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1. Functional integral description of BEC-BCS crossover (10 + 10 + 20 + 10 +
10 + 10 + 10 + 10 + 10 = 100 points)

This question is adressed in the articles of C. A. R. Sa de Melo et al., Phys. Rev. Lett.
71, 3202 (1993), P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985),
and in M. Y. Veillette et al., Phys. Rev. A 75, 043614 (2007).

Consider the Hamiltonian of a three-dimensional gas of spinful fermionic particles in-
teracting through an attractive contact pairwise interaction

H − µN =
∑
kσ

c†kσ(εk − µ)ckσ − g
∫
d3xc†↑(x)c†↓(x)c↓(x)c↑(x) (1)

where εk = k2/2m and g > 0 denotes the strength of the contact interaction.

(a) Write down the imaginary time action S[c̄, c] for this system. It is defined via the
partition function Z =

∫
Dc̄Dce−S.

(b) Perform a Hubbard-Stratonovich decoupling of the interaction term via the identity

exp
(
g

∫ β

0

dτ

∫
ddxc†↑c

†
↓c↓c↑

)
(2)

=

∫
D(∆̄)D(∆) exp

(
−
∫ β

0

dτ

∫
ddx
[1

g
|∆|2 −

(
∆̄c↓c↑ + ∆c̄↑c̄↓

)])
.

Here, ∆(x, τ) is a dynamically fluctuation field, and c̄(x, τ) and c(x, τ) denote
Grassmann fields. Does ∆(x, τ) obey periodic or antiperiodic boundary conditions
in imaginary time?

(c) Perform a Fourier transformation to momentum space, group the fermionic fields
into a so-called Nambu spinor

Ψ̄(k, τ) =
(
c̄k↑ c−k↓

)
(3)

Ψ(k, τ) =

(
ck↑
c̄−k↓

)
(4)

to obtain an action of the form

S =

∫ β

0

dτ
∑
k

(1

g
|∆|2 − Ψ̄G−1Ψ

)
. (5)

Determine the inverse Gor’kov Green’s function G−1(k, ωn).



(d) Derive the gap equation

1

g
=
∑
k

tanh(ξk/(2T0))

2ξk
, (6)

where ξk = εk − µ, by the condition that the non-superconducting ∆ = 0 saddle-
point of the action becomes unstable, i.e., show that the gap equation follows from
the saddle-point equation

δS

δ∆

∣∣∣∣
∆=0

= 0 . (7)

(e) The summation over momentum is performed by switchting to an integration over
energy using the density of states. The integral over energies is, however, ultraviolet
divergent. It is therefore necessary to introduce a cutoff. In usual BCS theory, this
is achieved by the Debye frequency. Here, we wish to study the BEC-BCS crossover
where the integral is regularized by the low energy limit of the two-body problem
as expressed by the (finite) scattering length. Use

− m

4πas
=
∑
k

[tanh(ξk/(2T0)

2ξk
− 1

2εk

]
(8)

to eliminate the coupling g in the gap equation.

(f) The chemical potential is determined by the number equation N = −∂Ω/∂µ, where
Ω0 = S[∆ = 0]/β. Show that this leads to the number equation

n = n0(µ, T ) =
∑
k

[
1− tanh(ξk/(2T ))

]
. (9)

The equations (6) and (9) determine the transition temperature T0 and the chemical
potential µ.

(g) In the weak coupling BCS limit, 1/kFas → −∞ (or g → 0) show that the chemical
potential is fixed by the density such that µ ' εF show that the critical temperature
is given by

T0 =
8γ

e2π
εF exp(−π(2kF |as)) , (10)

where γ = eC ≈ 1.781 with Euler constant C.

(h) In the strong coupling limit 1/kFas →∞ (g →∞) the two equations switch roles.
Use the gap equation to fix µ = −Eb/2 with Eb = 1/ma2

s and the number equation
to obtain T0 ' Eb/[2 ln(Eb/εF )3/2].

(i) Perform the integration over the fermions in Eq. (5) exactly and expand the resulting
expression for small |∆| up to fourth order in |∆| to obtain a Ginzburg-Landau
theory

S = S[∆ = 0] +
∑
q,iωn

Γ−1(q, iωn)|∆(q, iωn)|2 +

∫
ddx

u

4
|∆(x)|4 . (11)

with positive constant u > 0. Derive the expression for Γ−1(q, iωn) and perform
the summation over momenta in the strong coupling limit to identify the action as
that of weakly interacting bosons of mass 2m and density n/2. The BEC transition
temperature can then be obtained in the approximation of an ideal Bose gas.


