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Exercise Sheet No. 6
“Computational Condensed Matter Theory”

Density Matrix Renormalization Group method (DMRG)

Consider a 1D chain of spinless hard-core bosons with nearest-neighbor hopping ¢ and nearest-neighbor-
interaction U:
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where éj denotes the creation operator at site 7, 11; the density at site . The last term in the Hamiltonian
is included to make the interaction particle-hole symmetric. The creation and annihilation operators &
and ¢ for hard-core bosons obey bosonic commutation relations, but only the single occupation of a
state is allowed, i.e. ¢ |[1) = 0 and thus a suitable basis for a single site is given by {|0),[1)}.

a) Initial System: Two Sites
At first consider a system of 2 sites with hard wall boundary conditions. Write the operators ¢,
Co, N1 and ¢o, which in this case are represented as 4 x 4 matrices.
Using these operators, construct the Hamiltonian (Eq. [1]) for the 2-site system. This Hamiltonian
describing the initial block A shall be denoted by ICI’Q4

b) DMRG Iteration Step 1: Add a Site
Now increase the siz~e1§>f the block A by adding an additional site, which results 0 - —0d—o0
in a larger basis { |\),,,; } = {|)\ } @ {In) } Given the Hamiltonian H%,
(for M sites) the new Hamiltonian in this basis, H{, 2741, is obtained by Y,
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Save the operators ;11 = 1 ® 1 and ¢4 = 1 ® ¢C.

c) DMRG Step 2: Double the System
Consider a block B, which in our case is a copy of block A, thus fI Ml = HMJrl

The combined system of both blocks may be described in a basis {\)\ M+1} = {|5\ j\‘4+1 } ®

{ ])\ Ml } Construct the Hamiltonian HA 2111 Which connects both blocks at the respective sites
M + 1, and for periodic boundary conditions also at the respective sites 1. Thus,
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The total Hamiltonian for the combined system of 20 + 2 sites is therefore given by
Honryo = Hypy © 14 1@ Hypyy +HP (4)

Hint: Use kron(sparse(matl), sparse(mat2)) to create a sparse Kronecker product.
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d) DMRG Step 3: Diagonalize the Total Hamiltonian
Calculate the ground state energy Ey(2M + 2) and wavefunction ¥y of the Hamiltonian HQ]\/[+2.
Hint: Matlab’s eigs function can be used to efficiently calculate only one eigenvector with the
lowest eigenvalue. (Use the option “smallest real part” to achieve this.)

e) DMRG Step 4: Calculate the Reduced Density Matrix
Consider the density matrix for this ground state, p = |¥q) (¥q|. Trace out all degrees of freedom
from block B to obtain the reduced density matrix p4,
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where the notation (7,j) denotes a single index of the density matrix p, where i is the index
belonging to the subspace of block A and j the index belonging to the subspace B.
Hint: An efficient way to calculate the reduced density matrix in Matlab without first constructing
the full density matrix is given by the following code:
psi_R = reshape(psi_0, dim_B, dim_A); rho_A = psi_R’ * psi_R;
Here dim_A is the dimension of the subspace A and dim_B the dimension of subspace B.

f) DMRG Step 5: Projection on Subspace
Fully diagonalize the reduced density matrix p*. Now use the eigenvectors corresponding to the
largest Ngtates €igenvalues as a new basis. Project and store the operators (for block A) ¢1, €41,

Ny, Apry1.

As a final step project I:If/l,_s_1 to obtain a new H* as input for the next iteration.
Repeat DMRG steps 1 to 5 until the system size 2M + 2 reaches a chosen value. %:‘—’
H

f) Luttinger-Liquid Behavior
For three different values of U = 0, —+/3t,/3t, perform a DMRG calculation up to a system
size of Lyax. Extract the system-size dependence of the ground state energy E(L). Choose
Nstates = 50 and Lyax = 70.
As can be shown analytically the lowest-order finite size corrections for the ground state energy
per site ey, for this model are given by
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where v is the velocity of lowest-lying excitations in the system. By analyzing your data, extract
€0 and v for the given values of U and plot F(L)/L versus 1/L?. Discuss the behavior of v(U)
with decreasing U. Hint: For U = 0 the analytics yield v = 2 and e, = —2/7.

Performance Optimization

The use of the full Hamiltonian Hypzo can become very expensive. But for Krylov methods it is suf-
ficient to know the result of the application of the operator to a given vector. eigs uses a Krylov
space method, so it is possible to forego the explicit construction of Hoprpo. With the help of
psi_mat = reshape(psi, dim_B, dim_A); one can rewrite any vector in the full tensor product
space as a matrix. Then, the following relation holds for the application of operators on this vector:
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Write a function that takes a column vector ¥ as input and returns I:I2M+2\I/ without explicitly con-
structing the full Hamiltonian. Use this function to optimize DMRG step 3. Repeat the calculation of
exercise 14f) for larger Ngtates and Liax. Compare your results.

Hint: eigs(matrix, ...) < eigs(@function, dim_A * dim_B, ...).



