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Exercise Sheet No. 6

“Computational Condensed Matter Theory”

14 Density Matrix Renormalization Group method (DMRG)

Consider a 1D chain of spinless hard-core bosons with nearest-neighbor hopping t and nearest-neighbor-

interaction U :

Ĥ = −t
∑
<i,j>

(ĉ†i ĉj + h.c.) + U
∑
<i,j>

n̂in̂j − U
∑
i

n̂i, (1)

where ĉ†i denotes the creation operator at site i, n̂i the density at site i. The last term in the Hamiltonian

is included to make the interaction particle-hole symmetric. The creation and annihilation operators ĉ†

and ĉ for hard-core bosons obey bosonic commutation relations, but only the single occupation of a

state is allowed, i.e. ĉ† |1〉 = 0 and thus a suitable basis for a single site is given by {|0〉 , |1〉}.

a) Initial System: Two Sites

At first consider a system of 2 sites with hard wall boundary conditions. Write the operators ĉ1,

ĉ2, n̂1 and ĉ2, which in this case are represented as 4× 4 matrices.

Using these operators, construct the Hamiltonian (Eq. 1) for the 2-site system. This Hamiltonian

describing the initial block A shall be denoted by ĤA
2 .

b) DMRG Iteration Step 1: Add a Site
Now increase the size of the block A by adding an additional site, which results

in a larger basis
{
|λ̃〉AM+1

}
=
{
|λ〉AM

}
⊗
{
|n〉
}

. Given the Hamiltonian ĤA
M

(for M sites) the new Hamiltonian in this basis, H̃A
M+1, is obtained by

...

H̃A
M+1 = ĤA

M ⊗ 1− t(ĉ
†
M ⊗ ĉ + ĉM ⊗ ĉ†) + U(n̂†

M ⊗ n̂)− U(1⊗ n̂). (2)

Save the operators n̂M+1 = 1⊗ n̂ and ĉM+1 = 1⊗ ĉ.

c) DMRG Step 2: Double the System

Consider a block B, which in our case is a copy of block A, thus ĤB
M+1 = ĤA

M+1.

The combined system of both blocks may be described in a basis
{
|λ̃〉AB

M+1

}
=
{
|λ̃〉AM+1

}
⊗{

|λ̃〉BM+1

}
. Construct the Hamiltonian ĤAB

M+1, which connects both blocks at the respective sites

M + 1, and for periodic boundary conditions also at the respective sites 1. Thus,

ĤAB
M+1 = −t(ĉ†M+1⊗ĉM+1+ĉM+1⊗ĉ†M+1)−t(ĉ

†
1⊗ĉ1+ĉ1⊗ĉ†1)+U(n̂1⊗n̂1+n̂M+1⊗ĉM+1). (3)

... ...

The total Hamiltonian for the combined system of 2M + 2 sites is therefore given by

H̄2M+2 = H̃A
M+1 ⊗ 1 + 1⊗ H̃B

M+1 + ĤAB
M+1. (4)

Hint: Use kron(sparse(mat1), sparse(mat2)) to create a sparse Kronecker product.
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d) DMRG Step 3: Diagonalize the Total Hamiltonian

Calculate the ground state energy E0(2M + 2) and wavefunction Ψ0 of the Hamiltonian H̄2M+2.

Hint: Matlab’s eigs function can be used to efficiently calculate only one eigenvector with the

lowest eigenvalue. (Use the option “smallest real part” to achieve this.)

e) DMRG Step 4: Calculate the Reduced Density Matrix

Consider the density matrix for this ground state, ρ̂ = |Ψ0〉 〈Ψ0|. Trace out all degrees of freedom

from block B to obtain the reduced density matrix ρA,

ρ̂Ail =
(
trB ρ̂

)
il

=
∑
j∈B

ρ̂(i,j),(l,j),

where the notation (i, j) denotes a single index of the density matrix ρ, where i is the index

belonging to the subspace of block A and j the index belonging to the subspace B.

Hint: An efficient way to calculate the reduced density matrix in Matlab without first constructing

the full density matrix is given by the following code:

psi_R = reshape(psi_0, dim_B, dim_A); rho_A = psi_R’ * psi_R;

Here dim_A is the dimension of the subspace A and dim_B the dimension of subspace B.

f) DMRG Step 5: Projection on Subspace

Fully diagonalize the reduced density matrix ρA. Now use the eigenvectors corresponding to the

largest Nstates eigenvalues as a new basis. Project and store the operators (for block A) ĉ1, ĉM+1,

n̂1, n̂M+1.

As a final step project H̃A
M+1 to obtain a new ĤA as input for the next iteration.

Repeat DMRG steps 1 to 5 until the system size 2M +2 reaches a chosen value.

...

f) Luttinger-Liquid Behavior

For three different values of U = 0,−
√

3t,
√

3t, perform a DMRG calculation up to a system

size of Lmax. Extract the system-size dependence of the ground state energy E(L). Choose

Nstates = 50 and Lmax = 70.

As can be shown analytically the lowest-order finite size corrections for the ground state energy

per site eL for this model are given by

eL =
E(L)

L
= e∞(U)− v(U)

π

6

1

L2
, (5)

where v is the velocity of lowest-lying excitations in the system. By analyzing your data, extract

e∞ and v for the given values of U and plot E(L)/L versus 1/L2. Discuss the behavior of v(U)

with decreasing U . Hint: For U = 0 the analytics yield v = 2 and e∞ = −2/π.

15* Performance Optimization

The use of the full Hamiltonian H̄2M+2 can become very expensive. But for Krylov methods it is suf-

ficient to know the result of the application of the operator to a given vector. eigs uses a Krylov

space method, so it is possible to forego the explicit construction of H̄2M+2. With the help of

psi_mat = reshape(psi, dim_B, dim_A); one can rewrite any vector in the full tensor product

space as a matrix. Then, the following relation holds for the application of operators on this vector:

Φ = (OA ⊗OB)Ψ ⇔ ΦMat = OBΨMat(O
A)T

Write a function that takes a column vector Ψ as input and returns H̄2M+2Ψ without explicitly con-

structing the full Hamiltonian. Use this function to optimize DMRG step 3. Repeat the calculation of

exercise 14f) for larger Nstates and Lmax. Compare your results.

Hint: eigs(matrix, ...) ⇔ eigs(@function, dim_A * dim_B, ...).


