Karlsruher Institut für Technologie

Institut für Theorie der Kondensierten Materie

Theorie der Kondensierten Materie I WS 2012/2013

Prof. Dr. J. Schmalian	Blatt 3
Dr. P. Orth, Dr. S.V. Syzranov	Besprechung 2.11.2012

1. Diatomic molecule.

(15 + 15 = 30 Punkte)

Electrons (spin-1/2 fermions) on certain orbitals in a diatomic molecule are described by the Hamiltonian

$$\hat{\mathcal{H}} = \varepsilon_0 \sum_{i=1}^2 \sum_{\sigma=\uparrow,\downarrow} \hat{a}_{i\sigma}^{\dagger} \hat{a}_{i\sigma} + t \sum_{\sigma=\uparrow,\downarrow} \left(\hat{a}_{1\sigma}^{\dagger} \hat{a}_{2\sigma} + \hat{a}_{2\sigma}^{\dagger} \hat{a}_{1\sigma} \right) + U \sum_{i=1}^2 \hat{a}_{i\uparrow}^{\dagger} \hat{a}_{i\downarrow}^{\dagger} \hat{a}_{i\downarrow} \hat{a}_{i\downarrow} \hat{a}_{i\uparrow},$$

where i = 1, 2 labels the two atoms in the molecule, $\hat{a}_{i\sigma}^{\dagger}$ and $\hat{a}_{i\sigma}$ are the creation and annihilation operators of electrons with spin projection σ on atom i, t is the hopping matrix element between the atoms. The molecule may be ionised and may have 0, 1, or 2 electrons on the respective orbitals.

- (a) Determine the eigenstates and the eigenenergies of the electrons for t = 0. Consider different possibilities for the number of electrons.
- (b) What is the physical meaning of the energy U? Determine the eigenstates and the eigenenergies of the electrons for U = 0.
- 2. Supersymmetric oscillator.

(10 + 15 + 5 = 30 Punkte)

The so-called supersymmetric oscillator is a system of non-interacting spinless bosons and fermions described by the Hamiltonian

$$\hat{\mathcal{H}} = \omega(\hat{b}^{\dagger}\hat{b} + \hat{f}^{\dagger}\hat{f}),$$

where $\hat{b}^{\dagger}(\hat{b})$ and $\hat{f}^{\dagger}(\hat{f})$ are respectively bosonic and fermionic creation (annihilation) operators.

- (a) Find the eigenstates and the eigenenergies of the oscillator, together with their degeneracies.
- (b) Operators $\hat{Q} = \sqrt{\omega}\hat{b}^{\dagger}\hat{f}$ and $\hat{Q}^{\dagger} = \sqrt{\omega}\hat{b}\hat{f}^{\dagger}$ convert fermions to bosons and bosons to fermions, respectively. Show that these operators correspond to some symmetries of the Hamiltonian. Rewrite the Hamiltonian in terms of \hat{Q} and \hat{Q}^{\dagger} .
- (c) Determine the time dependence of the operators $\hat{Q}(t)$ and $\hat{Q}^{\dagger}(t)$ in the Heisenberg picture.

3. Bosonic density fluctuations.

Let us consider a system of N free spinless non-interacting bosons with a quadratic spectrum $\varepsilon_{\mathbf{p}} = \mathbf{p}^2/(2m)$, confined in volume V. In this exercise we assume for simplicity, that momentum \mathbf{p} is a good quantum number. The operator of the density of bosons at point \mathbf{r} reads $\hat{\rho}(\mathbf{r}) = \hat{\Psi}^{\dagger}(\mathbf{r})\hat{\Psi}(\mathbf{r})$, where $\hat{\Psi}^{\dagger}(\mathbf{r}) = \frac{1}{\sqrt{V}}\sum_{\mathbf{p}}e^{i\mathbf{p}\cdot\mathbf{r}}\hat{b}^{\dagger}_{\mathbf{p}}$, and $\hat{b}^{\dagger}_{\mathbf{p}}$ is the creation operator of a boson in a state with momentum \mathbf{p} . Correspondingly, the operator of the number of bosons in a certain volume v < V reads $\hat{n}_v = \int_v \hat{\rho}(\mathbf{r}) d\mathbf{r}$.

- (a) At T = 0 evaluate the average number of bosons in volume v by averaging the operator \hat{n}_v .
- (b) At T = 0 calculate the fluctuation of the number of bosons in volume v.