Moderne Theoretische Physik IIIb (Theorie Fb) Sommersemester 2019

Prof. Dr. Alexander Mirlin

Blatt 2

PD Dr. Igor Gornyi, Dr. Stefan Rex

Besprechung: 10.05.2019

1. Eindimensionales Ising-Modell:

(10+15+15=40 Punkte)

Betrachten Sie ein eindimensionales Ising-Modell (wobei hier σ_1 und σ_N nicht durch J verbunden sein sollen):

$$H = -\frac{J}{4} \sum_{\langle ij \rangle} \sigma_i \sigma_j - \frac{\gamma}{2} B \sum_i \sigma_i, \qquad \sigma_i = 2s_i^z = \pm 1, \tag{1}$$

wobei $\langle ij \rangle$ die Summation über nächste Nachbarn bezeichnet.

(a) Beweisen Sie allgemein, dass die magnetische Suszeptibilität im eindimensionalen Ising-Modell die folgende Relation mit dem Spin-Korrelator erfüllt:

$$\chi \equiv \frac{\partial M}{\partial B} = \frac{\gamma^2}{4k_B T} \left[\sum_{i=1}^{N} \sum_{j=1}^{N} \langle \sigma_i \sigma_j \rangle - \left\langle \sum_{i=1}^{N} \sigma_i \right\rangle^2 \right]. \tag{2}$$

Überprüfen Sie explizit, dass diese Beziehung im Limes $N \to \infty$ für die aus der Vorlesung bekannten χ und $\langle \sigma_i \sigma_j \rangle$ gilt.

- (b) Mit Hilfe der Transfermatrixmethode bestimmen Sie für $N \to \infty$ die Korrelationsfunktion $\langle \sigma_i \sigma_{i+n} \rangle \langle \sigma_i \rangle^2$ und die Korrelationslänge $\xi(B)$ für das 1D-Ising-Modell im endlichen Magnetfeld B > 0.
- (c) Betrachten Sie das Ising-Modell (1) aus $N \gg 1$ Spins bei B = 0. Nehmen Sie an, dass $\sigma_1 = 1$. Diese Randbedingung garantiert, dass bei T = 0 alle Spins nach oben zeigen. Die angeregten Zustände niedrigster Energie sind die mit jeweils einer einzelnen Domänenwand, d.h.

$$\sigma_i = \begin{cases} 1, & i \le k, \\ -1, & i > k, \end{cases} \tag{3}$$

wobei $1 \le k \le N - 1$.

Finden Sie die Anzahl der Zustände mit m Domänenwänden. Geben Sie die Zustandssumme des Systems als eine Summe über die Anzahl der Domänenwände an. Berechnen Sie die Spin-Spin-Korrelationsfunktion $\langle \sigma_1 \sigma_N \rangle$ zwischen den Enden des Systems bei endlicher Temperatur als Summe über die Anzahl der Domänenwände. Zeigen Sie, dass der Zerfall für $N \gg 1$ wie $\exp(-N/\xi)$ geht und finden Sie die Korrelationslänge ξ .

(d) **10 Bonuspunkte.** Analog zur Berechnung von $\langle \sigma_i \sigma_j \rangle$ in der Vorlesung finden Sie für B=0 die Korrelatoren $\langle \sigma_i \sigma_j \sigma_k \rangle$ und $\langle \sigma_i \sigma_j \sigma_k \sigma_l \rangle$ im 1D-Ising-Modell im thermodynamischen Limes $N \to \infty$.

2. Zweidimensionales Ising-Modell:

(10+15+5=30 Punkte)

Betrachten Sie ein 2D-Ising-Modell aus N Spins ohne äußeres Magnetfeld auf einem Quadratgitter (Koordinationszahl z=4) mit Nächster-Nachbar-Wechselwirkung:

$$H = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j. \tag{4}$$

(a) Bringen Sie die Zustandssumme auf die Form

$$Z = \left(\cosh \frac{J}{k_B T}\right)^{P(N)} \sum_{\sigma} \prod_{\langle ij \rangle} \left(1 + \sigma_i \sigma_j \tanh \frac{J}{k_B T}\right). \tag{5}$$

Bestimmen Sie die Zahl P(N) für $N \gg 1$.

(b) Überlegen Sie sich, dass man Z aus Gl. (5) wie folgt entwickeln kann:

$$Z = 2^{N} \left(\cosh \frac{J}{k_B T} \right)^{P(N)} \sum_{m=0}^{\infty} C_{2m}(N) \left(\tanh \frac{J}{k_B T} \right)^{2m}$$
 (6)

Das ist die sogenannte Cluster-Entwicklung des Ising-Modells. Was ist die Bedeutung der Zahlen $C_{2m}(N)$? Bestimmen Sie $C_2(N)$, $C_4(N)$ und $C_6(N)$.

- (c) Betrachten Sie den Grenzfall hoher Temperaturen $k_B T \gg J$ und berechnen Sie die Wärmekapazität c_V bis zur vierten Ordnung in $J/(k_B T)$.
- (d) 15 Bonuspunkte. Das 2D-Ising-Modell kann auch formuliert werden, indem man Domänen betrachtet (s. Teilaufgabe 1c). Die einfachste Anregung (Spin-Umklapp) kann als kürzest mögliche Domänenwand (der Länge $\ell=4$) angesehen werden. Nehmen Sie an, dass die Spins am Rand nach oben zeigen. Berechnen Sie die durchschnittliche Anzahl von Spins N_{\downarrow} , die nach unten zeigen, wobei nur die kürzesten Domänenwände betrachtet werden sollen. Geben Sie eine obere Schranke für den Beitrag der Domänenwände einer beliebigen Länge ℓ zur Zustandssumme an.

3. Ising-Wechselwirkung mit unendlicher Reichweite: (15 + 15 = 30 Punkte)

Betrachten Sie ein Ising-Modell in beliebiger Dimension, in dem jeder Spin $s_i = 1/2$ mit jedem anderen Spin (nicht nur mit seinen nächsten Nachbarn) wechselwirkt:

$$H = J - \frac{J}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_i \sigma_j - \gamma B \sum_{i=1}^{N} \sigma_i.$$
 (7)

Wichtig ist hierbei, dass die Kopplung J/N mit N^{-1} abnimmt, da die Gesamtenergie extensiv sein muss. Der konstante Term J kompensiert die unphysikalische Selbstwechselwirkung, die für i = j in der Summe auftritt.

- (a) Wie viele Möglichkeiten gibt es, um einen gegebenen Gesamtspin S_{tot} zu erhalten? Bestimmen Sie die kanonische Zustandssumme Z für dieses Modell im Limes $N \gg 1$.
- (b) Verwenden Sie die Hubbard-Stratonovich-Transformation

$$e^{\alpha X^2} = \sqrt{\frac{1}{4\pi\alpha}} \int_{-\infty}^{\infty} d\lambda \, \exp\left(-\frac{\lambda^2}{4\alpha} + \lambda X\right)$$

um die Zustandssumme als Integral über die Hilfsvariable λ zu schreiben. Berechnen Sie dann die Integrale über λ in der Zustandssumme mit Hilfe der Sattelpunktmethode. Vergleichen Sie die Sattelpunktgleichung mit der Selbstkonsistenzgleichung der Molekularfeldtheorie.