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Exercise Sheet No. 5

“Computational Condensed Matter Theory”

13 Wilson’s Numerical Renormalization Group method (NRG)

The Single Impurity Anderson Model (SIAM) describes a localised impurity in an otherwise non-

interacting electronic conduction band. The Hamiltonian of this system is given by

HSIAM =
∑
σ

εdσn̂
d
σ + Un̂d↑n̂

d
↓ +

∑
σ

Vσ

(
ĉ†0,σd̂σ + h.c.

)
− t

∑
<i,j>,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
,

with n̂dσ = d̂†σd̂σ.

As shown in the lecture the Hamiltonian can be mapped onto a semi-infinite tight-binding chain. Due to

the logarithmic discretisation of the conduction band, the hopping elements of the Hamiltonian become

site dependend and decrease with distance as

HM =εd
∑
σ

n̂dσ + Un̂d↑n̂↓ + t1

(
c†1,σdσ + d†σc1,σ

)
− t

M∑
`=2

∑
σ

Λ
2−`
2

(
c†`−1,σc`,σ + c†`,σc`−1,σ

)
.

(1)

which in the limit M →∞ recovers the the full Hamiltonian.

The central aspect of the renormalization algorithm is, that the Hamiltonians HM obeye the recursion

relation

HM+1 = HM − tΛ−
M−1

2

∑
σ

(
c†M,σcM+1,σ + c†M+1,σcM,σ

)
. (2)

In the formulas above, c†l,σ, cl,σ denote fermionic creation and annihilation operators acting on site l of

a one-dimensional chain, d†σ, dσ are fermionic creation and annihilation operators acting on the single

impurity site. The state of a single site of the chain as well as the impurity are characterized by four

dimensional state vectors |α〉 = (|0〉, | ↑〉, | ↓〉, |2〉)T denoting empty, single or double occupied sites.

The low-energy spectrum of the Hamiltonian HM (Eq. 1) can be exploited applying an iteration scheme

in which at every step the system is enlarged by adding a new site l and after diagonalization only the

quarter of states with the lowest energy are kept.
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In order to avoid the problem of exponentially small energies and to pave the ground for fixpoints one

actually applies the method to the rescaled Hamiltonian

H̃1 = H1 H̃M = Λ
M−2

2 HM for M ≥ 2 (3)

H̃M+1 = Λ1/2H̃M − t
∑
σ

(
c†M,σcM+1,σ + c†M+1,σcM,σ

)
. (4)

a) Solve H1

Write the Hamiltonian H1 (Eq. 1) for M = 1 as matrix in the basis |α〉d ⊗ |α〉1. Diagonalize this

16× 16 matrix and project the Hamiltonian to its eigenbasis |λ〉1. The energies should be relative

to the groundstate, thus subtract the lowest eigenvalue λ11.

b) Transform ĉ1,↑ and ĉ1,↓

Write the annihilation operators ĉ1,↑ and ĉ1,↓ in the basis |α〉d ⊗ |α〉1 and, using the result of a),

transform them into the new basis |λ〉1.

c) Iteration step H̃M → H̃M+1

Build an iteration step H̃M → H̃M+1 as given by the recursion relation (Eq. 4):

Assume you have an Hamiltonian H̃M in its eigenbasis |λ〉M and ĉσ,M given in the same basis.

Enlarge the system by a site ` = M + 1 which results in a larger basis |λ̃〉M+1 = |λ〉M ⊗ |α〉.
Construct the Hamiltonian H̃M and the operators ĉσ,M , ĉ†σ,M+1 in this new basis and calculate

H̃M+1.

d) Projection in energy space

Diagonalize H̃M+1 and select the NC lowest eigenvalues λ = λ1 . . . λNC
and the corresponding

eigenvectors |λ〉M+1 = |λ1〉 . . . |λNC
〉. Construct a projection to the subspace spanned by these

eigenvectors |λ〉M+1. Project H̃M+1 and ĉσ,M+1 on |λ〉M+1 and as in a) subtract the groundstate

energy EG = λ1 from H̃M+1.

e) Many particle spectrum

Choose as parameters the values Λ = 0.5, U = t, εd = −U/2, t1 = 0.2t and NC = 100. Starting

with H1 and repeatedly applying steps c) and d) calculate the spectrum of H̃M−EG, for M=1..50.

Plot the 20 lowest values as function of M. The energies vary between even and odd number of

sites, thus plot odd and even M in two seperate graphs. Interpret your results.


