉 δ (ω + El − Em) . (1.47)
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At T = 0 this expression simplifies further. Let us consider a singly degenerate ground state with energy E0.
Then follows ZT→0 = e−βE0 . Similarly, in the sum over m only the ground state contributes and we obtain

JT=0 (ω) = 2π
∑
l

〈0 |B| l〉 〈l |A| 0〉 δ (ω + El − E0) . (1.48)

Notice that in case where B = A† follows 〈l |A|m〉 〈m |B| l〉 = |〈l |A|m〉|2 ≥ 0. Thus, the spectral function
is for all T real and positive definite: J (ω) ≥ 0. With our above results for the two correlation functions
follows immediately

〈A (t)B (0)〉 =

ˆ ∞
−∞

dω

2π
eβωJ (ω) e−iωt. (1.49)

We use these results to write for our Green’s function

Gr
AB (ω) = −i

ˆ ∞
−∞

dteiωtθ (t) (〈A (t)B〉+ η 〈BA (t)〉)

= −i
ˆ ∞
−∞

dω′

2π

(
eβω

′
+ η
)
J (ω′)

ˆ ∞
−∞

dtei(ω−ω
′)tθ (t) (1.50)

To proceed we need to analyze the integral

f (ω) =

ˆ ∞
−∞

dteiωtθ (t)

=

ˆ ∞
0

dteiωt

= lim
δ→0+

ˆ ∞
0

dtei(ω+iδ)t

=
i

ω + i0+
. (1.51)

To insert the converging factor seems a bit arbitrary. To check that this is indeed the right thing to do, let
us perform the inverse transform

F (t) =

ˆ ∞
−∞

dω

2π

ie−iωt

ω + i0+
. (1.52)

We want to evaluate this integral using the residue theorem. For t > 0 we can close the contour in the lower
half plane, i.e. the contour encircles the pole at ω = −i0+. The residue of the pole is 1 (because of the sense
of orientation of the contour). For t < 0 we have to close the contour in the upper half plane. As there is
no pole in this half plane, the integral vanishes. Thus, we obtain F (t) = θ (t) as expected. This analysis
also reveals that causality, expressed in terms of the θ-function, implies that we should consider frequencies
ω + i0+ with a small positive imaginary part.

It follows for the Green’s function

Gr
AB (ω) =

ˆ ∞
−∞

dω′

2π

(
eβω

′
+ η
)
J (ω′)

ω − ω′ + i0+
. (1.53)

Inserting the spectral function yields the so called Lehmann representation:

Gr
AB (ω) =

1

Z

∑
l.m

(
e−βEl + ηe−βEm

)
〈l |A|m〉 〈m |B| l〉

ω + El − Em + i0+
(1.54)

which reveals that a retarded Green’s function, once considered with complex frequency argument ω, is
analytic everywhere, except infinitesimally below the real axis. In fact one can consider the function

GAB (z) =
1

Z

∑
l.m

(
e−βEl + ηe−βEm

)
〈l |A|m〉 〈m |B| l〉

z + El − Em
, (1.55)
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with complex argument z and the retarded function is given by

Gr
AB (ω) = GAB

(
ω + i0+

)
. (1.56)

Repeating our analysis for the advanced Green’s function yields

Ga
AB (ω) = GAB

(
ω − i0+

)
. (1.57)

If one keeps in mind that under the integral holds

1

ω + i0+
= P 1

ω
− iπδ (ω) , (1.58)

where the principle value of 1
ω
is meant in the first term, we obtain:

Gr
AB (ω)−Ga

AB (ω) =

ˆ ∞
−∞

dω′

2π

(
eβω

′
+ η
)
J (ω′)

×
(

1

ω − ω′ + i0+
− 1

ω − ω′ − i0+

)
= −i

(
eβω + η

)
J (ω) (1.59)

For B = A†, where the product of the two matrix elements is real, the advanced function is the complex
conjugate of the retarded function. Considering once again the frequent situation where B = A† it holds

J (ω) = −2nη (ω) ImGr
AA† (ω) , (1.60)

where
nη (ω) =

1

eβω + η
(1.61)

is, depending on whether we use the commutator or anti-commutator, the Bose or Fermi function, respectively.
In case of B = A† we also obtain the famous Kramers-Kronig relation

Gr
AA† (ω) = −

ˆ ∞
−∞

dω′

π

ImGr
AA† (ω′)

ω − ω′ + i0+
, (1.62)

which reveals that the information about the Green’s function is fully contained in its imaginary part, a result
that is a consequence of the constraints brought about by causality. This result also allows for the analysis
the function G (z) introduced above and yields

GAA† (z) = −
ˆ ∞
−∞

dω′

π

ImGr
AA† (ω′)

z − ω′
. (1.63)

Finally, we can use our results to determine expectation values of correlation functions via

〈BA (t)〉 =

ˆ ∞
−∞

dω

2π
J (ω) e−iωt

= −
ˆ ∞
−∞

dω

π
nη (ω)

Gr
AB (ω)−Ga

AB (ω)

2i
e−iωt. (1.64)

In particular, we can use this expression to determine static expectation values (e.g. in case of B = A†)

〈
A†A

〉
= −
ˆ ∞
−∞

dω

π
nη (ω) ImGr

AA† (ω) .
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The previous results finally allow for a proper interpretation of the equation of motion in frequency
representation. We obtain a Green’s function with proper boundary conditions if we simply analyze

(
ω + i0+

)
Gr
A,B (ω) =

〈
[A,B]η

〉
+Gr

[A,H]−,B
(ω) . (1.65)

This immediately guarantees that the back-transform Gr
AB (t) obeys the correct boundary condition and

vanishes for t < 0.
As will be discussed in greater detail, one can also show easily that Green’s functions obey certain sum

rules, the easiest of which is ˆ ∞
−∞

dωGr
A,B (ω) = −iπ

〈
[A,B]η

〉
. (1.66)

Let us consider a system of non-interacting fermions with Hamiltonian

H =
∑
kα

(εk − µ)ψ†kαψkα. (1.67)

µ is the chemical potential. In order to determine the equation of motion, for Gr
k,k′αα′ (ω) we need to evaluate

the commutator
[ψkα, H]− = (εk − µ)ψkα (1.68)

that is particularly easy for non-interacting particles. It follows

(
ω + i0+

)
Gr

k,k′αα′ (ω) =

〈[
ψkα, ψ

†
k′α′

]
+

〉
+ (εk − µ)Gr

k,k′αα′ (ω) (1.69)

Using the usual anti-commutation properties
[
ψkα, ψ

†
k′α′

]
+

= δαα′δkk′ it follows

Gr
k,k′αα′ (ω) = δαα′δkk′G

r
k (ω) , (1.70)

with

Gr
k (ω) =

1

ω + i0+ − εk + µ
. (1.71)

We observe that without the infinitesimal part in the frequency, there would be a pole of the Green’s function
at the particle energy εk − µ relative to the chemical potential. We also easily obtain the imaginary part

− 1

π
ImGr

k (ω) = δ (ω − εk + µ) . (1.72)

A sharp peak in the imaginary part is a signature that the system is characterized by a particle, a behavior
that will be used later on as well, when we analyze interacting electrons. We could for example use this result
to obtain the particle number 〈

ψ†kαψkα

〉
= −

ˆ ∞
−∞

dω

π
n+ (ω) ImGr

k (ω) .

=

ˆ ∞
−∞

dωf (ω) δ (ω − εk + µ)

= f (εk − µ) . (1.73)

Thus, as expected we find that the occupation number of free fermions is given by the Fermi function. It turns
out that knowledge of the retarded Green’s function is sufficient to determine all thermodynamic properties
of a many body system of electrons. We will prove this result below for an interacting electron system.



CHAPTER 1. LINEAR RESPONSE 13

1.2 Green’s function for free particles
In case of non-interacting fermions and bosons, one can obtain a closed expression for the Green’s functions.
To this end we consider a Hamiltonian of the form

H =
∑
ij

hijc
†
icj, (1.74)

where c†i and cj are creation and annihilation operators of fermions or bosons in states with single particle
quantum numbers i and j, respectively. Those quantum numbers could be momentum, lattice sites in a
solid, spin, or a combination of spin and momentum, depending on the problem at hand. The fact that we
confine ourselves to bilinear forms (only two operators) reflects that we consider noninteracting particles. We
do, however, not assume that hij is a diagonal matrix, whose diagonal elements are then the single particle
eigenstates. In case of bosons (fermions) we use the well known commutator (anticommutator) relations[

ci, c
†
j

]
η

= δij,

[ci, cj]η =
[
c†i , c

†
j

]
η

= 0, (1.75)

with η = −1 (η = −1).
We first determine the so called single particle Green’s functions2

Gr
ij (t) = −iθ (t)

〈[
ci (t) , c

†
j

]
η

〉
. (1.76)

For the analysis of the equation of motion we have to analyze the commutator

[ci, H]− =
∑
lm

hlm

[
ci, c

†
l cm

]
−

(1.77)

It holds [
ci, c

†
l cm

]
−

= cic
†
l cm − c

†
l cmci

= −ηc†l cicm + δilcm − c†l cmci
= η2c†l cmci + δilcm − c†l cmci
= δilcm, (1.78)

which yields
[ci, H]− =

∑
m

himcm, (1.79)

regardless of whether we consider bosons or fermions.
For our equation of motion follows then(

ω + i0+
)
Gr
ij (ω) = δij +

∑
m

himG
r
mj (ω) . (1.80)

We see that the equation of motion closes in the sense that only Green’s functions of the type defined
in Eq.(1.76) are needed. It is also natural to introduce a matrix Ĝ (ω) with matrix elements Gij (ω) and
similarly ĥ for the matrix representation of the Hamiltonian with elements hij. Then follows3

ωĜ (ω) = 1̂ + ĥ · Ĝ (ω) , (1.81)
2To simplify our notation we use Gr

ij (t) instead of Gr
cic

†
j

(t).
3We drop the index r for the retarded function with the understanding that it follows via ω → ω + i0+.
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or (
ω − ĥ

)
Ĝ (ω) = 1̂. (1.82)

This leads to

Ĝ (ω) =
(
ω − ĥ

)−1
. (1.83)

Thus, in order to determine the Green’s function of a non-interacting gas of fermions or bosons, it is sufficient
to diagonalize a matrix in the space of single-particle quantum numbers. This can be a non-trivial task on its
own, e.g. for disordered systems where hij are realizations subject to a certain disorder distribution function.
In systems with translation invariance the single-particle eigenstates of the Hamiltonian are plane-waves with
eigenvalues εk that depend on the specific dispersion relation of the problem (e.g. εk = k2

2m
− µ for solutions

of the Schrödinger equation). This immediately determines the eigenvalues of the Green’s function

Gr
k (ω) =

1

ω + i0+ − εk
, (1.84)

a result that we obtained earlier already for free fermions.
In a solid, with discrete translation invariance, the eigenstates are the bands εk,n where the momenta are

from the first Brillouin zone and we find accordingly Gr
k,n (ω) = 1

ω+i0+−εk,n
.

1.2.1 Perturbation theory and Dyson equation

An important application of our matrix formalism can be made for systems where we can write

hij = ε0i δij + Vij, (1.85)

i.e. we are in the eigenbasis of a bare Hamiltonian ĥ0 with eigenvalues ε0i , while an additional perturbation is
off-diagonal.

This suggests to write

Ĝ−1 = ω − ĥ0 − V̂
= Ĝ0

−1
− V̂ , (1.86)

where Ĝ0

−1
= ω − ĥ0 is the Green’s function of the bare Hamiltonian, i.e. the bare Green’s function. It is a

fully diagonal matrix, i.e. we have

G0,ij (ω) =
δij

ω − ε0i
. (1.87)

Eq.(1.86) is called the Dyson equation for single particle systems, i.e. for systems without interactions. We
can multiply Eq.(1.86) from the left with Ĝ0 and from the right with Ĝ and obtain

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ. (1.88)

A perturbation theory in V̂ can now be generated by iterating this equation repeatedly

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 · · · . (1.89)

1.2.2 Higher order correlation functions

The knowledge of Gr
ij (ω) yields immediate information about expectation values of the form

〈
c†icj

〉
. Suppose

we want to know something about a more complicated expectation value, such as
〈
c†jc
†
kclci

〉
, we can equally

find closed expressions for the corresponding Green’s functions. To this end we analyze GAB = Gi,jkl with
A = ci and B = c†jc

†
kcl.
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The equation of motion follows immediately, as the commutator with the Hamiltonian is the same

ωGi,jkl (ω) =

〈[
ci, c

†
jc
†
kcl

]
η

〉
+
∑
m

himGm,jkl (ω) . (1.90)

The remaining commutator or anticommutator is easily calculated as:[
ci, c

†
jc
†
kcl

]
η

= cic
†
jc
†
kcl + ηc†jc

†
kclci

= −ηc†jcic
†
kcl + δijc

†
kcl + ηc†jc

†
kclci

= c†jc
†
kcicl − ηδikc

†
jcl + δijc

†
kcl + ηc†jc

†
kclci

= δijc
†
kcl − ηδikc

†
jcl. (1.91)

This yields for the equation of motion the result:

ωGi,jkl (ω) = δij

〈
c†kcl

〉
− ηδik

〈
c†jcl

〉
+
∑
m

himGm,jkl (ω) . (1.92)

If we use our earlier result for the single particle Green’s function we can write this as∑
m

(
Ĝ (ω)−1

)
im
Gm,jkl (ω) = δij

〈
c†kcl

〉
− ηδik

〈
c†jcl

〉
, (1.93)

which can be multiplied by Gsi (ω) and summed over i. It follows

Gi,jkl (ω) = Gij (ω)
〈
c†kcl

〉
− ηGik (ω)

〈
c†jcl

〉
(1.94)

These functions can now be used to determine the expectation values
〈
c†jc
†
kclci

〉
and it follows

〈
c†jc
†
kclci

〉
=
〈
c†jci

〉〈
c†kcl

〉
− η

〈
c†jcl

〉〈
c†kci

〉
. (1.95)

Thus, we are able to express a more complicated expectation value in terms of simpler ones, a procedure
that is correct for arbitrarily complex operators. In fact the last result is the simplest case of a more general
statement that goes under the name of Wick theorem.

1.3 Photoemission and single particle Green’s function
Photoemission is a widely used experimental approach to study the electronic properties of solids. It is based
on the photoelectric effect that was initially discussed by Einstein. The irradiation of a solid with light gives
rise to the emission of electrons. In what follows we discuss this effect within a many-body theory.

Let the many-body wave function prior to the irradiation be the initial state
∣∣ΨN

m

〉
= |m〉 where we

explicitly denote that we are considering a system with N particles. Let the final state be given as
∣∣ΨN

f

〉
.

The corresponding energies are EN
m and EN

f . The transition probability per unit time between the two states
is then given by Fermi’s golden rule

w = 2π
∣∣〈ΨN

f |V |ΨN
m

〉∣∣2 δ (ω − EN
f + EN

m

)
. (1.96)

The perturbation caused by the irradiation is of the form

V = −P · E0. (1.97)
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Since the polarization is a single particle operator, i.e. an operator that we can write in the form:

V =
∑

k,k′αα′

dα,α
′

k,k′ψ
†
kαψk′α′ , (1.98)

where ψ†kα is the creation operator of an electron with momentum k and spin α and dα,α
′

k,k′ = −〈kα |P|k′α′〉·E0

refers to the dipole matrix element.
The key assumption of the usual description of photoemission is the so called sudden approximation, where

we assume that the excited photoelectron does not couple to the remaining N − 1 electron system, i.e. it is
excited highly above the Fermi energy of the solid and rapidly leaves the system. This is at least consistent
with the usual view that photoelectrons originate only from a few top-most layers of the solid near the surface.
Thus, we write ∣∣ΨN

f

〉
= ψ†kfβ

∣∣ΨN−1
l

〉
(1.99)

is the photoelectron added to one of the eigenstates of the N−1-particle system. At the same time we assume
ψkfβ

∣∣ΨN
m

〉
= 0, i.e. the photoelectron state is not mixed into any of the relevant initial states of the system.

The emphasis in the last term is on “relevant”. At T = 0, the only relevant initial state is the ground state,
and for finite temperatures we are only interested in states with excitation energy Em − E0 ≈ kBT .

It follows

w = 2π

∣∣∣∣∣
〈

ΨN−1
l

∣∣∣∣∣ψkfβ

∑
k,k′αα′

dα,α
′

k,k′ψ
†
kαψk′α′

∣∣∣∣∣ΨN
m

〉∣∣∣∣∣
2

δ
(
ω − EN

f + EN
m

)
(1.100)

Since ψkfβ

∣∣ΨN
m

〉
= 0, it must hold that α = β and k = kf , i.e.

It follows

w = 2π

∣∣∣∣∣
〈

ΨN−1
l

∣∣∣∣∣∑
k,α

dβ,αkf ,k
ψkα

∣∣∣∣∣ΨN
m

〉∣∣∣∣∣
2

δ
(
ω − EN

f + EN
m

)
(1.101)

We now sum over all initial states
∣∣ΨN

m

〉
= |m〉 with initial probability pm = 1

Z
e−βEm and over all final states∣∣ΨN−1

l

〉
= |l〉 , and take into account that the final energy EN

f = εkf +EN−1
l is the sum photoelectron energy

εkf and of the energy EN−1
l of the remaining N − 1 many body state. It follows for the intensity

Ikfβ (ω) =
2π

Z

∑
lm

e−βEm

∣∣∣∣∣
〈
l

∣∣∣∣∣∑
k,α

dβ,αkf ,k
ψkα

∣∣∣∣∣m
〉∣∣∣∣∣

2

δ
(
ω − εkf − El + Em

)
(1.102)

We recognize this result as the spectral function of a retarded Green’s function with

A =
∑
k,α

dβ,αkf ,k
ψkα

B = A† (1.103)

If we recall our earlier result that J (ω) = −2nη (ω) ImGr
AA† (ω) it seems most natural to use for the photo-

electron spectrum of occupied states a quantity that is proportional to the Fermi function n+ (ω) = f (ω) =(
eβω + 1

)−1. Thus we opt for the anticommutator Green’s function with η = +1 and define

Gr
k,k′αα′ (ω) = −iθ (t− t′) (t)

〈[
ψkα (t) , ψ†k′α′ (0)

]
+

〉
, (1.104)

such that
Ikfβ (ω) = −2f

(
ω − εkf

) ∑
kk′,αα′

dβ,αkf ,k
ImGr

k,k′αα′

(
ω − εkf

)
dα
′,β∗

k′,kf
. (1.105)
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Thus, except for the dipole matrix elements, the photoemission intensity is determined by the imaginary part
of the retarded fermion Green’s function.

Let us consider a system of non-interacting fermions with Hamiltonian

H =
∑
kα

(εk − µ)ψ†kαψkα. (1.106)

µ is the chemical potential. In order to determine the equation of motion, for Gr
k,k′αα′ (ω) we need to evaluate

the commutator
[ψkα, H]− = (εk − µ)ψkα (1.107)

that is particularly easy for non-interacting particles. It follows

(
ω + i0+

)
Gr

k,k′αα′ (ω) =

〈[
ψkα, ψ

†
k′α′

]
+

〉
+ (εk − µ)Gr

k,k′αα′ (ω) (1.108)

Using the usual anti-commutation properties
[
ψkα, ψ

†
k′α′

]
+

= δαα′δkk′ it follows

Gr
k,k′αα′ (ω) = δαα′δkk′G

r
k (ω) , (1.109)

with

Gr
k (ω) =

1

ω + i0+ − εk + µ
. (1.110)

We observe that without the infinitesimal part in the frequency, there would be a pole of the Green’s function
at the particle energy εk − µ relative to the chemical potential. We also easily obtain the imaginary part

− 1

π
ImGr

k (ω) = δ (ω − εk + µ) . (1.111)

A sharp peak in the imaginary part is a signature that the system is characterized by a particle, a behavior
that will be used later on as well, when we analyze interacting electrons. We could for example use this result
to obtain the particle number 〈

ψ†kαψkα

〉
= −

ˆ ∞
−∞

dω

π
n+ (ω) ImGr

k (ω) .

=

ˆ ∞
−∞

dωf (ω) δ (ω − εk + µ)

= f (εk − µ) . (1.112)

Thus, as expected we finD that the occupation number of free fermions is given by the Fermi function. It turns
out that knowledge of the retarded Green’s function is sufficient to determine all thermodynamic properties
of a many body system of electrons. We will prove this result below for an interacting electron system.

For the photoemission spectrum follows finally:

Ikfβ (ω) =
2

π
f
(
ω − εkf

)∑
k,α

∣∣∣dβ,αkf ,k

∣∣∣2 δ (ω − εkf − εkα + µ
)
. (1.113)

The experiments then probes the occupied states of a solid and can be used to determine the energy-momentum
relation. Often, one assumes momentum conservation, at least for the components of the momentum parallel
to the surface and finds

Ikfβ (ω) ∝ f
(
ω − εkf

)
δ
(
ω − εkf − εkf + µ

)
.



Chapter 2

The Kubo identity

We consider a system characterized by Hamiltonian H with additional external and time-dependent pertur-
bation

W = −
∑
j

AjFj (t) (2.1)

characterized by operators Aj and time dependent functions Fj (t). The usual linear response analysis yields
for the time dependence of the expectation value 〈Ai〉t of Ai to linear order in the perturbation:

〈Ai〉t = 〈Ai〉+

ˆ ∞
−∞

dt
∑
j

Gij (t− t′)Fj (t′) , (2.2)

with retarded Green’s function
Gij (t) = −iθ (t) 〈[Ai (t) , Aj (0)]〉 . (2.3)

Here time-dependent operators are in the Heisenberg representation of H.
Next we prove the so called Kubo identity

i [A (t) , ρ] = ρ

ˆ β

0

dτȦ (t− iτ) . (2.4)

Here, we used
A (t− iτ) = eiH(t−iτ)Ae−iH(t−iτ).

To prove the identity we write

ρ

ˆ β

0

dτȦ (t− iτ) = iρ

ˆ β

0

dτ
d

dτ
A (t− iτ)

= iρ (A (t− iβ)− A (t))

= i
e−βH

Z

(
eβHA (t) e−βH − A (t)

)
= i (A (t) ρ− ρA (t)) , (2.5)

which proves the Kubo identity.
Using this identity, it follows

Gij (t− t′) = −iθ (t− t′) 1

Z
tr ([Aj (t′) , ρ]Ai (t))

= −θ (t− t′)
ˆ β

0

dτ
〈
Ȧj (t′ − iτ)Ai (t)

〉
(2.6)

We can write this as

Gij (t) = −θ (t)

ˆ β

0

dτ
〈
Ȧj (−t− iτ)Ai

〉
. (2.7)

18
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The Fourier transform Gij (ω) =
´∞
−∞ dte

iω+tGij (t) with ω+ = ω + i0+ is given as

Gij (ω) = −
ˆ ∞
0

dt

ˆ β

0

dτeiω+t
〈
Ȧj (−t− iτ)Ai

〉
(2.8)

Let us perform a partial integration

u′ (t) = −eiω+t

v (t) =

ˆ β

0

dτ
〈
Ȧj (−t− iτ)Ai

〉
such that u (t) = i

ω+
eiω+t and v′ (t) =

´ β
0
dτ
〈
d
dt
Ȧj (−t− iτ)Ai

〉
Gij (ω) = − i

ω+

ˆ ∞
0

dteiω+t

ˆ β

0

dτ

〈
d

dt
Ȧj (−t− iτ)Ai

〉
+

i

ω+

eiω+t

ˆ β

0

dτ
〈
Ȧj (−t− iτ)Ai

〉∣∣∣∣∞
0

(2.9)

The first term can be analyzed using the Kubo identity and be expressed in terms of the Fourier transform
χij (ω) of the retarded Green’s function

χij (t− t′) = −iθ (t− t′)
〈[
Ai (t) , Ȧj (t′)

]〉
(2.10)

that contains the time derivative of one of the operators. For the last term we use that it vanishes at the
upper limit due to the convergence factor in ω+. Thus, it follows

Gij (ω) =
i

ω+

(
χij (ω)− χTij

)
, (2.11)

with the isothermal susceptibility

χTij =

ˆ β

0

dτ
〈
Ȧj (−iτ)Ai

〉
=

d 〈Ai〉
dF̃j

∣∣∣∣∣
F̃j=0

(2.12)

is the change of the observable 〈Ai〉 due to an external static field F̃j that couples to Ȧj in the Hamilonian.
Notice, this is different from Fj (t) that couples to Aj itself and is in general dynamic. To see that this is the
case we expand the statistical factor to linear order in this perturbation:

e−β(H−Ȧj F̃j) ≈ e−βH
(

1 +

ˆ β

0

Ȧj (−iτ) F̃j

)
. (2.13)

Inserting this expression into the change of the expectation value

〈∆Ai〉 =
tre−β(H−Ȧj F̃j)Ai

tre−β(H−Ȧj F̃j)
− tre−βHAi

tre−βH
(2.14)

≈
ˆ β

0

dτ
〈
Ȧj (−iτ)Ai

〉
F̃j (2.15)

gives the above result for χTij. An important implication of Eq.2.11 occurs for Dij = χij (0)− χTij 6= 0. In this
case follows

ReGij (ω) = πDijδ (ω)− Imχij (ω)

ω
. (2.16)
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This is a generalized Drude term in the response function.
Let us discuss a few specific examples. If one considers a homogeneous electric field that couples to charges,

it can depend on the gauge whether we can even accomplish a coupling of the type in Eq.2.1. We could for
example use p → p − e

c
A with time dependent vector potential and vanishing scalar potential. In this case

holds for a parabolic spectrum that there are also perturbation quadratic in A. Alternatively, we can use an
electrostatic potential φ (x, t) = E (t) · x, i.e. W = e

´
ddxψ† (x)ψ (x)φ (x, t). Thus we obtain

W = p · E (t) (2.17)

with polarization operator p = e
´
ddxψ† (x)xψ (x). Notice that j =ṗ = i [H,p] is the current operator. For

the conductivity, the operator to analyze is the α-th component of the current, i.e. Ai = jα. The operators
Aj correspond to the components −pβ of the polarizaton operator p, i.e. the time derivative corresponds to
the current Ȧj = −jβ. For the conductivity σαβ, defined as,

〈jα〉t =

ˆ ∞
−∞

dt
∑
j

σαβ (t− t′)Eβ (t′) , (2.18)

follows

σαβ (ω) =

ˆ β

0

dτ

ˆ ∞
0

ei(ω+i0
+)t 〈jβ (−t− iτ) jα〉

=
i

ω+

(
χTαβ − χαβ (ω)

)
(2.19)

with χαβ (ω) the Fourier transform of χαβ (t− t′) = −iθ (t− t′) 〈[jα (t) , jβ (t′)]〉 while χTαβ = d〈jα〉
daβ

∣∣∣
Aβ=0

, where

we added a term −jβaβ to the Hamiltonian.



Part III

Diagrammatic perturbationtheory at finite T
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In the previous chapters we learned that retarded Green’s function can be determined from an analysis
of the equation of motion. The approach is very straightforward and powerful for non-interaction systems.
However, as soon as one wants to incorporate effects of interactions, the method is not very transparent and
efficient. An elegant alternative is the analysis of Green’s functions using Feynman diagrams. A diagrammatic
perturbation theory can be developed for time ordered Green’s functions. Historically the formulation was
done first for the so called causal Green’s function

Gc
A,B (t, t′) = 〈〈A (t) ;B (t′)〉〉c

≡ −i 〈TA (t)B (t′)〉 , (2.20)

with time ordering operator

TA (t)B (t′) = θ (t− t′)A (t)B (t′)− ηθ (t′ − t)B (t′)A (t) . (2.21)

While these functions can be efficiently determined in terms of Feynman diagrams, it holds that they are
analytic functions in the complex plane only in the limit T = 0. For this reason we will not discuss causal
Green’s function further. Instead, an elegant and very efficient approach valid also at finite temperatures
can be developed in terms of Matsubara. Before we discuss Matsubara functions we briefly summarize the
concept of the S-matrix, as it will play an important role in our subsequent analysis.

Let us consider a Hamiltonian
H = H0 + V (2.22)

that consists of a free part H0 and an interaction part V . The time evolution is governed by

e−iH(t−t′) = e−iH0tS (t, t′) eiH0t′ (2.23)

which defines the S-matrix. With this definition follows for the time dependence of an arbitrary operator in
Heisenberg representation

A (t) = eiHtAe−iHt

= S† (t, 0) e−iH0tAe−iH0tS (t, 0)

= S† (t, 0) Ã (t)S (t, 0) (2.24)

where
Ã (t) = e−iH0tAe−iH0t. (2.25)

In order to determine the S-matrix we consider the time derivative of

S (t, t′) = eiH0te−iH(t−t′)e−iH0t′ . (2.26)

It holds

∂tS (t, t′) = iH0e
iH0te−iH(t−t′)e−iH0t′

− eiH0t (iH) e−iH(t−t′)e−iH0t′

= eiH0t (iH0 − iH) e−iH(t−t′)e−iH0t′

= −eiH0t (iV ) e−iH0teiH0te−iH(t−t′)e−iH0t′

= −iṼ (t)S (t, t′) (2.27)

To determine the S-matrix we have to include the boundary condition

S (t, t) = 1. (2.28)

The solution of the above differential equation is

S (t, t′) = Te−i
´ t
t′ dt

′′Ṽ (t′′). (2.29)
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Let us demonstrate that this is indeed the correct solution. The boundary condition is clearly obeyed. Next,
we expand the exponential function:

S (t, t′) =
∞∑
n=0

Sn (t, t′) (2.30)

with

Sn =
(−i)n

n!
T

ˆ t

t′
dtn · · ·

ˆ t

t′
dt2

ˆ t

t′
dt1Ṽ (tn) · · · Ṽ (t2) Ṽ (t1) . (2.31)

There are n! possibilities to order of the time variables ti. We could for example relabel the ti such that the
earliest is called t1, followed by t2 etc. Then holds

Sn = (−i)n T
ˆ t

tn−1

dtn · · ·
ˆ t3

t2

dt2

ˆ t2

t′
dt1Ṽ (tn) · · · Ṽ (t2) Ṽ (t1) . (2.32)

Of course with this specific relabeling we may also skip the time ordering operation, i.e.

Sn = (−i)n
ˆ t

tn−1

dtn · · ·
ˆ t3

t2

dt2

ˆ t2

t′
dt1Ṽ (tn) · · · Ṽ (t2) Ṽ (t1) . (2.33)

It follows
∂tSn (t, t′) = −iṼ (t)Sn−1 (t, t′) , (2.34)

where obviously holds that S−1 (t, t′) = 0. This yields

∂tS (t, t′) = −iṼ (t)
∞∑
n=0

Sn−1 (t, t′)

= −iṼ (t)
∞∑

n=−1

Sn (t, t′)

= −iṼ (t)S (t, t′) .

Thus, we found the correct solution.

2.1 The Matsubara function
The Matsubara function is motivated by the close analogy between time evolution and thermal averaging.
One introduces

A (τ) = eτHAe−τH (2.35)

and defines
GAB (τ, τ ′) = −〈TA (τ)B (τ ′)〉 . (2.36)

with
TA (τ)B (τ ′) = θ (τ − τ ′)A (τ)B (τ ′)− ηθ (τ ′ − τ)B (τ ′)A (τ) . (2.37)

It is immediately evident why one often refers to the Matsubara approach as the imaginary time approach
with

t→ −iτ. (2.38)

It is easy to show that the Green’s function is homogeneous with regards to time, i.e. that

GAB (τ, τ ′) = GAB (τ − τ ′) . (2.39)

This follows again from the fact that the “time-evolution” and the thermal averaging is governed by the
Hamiltonian H.
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2.1.1 Periodicity of the Matsubara function and Matsubara frequencies

Next we analyze the detailed time dependence of GAB (τ) and show that it is an periodic (anti-periodic)
function for bosonic (fermionic) Green’s functions. We consider an arbitrary integer m and consider values of
τ that obey:

mβ < τ < (m+ 1) β. (2.40)
It then follows that

GAB (τ −mβ) = − 1

Z
tr
(
e−βHTA (τ −mβ)B

)
Since τ −mβ > 0 we can drop the time ordering symbol:

GAB (τ −mβ) = − 1

Z
tr
(
e−βHe(τ−mβ)HAe−(τ−mβ)HB

)
= − 1

Z
tr
(
e(τ−(m+1)β)HAe−(τ−mβ)HB

)
= − 1

Z
tr
(
e−βHBe(τ−(m+1)β)HAe−(τ−(m+1)β)H

)
= − 1

Z
tr
(
e−βHBA (τ − (m+ 1) β)

)
(2.41)

If τ < 0 holds
BA (τ) = −ηTA (τ)B.

Since τ − (m+ 1) β < 0 it follows

GAB (τ −mβ) =
η

Z
tr
(
e−βHTA (τ − (m+ 1) β)B

)
= −ηGAB (τ − (m+ 1) β) (2.42)

In particular follows for m = −1 that:

GAB (τ) = −ηGAB (τ + β) . (2.43)

Matsubara functions are periodic (anti-periodic) for bosonic (fermionic) choice of the time ordering. Since
both functions are periodic with period 2β we can always expand in the Fourier series

G (τ) =
1

β

∞∑
n=−∞

e−iωnτG (ωn) (2.44)

where e−2iβωn = 1, i.e. ωn = nπ/β. The Fourier coefficients are:

G (ωn) =
1

2

ˆ β

−β
dτG (τ) eiωnτ . (2.45)

This incorporates the information with regards to the period 2β. We do however have even more information.
It holds

e−iβωn = −η. (2.46)
In case of η = −1, i.e. for bosons, we know that the period is in fact β. Thus, only the Matsubara frequencies
with ωn = 2nπ/β contribute. For fermionic functions we have G (τ + β) = −G (τ), i.e. e−iβωn = −1, such
that now only odd multiples of π/β contribute and we have ωn = (2n+ 1) π/β. For the Fourier coefficients
follows then

G (ωn) =
1

2

ˆ β

0

dτG (τ) eiωnτ − η

2

ˆ 0

−β
dτG (τ + β) eiωnτ

=
1− ηe−iωnβ

2

ˆ β

0

dτG (τ) eiωnτ

=

ˆ β

0

dτG (τ) eiωnτ . (2.47)



25

In summary, we have discrete Matsubara frequencies that are distinct for bosonic and fermionic propagators:

ωn =

{
2nπ/β

(2n+ 1) π/β

for bosons
for fermions

. (2.48)

2.1.2 Relation to the retarded function

All this looks rather artificial as no obvious relation to reality seems to exist between the Matsubara functions
and physical observables. However, if we repeat the same steps that led to the spectral representation of the
retarded Green’s function it follows:

GAB (ωn) = − 1

Z

ˆ β

0

dτeiωnτ tr
(
e(τ−β)HAe−τHB

)
= − 1

Z

∑
lm

ˆ β

0

dτeiωnτe(τ−β)Ele−τEm 〈l |A|m〉 〈m |B| l〉

=
1

z

∑
lm

e−βEl − e−βEmeiβωn
iωn + El − Em

〈l |A|m〉 〈m |B| l〉 (2.49)

Since eiβωn = −η, it follows

GAB (ωn) =
1

Z

∑
l.m

(
e−βEl + ηe−βEm

)
〈l |A|m〉 〈m |B| l〉

iωn + El − Em
(2.50)

If we compare this with the general Lehmann representation that was derived earlier, it follows

GAB (ωn) = GAB (z = iωn) . (2.51)

We already discussed that we can define Green’s function in the entire complex plane and that the only source
for non-analyticity is the real axis. Now we see that the Matsubara function yields the complex Green’s
function at the purely imaginary Matsubara frequencies. Thus, if we determine the Matsubara function, we
can determine the retarded function via analytic continuation

iωn → ω + i0+. (2.52)

Thus, knowledge of the Matsubara function allows for the determination of the retarded function.
This immediately yields information about the single-particle Matsubara Green’s function. Consider the

Hamiltonian

H0 =
∑
α

ˆ
ddk

(2π)d
εkψ

†
kαψkα. (2.53)

We obtain for the Fourier transform of

G0k (τ) = −
〈
Tψkα (τ)ψ†kα

〉
0

(2.54)

that
G0,k (ωn) =

1

iωn − εk
. (2.55)

Here we indicate with 〈· · · 〉0 that the average is with regards to the Hamiltonian H0.
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2.1.3 Evolution with imaginary time

We already introduced the time dependence introduces

A (τ) = eτHAe−τH (2.56)

which can be used to determine the equation of motion

∂τA (τ) = HA (τ)− A (τ)H

= − [A (τ) , H] (2.57)

For our subsequent analysis we will use
eτHe−τH = 1, (2.58)

i.e. (
eτH
)−1

= e−τH . (2.59)

In full analogy of the S-matrix we can introduce

S (τ, τ ′) = eH0τe−H(τ−τ ′)e−H0τ ′ . (2.60)

The time evolution of the full Hamiltonian is written as

e−H(τ−τ ′) = e−H0τS (τ, τ ′) eH0τ ;. (2.61)

In distinction to the real-time S-matrix, S (τ, τ ′) is not unitary. It does however hold

S (τ, τ) = 1 (2.62)

as well as

S (τ1, τ2)S (τ2, τ3) = eH0τ1e−H(τ1−τ2)e−H0τ2eH0τ2e−H(τ2−τ3)e−H0τ3

= S (τ1, τ3) . (2.63)

Using τ3 = τ1, this implies in particular that

S (τ1, τ2) = S (τ2, τ1)
−1 . (2.64)

The time evolution of the full Hamiltonian is written as

A (τ) = eτHe−τH0Ã (τ) eτH0e−τH

= S (0, τ) Ã (τ)S (τ, 0) , (2.65)

where
Ã (τ) = eτH0Ae−τH0 . (2.66)

The equation of motion for the imaginary-time version of the S-matrix follows in full analogy to the case with
real times

−∂τS (τ, τ ′) = −eH0τ (H0 −H) e−H(τ−τ ′)e−H0τ ′

= Ṽ (τ)S (τ, τ ′) . (2.67)

The solution of this operator differential equation is obtained along the lines discussed above and yields

S (τ, τ ′) = Te−
´ τ
τ ′ dτ

′′Ṽ (τ ′′).
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This result can for example we used to express the partition function or Green’s functions in a manner
that is well suited for a perturbation theory. In case of the partition function holds:

Z = tre−βH

= tr
(
e−βH0S (β, 0)

)
= Z0 〈S〉0 (2.68)

with our earlier definition for the average w.r.t. H0 and with

S ≡ S (β, 0) = e−
´ β
0 dτ ′′Ṽ (τ ′′). (2.69)

Thus, we can express the fully interacting partition sum in terms of expectation values of the noninteracting
problem. The same reasoning can be performed for the single particle Green’s function as

Gk (τ) = − 1

Z
tr
(
e−βHTψkα (τ)ψ†kα (0)

)
= − 1

Z
tr
(
e−βH0S (β, 0)S (0, τ) ψ̃kα (τ)S (τ, 0) ψ̃†kα (τ ′)

)
= − 1

Z
tr
(
e−βH0TS (β, τ) ψ̃kα (τ)S (τ, 0) ψ̃†kα (0)

)
= − 1

Z
tr
(
e−βH0TS (β, τ)S (τ, 0) ψ̃kα (τ) ψ̃†kα (0)

)
= − 1

Z
tr
(
e−βH0T ψ̃kα (τ) ψ̃†kα (0)S (β, 0)

)
(2.70)

If we combine this with our representation for the partition function we obtain

Gk (τ) = −

〈
T ψ̃kα (τ) ψ̃†kα (0)S (β, 0)

〉
0

〈S (β, 0)〉0

= −

〈
T ψ̃kα (τ) ψ̃†kα (0)S

〉
0

〈S〉0
(2.71)

The appeal of this formulation is that we can develop a perturbation theory in the potential V by expanding
the exponentials in the numerator and denominator, respectively.


