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I. GENERAL INFORMATION

Literature:

1) G. Czycholl, Theoretische Festkorperphysik.

2) C. Kittel, Quantum Theory of Solids.

3) N.W. Ashcroft and N.D. Mermin, Solid State Physics.

4) A. A. Abrikosov, Fundamentals of the theory of metals.

5) J.M. Ziman, Principles of the Theory of Solids.
Superconductivity:

6) J.R. Schrieffer, Theory of Superconductivity. (Chapters 1-4)
7) M. Tinkham, Introduction to Superconductivity.

II. BORN-OPPENHEIMER APPROXIMATION

If we are interested in not very high energies it is meaningful to split an atom into, on
one hand, an ‘on, which contains the nucleus and the strongly coupled electrons and, on the
other hand, the weakly coupled electrons. For simplicity we consider a situation when there
is one weakly coupled electron per atom. Then ions have charge +e and the electrons —e.

The Hamiltonian of N ions and N electrons reads:
H = Hel + Hion + Hel—ion s (1)

where

He Z

1<j - T]|
Hion == Z + Z ‘/10n ﬁn - m) s (3)
n<m
Helion = Z ‘/el—ion Ti - én) : (4>

©,n

Here p; = —ihd/07; and P, = —ihd/OR,,.

2
|Rn—Rom|
These interaction potentials are, of course, a bit naive. There will be corrections

Rather simple-mindedly we could assume an(R -R m) = and Vo _ion (75 — ﬁn) =

2
\n Rnl
due to the fact that ions have structure (are not point-like particles).



Tons are much heavier than electrons: m/M < 107®. Thus electrons move much faster.
The Born-Oppenheimer approximation is appropriate.

First one solves the problem for the electrons only considering the positions of ions
fixed. The wave function of the electrons (the coordinates R, are parameters) ¢ =

O (T e El, ey I%N) satisfies the Schrodinger equation
[Ha + Haion|V05 = EQU5 . (5)

a numbers all the eigenstates. We only need the ground state.
The eigenenergies are functions of ions’ coordinates: Egl(ﬁl, cee ﬁN)

The wave function of the total system is assumed to have a form (this is an ansatz):
V=30 0a(R1,.... BNV (1, ..., PN Ra,y. .., Ry).

The Schrédinger equation reads:
HY = [Ho+ Hion + Hoion) 3 60Vl = [Ho+ Haion] 3 60U + Hion 3 6atl (6)
= 32 B0+ Y Hiun) U+ X 57 (0B + 2Bon) (Pud)] (7
We project (E — H)y = 0 upon ¢§. This gives
U5 HY = Edg = B¢+ Hiondp + > Asa 8)
where
Ao =3 537 [%(W PR + 2(Paga) (05 Potid)] (9)

Our aim is to argue that the terms Ag, can be neglected due to the smallness of the
ratio m/M. Since the interaction between ions and electrons depends only on the distance
between them: Vgi_jon (7 — ﬁn), so does the wave function 1. Thus |Py®| ~ |py°!|. So, for

example, we can estimate the first term of Ag, as

P’ P e o
Zm *Z SU 7Ek}n - (10)
The electronic kinetic energy can be, in turn, estimated from the characteristic atomic energy
e? me*
= — = —~13,6eV ~ 0.2 10 erg ,
0 2&0 h2 &

where ay = mh—; ~ 0.5-1078¢m is the Bohr radius. The estimate reads E¢. /N ~ ey. Thus

the first term of (9) is estimated as N(m/M )e.
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To estimate the second term of Ag, as well as the energy per ion stored in Egl(bg + Hion®p
we think of each ion as of a harmonic oscillator in a potential well described by the spring
constant, K, of the order K ~ ¢y/a3. This is because shifting an ion by a distance of order
ap, i.e., by a distance of order of the distance between the ions and the electrons should cost
approximately one electronic energy. Then the characteristic energy of an ion is given by
€ ~ h\/m ~ € \/W . Since the potential and the kinetic energy of an oscillator are
equal we obtain an estimate for the momentum of the ion: P?/M ~ ¢ ~ GOW . Thus
P ~ /Me; ~ /e ~ (M/m)Y* fegm ~ (M/m)"p, where p is the characteristic
electron momentum p ~ \/eo_m ~ h/ag.

Thus, we can estimate the second term of (9) as NpP/M ~ N(m/M)3/*¢,. Finally, the
ionic energy stored in E§'¢s + Hiondg is estimated as NP?/M ~ N(m/M)'/?¢;. This energy
is larger than both terms of (9).

Neglecting (9) we obtain the approximate Schrédinger equation for the ions:
[Hion + E*(Ry,..., Ry)¢ = E¢ (11)

Thus the total interaction potential for the ions reads

vidtal = 5™ Viu(Ro — R) + E¥(Ry, ..., By) . (12)
n<m
This potential should have an absolute minimum when the ions take places in the lattice
of the solid. (We do not even try to prove it). The electrons adjust themselves to the
instantaneous state of the ions.
At low temperatures it is sufficient to consider only small deviations of the ions from the

lattice positions. These are called "phonons”.

One arrives then for the ion positions at

Hion + E(Ry, ..., Ry) = H2, + Hyponon - (13)

mon

while for the electrons one has

Hel—ion Hol ion + Hel—phonon (14>

ITI. BRAVAIS AND RECIPROCAL LATTICES

To be written.



IV. BLOCH THEOREM

Potential of ions are periodic with periods being the vectors of the Bravais lattice.

2

H:—;nA+U(F), (15)

with U(F+ R) = U(7) and R € Bravais Lattice.
We look for eigenstates:

Hy = EY (16)
Bloch Theorem: eigenstates have the following form:
0, 5 (F) = ™ un i (7) (17)

where wuy, ;(7) is periodic, i.e., u_ z(7+ R) = u, (7). In addition k € first Brillouin zone
while n € Z.

A. 1-st proof

We define translation operator Tz so that T f(F) = f(F + R).

1) T is unitary. (Unitary operators satisfy U~! = UT). We have obviously
T:'=T 3 (18)

R

To obtain TIT% we note the following
(1] Tloa) = [ &6 (M) Toa(7)
/ & (7F) s (F + R)
= [ droi(F — R)ga()
= [ )" s () (19)

Thus TL =T z=T5".
2) T commutes with H, [Tz, H| = 0.

— —

TsH = H(7 + R)(7 + R) = H(P) (7 + R) = HTx) (20)



3) All operators Tz form an Abelian group, i.e., commute with each other.

Ty, T = T, T = (7 + By + Ry) (21)

T Tg, =T Ts =Tg (22)

1+ R,
This means that the set of operators H, T (all of them) have common eigenstates (a full

set of them).
Hi = Ev (23)
Tﬁiﬂ = Cﬁ¢ (24)

From unitarity follows || = 1. From commutativity of T: cjz ¢z = ¢z 5 -

R are the vectors of Bravais lattice. Thus R = ni1di + nods + nsdasz. This gives
Cp = (Cﬁl)nl (052)n2 (053)713 (25>
We define ¢z, = €*™*i. Then

_ _ p2mi(niz1+noxe+n3Ts)
cp=c¢e (26)

Now we start using the reciprocal lattice. We define k= > a:jgj where Ej are the elemen-

tary vectors of the reciprocal lattice. Then we can rewrite as follows
cp = ¢iFR (27)

Indeed, k-R= >l xjnlgj -y = 27 >_; w;m; (for reciprocal lattice we have l;j a4 =2m6jy).
Thus we obtain

T =™y, (28)

i.e., each eigenvector is characterized by a vector k. Thus we have

)= eFTu(i) (29)

where u(7+ R) = u(7). (We can define u as e~ 7).
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Thus all the eigenstates are split into families characterized by different vectors k. Actu-
ally only k belonging to the first Brillouin zone (Wigner-Seitz unit of the reciprocal lattice)
(or any other primitive unite of the reciprocal lattice) give different families. This follows
from ¢!F+EOR — ¢k Indeed, if k is outside the first Brillouin zone, then we can find K in

the reciprocal lattice so that ¢ = k — K is in the first Brillouin zone. Then we use

1

Y = M) = e R () = e TTa(F) (30)

where (%) = e~ K "y(7) and 4(F + R) = a(F).
In each family introduce index n counting the states of the family. The functions u

depend, then, on k € first B.Z. and on n. Thus, finally

Y = e Ty (7 (31)

B. Born-von Karmann boundary conditions

The B-v-K conditions read:
(7 + N;d;) = o(7) (32)
for j = 1,2,3 and Ny, Ny, N3 > 1. The total number of primitive cells is then N; Ny Ns.
This limits the possible values of k. Namely we must have eiNikd = 1. With k = > xjgj
where gj are the elementary vectors of the reciprocal lattice we obtain z; = m;/N;.
Although it would be better to chose all allowed values of k within the first Brillouin zone
it is simpler here to use a different primitive cell in the reciprocal lattice. Namely we can
chose m; = 0,1, ..., N; — 1. This gives
k= zjj %Ej , (33)
for m; =0,1,..., N; — 1. There are N = NN, N3 allowed vectors k.
The volume in the reciprocal lattice per one vector k-

AkiAkyAks = Ak - (Aky x Aks) = ]b\; : (]b\f X Jbv?)
1 2 3

where v =

12



To calculate a sum over the whole primitive cell (1-st B.Z.) we use

>k Nv 3 V .
z,;: B / AkiAksAky — (2m)3 /d b= (2m)3 /d K (35)

C. 2-nd proof

We expand both the wave function and the potential in the basis of momentum states,

i.e., plane waves. Thus:

(F) = czel” (36)

The boundary conditions, e.g., those of Born-von Karmann make the set of k-vectors dis-
crete:
k=Y -2b, (37)
7 i !
where m; € Z. The sum is not limited to the first Brillouin zone.

The potential energy is a periodic function (Bravais-lattice). Thus it can be expanded as
U =3 Uge'™ (38)
q

where Q runs over the reciprocal lattice. We have

1 =
L —iQ-7
Ug=" [, VU@, (39)

where the integration is over a primitive unit of the Bravais lattice and v is the volume of
the primitive unit. Since U is real (hermitian) we have U_5 = Us-

The Schrodinger equation now reads

o h?
EYp = EY ¢zl = ——V"
(0 (che ( QmV —I—U>¢

2 2

Wa g WG+
= Z: 5 C7¢ U ;U@c(;e @+
q Q.9

q iq i i
= Z%quq +ZUQC§7@6(I , (40)

where in the last line we substituted ¢ — ¢ — C} The coefficients in front of each harmonics

must sutisfy this equation. Thus

h2q2
(E — 277’L> Cqg = Z U@C-;Q . (41)



We see that only ¢’s related by a vector of the reciprocal lattice influence each other. Each
such family can be characterized by a vector in the 1-st Brillouin zone. Thus, in each family
we introduce k and all the ¢’s in the family are given by k+ K , where K runs over the
reciprocal lattice. This gives
R2(k + K)?
(E - 72m CE—&-I? == Z UQCE—H?—Q . (42)
Q
The number of equations for each k € 1-st B.Z. is infinite as K runs over the whole reciprocal
lattice.
We will use index n to count solutions of Eq. (42). The solution number n is a set ¢, 7,

for all vectors K € reciprocal lattice. Since Eq. (42) is a Schrodinger equation and the sets

Cpiiie Are the wave functions, they are orthonormal, i.e.,

Z: C;,E-s-}?cng,l?-u? = Onyna (43)
K

and complete

D O R R CnirRe = OR1 Ry - (44)
n
(Note that K serves here as coordinate of the wave function.)
The eigenstates in the coordinate representation then read
(F+R)T _ ik R _ k7, (=
Vi (M) =3 g €T =Y e g g €T = €T 1 () (45)
K K
where
un,l?(ﬁ = Z CTL,E+R el ! : (46)
K

Now, if we slightly change /;:, only the LHS of the equation (42) slightly changes. One can
expect that in each family n the states and the eigen-energies change smoothly. We obtain

bands.

D. Properties of the Bloch states

e Bloch states are orthonormal.

14



We obtain

’ = 3, i(ka+Ko—k1—K
/ RN AGENAC D DN B XN 3 / dPp efhr ki)

K1,K>

*
=V Z Cn1,1_51+1?1cn27k2+K25k2+K2,k1+K1 ) (47)
Ki,Ko

Since El and EQ both are in the 1-st B.Z. we have 6,—52”32 R4k = 5,;1 1325131 Ry Thus

/d3T l/le,kl (F)¢n2,k2 (fj = V(;El,lgz Zczl,gl-&-ﬁlcn%gl'i'kl
R
= Vg &, Onims - (48)
In the thermodynamic limit V' — oo we have Vi ¢ — (27)36 (k1 — ko).

Basis of Bloch states is complete.

. * L iRy iRy T ik (Fa—71)
=>. > > Cr it By Cni+ Ry € € €
n

I
=[]
m .
=1
+
51
3
4
I
<
(@Y
—
et
|
i
S~—
Yo
e
©
N—

Crystal momentum

The vector Ak is not the momentum and the Bloch states are not eigenstates of the

momentum operator. Indeed

-

P, ;= —ihV, ;= bk, + e Vu, 1 . (50)
The vector %k is called "crystal momentum”.

Discreetness of states indexed by n.

The Schrodinger equation for a given k

R2(k + K)?
(E —— 5 | e = L Us%k g (51)
Q

can be rewritten for the function
up(F) =D g g e™. (52)
K

15



as

(E - “’“‘V)) wel) = UPugls) 53)

accompanied by the periodic boundary conditions (7" + ﬁ) = ug(7). The problem
thus must be solved in one primitive unit of the Bravais lattice and can give only

discreet spectrum.

e The eigenenergies E_ ; are continuous (and analytic) functions of k. Quite clear from

the Schrodinger equation (53). No proof provided.

e Extension to the whole reciprocal lattice.

One can extend the definition of Bloch states 1, ; for k not necessarily being in the
1-st. B.Z. Then this function is a periodic function of k with the periods given by the

reciprocal lattice.

V. ALMOST FREE ELECTRONS.

We start from the Schrédinger equation

R (k4 K)?
(En,E - 2m Cn,l;-l—I? = Z U_'Cn,lg—l—}?—@’ (54)
Q
for the coefficients of the function
unE(f') = Z Coii R BT (55)
K
Renaming I?l = K and [22 =K — Cj we obtain
R2(k 4 K, )
(En,;: — | Gk = 2R RCfir, (56)
K>

We start from the limit of free electrons U = 0. The solutions of (56) are trivial: for each

n there is I?n such that
= — - (57)

and Cofs Ry = O
Now consider U # 0. First, Ug—o gives a total shift of energy. Thus, we take it into

account and put Ugp=0.T here are two possibilities:

16



1) For a given k there are no other vectors of the reciprocal lattice K, such that el(%) ~ 67(10])2

(more precisely the difference of the two energies of order or smaller than U). Then we are
in the situation of the non-degenerate perturbation theory. This gives for [ # n
Ui -
Cnfi+K, = IO : o T o(U?) (58)

nk Gk

and for the band energy we obtain

Uz Uz _g
0 Kn—K; " K —K,
Ep=er+> o oY) (59)
l#n en,E EZ,E

The bands repel each other.

2) There are some (at least one in addition to [?n) vectors K, + K,, such that el(%) ~ 6103;.

We denote all m such vectors (incluing [?n) by K; with [ = 1,...,m. The degenerate

perturbation theory tells us to solve the following system of m equations (j = 1,...,m):
hZ(E—I— [?)2 m
(E;; T o) e = 2 Uk Rk, (60)

Double degeneracy. Consider a special (but probably the most important) case when

FIG. 1: Bragg plane.

the degeneracy is between two energies corresponding to vectors K, and K,. First we note
that the condition on k for this to happen coincides with the one for the Bragg scattering
of the X-rays. Namely, the condition of degeneracy reads |E + I?1| = \E + Kg‘ = |E + K —
(Ky — K,)|. Introducing ¢ = k + K; and K = K; — K, (K € reciprocal lattice) we see
that the relation between the wave vectors in the expanded band picture ¢ = k -+ l?l and

q— K =k + K, is like between the wave vectors of the incident and the reflected waves in

17



the Bragg scattering. Both have to end at the so called " Bragg plane” as depicted in Fig. 1.
In particular the condition on  reads |7+ K| = %|l€ |.

The eigenvalues are determined as zeros of the determinant of the following matrix

0
E;—ef Uz

(61)
0
~U_z Ei—e)
The solutions read
0) , _(0) 0 (0?2
€15 T g €15 — €2k
EE = 72 + (2 ) + ‘U[}P (62)

In particular, the splitting exactly at the Bragg plain, where eg?,l = go,l is given by

Esr — Ey = 2|Ug|.

A. Example in 1D

FIG. 2: Extended zone scheme in 1D.

Extended, reduced, and periodic zone schemes.

18



B. Lattice with basis, structure factor

Assume there are identical ions in positions d; (basis) in each primitive cell of the Bravais

lattice characterized by vector R. Each ion creates a potential ¢(r7 — R- J;), so that
U =YY o - F-d). (63)

The resulting potential U(7) is still periodic with periods being the vectors of the Bravais
lattice, U (7 + R) = U(7).

We need
U. — 1 dVU(F)e_”?'FZ 1/ dVe_“?'FZZQﬁ(F—ﬁ— _’.)
E - wJpru v JPU. 7 g ’
1 R A Y
= [ e TS 67 - dy) = —o(K)S}: (64)
U Jall space j v
where
QS([?) = Lll space QS(f‘)e_iK‘F ’ (65)
and

FIG. 3: Only black points are allowed.

The structure factor provides a nice way to recover the proper Bravais lattice. This is

important both in Bragg scattering and in the Bloch theory. Assume we have a "bee” lattice

19



with basis vectors @ = aZ, d; = ay, and d3 = §(Z' + 7 + Z). We (wrongly) decide to treat
it as a ”"cs” lattice with @; = aZ, ds = ay, and @3 = az and with two identical ions per
unit cell with d; = 0 and dp = 5(Z 4+ + Z). The (wrong) reciprocal lattice is given by
K = myby 4 maby + msbs, where by = (21/a)Z, by = (27/a)i, and by = (27/a)Z. We obtain

for the structure factor

S =S €K — 1 4 grlmtmatms) (67)
J

Possible results are either 0 or 2. The correct reciprocal lattice is only those K for which
S = 2. It is easy to see that it is an "fcc” lattice (Fig. 3). Indeed no Bragg scattering
appear for points (vectors K ) with S = 0. Also no no zone gap appear at Bragg planes

corresponding to such vectors!

VI. BANDS, FERMI SURFACE, ISOLATORS, SEMICONDUCTORS, METALS.

Index n counts bands. Number of state in a band is 2x the number of vectors & in the
1-st. B.Z., i.e., 2N.

Bands can overlap in energy.

VII. TIGHT BINDING
A. Wannier functions

One can show that the Bloch states can be presented in a different form:

Uo7 = 3 e, (7F = R) (68)
R
where
. 1 V d3k .
wa(r) =+ Yo V(M) = N o, W%,E@")
kel. B.Z.
d3k .
— /1 G (69)
By operation of translation we obtain
S B 1 S B 1 —ik-R
wp(F=R) =5 > G p(F=R)==5 > e "0 . (70)
kel. B.Z. kel. B.Z.

20



Indeed, substituting Eq.(70) into Eq.(68) we obtain

=] =
U = L e S e ) = S bt = () (7))

B gel. B.Z. gel. B.Z.

It is easy to check that the Wannier functions of different bands n are orthogonal. Also

orthogonal are the Wannier functions of the same band but shifted to different Rs.

B. Schrodinger equation for Wannier functions

Assume the total potential is a sum of atomic ones (for a simple Bravais lattice with one

atom per unit):

UF) =S U F—R) . (72)
i
Then from
h2A L =
Hy, p = (—2m + Y Ua(F— R)) Vi = E 500k (73)
R
we obtain

” 2m = ”
R Ry R
In the r.h.s. we separate the terms with R, = R from those where R, #* R
i 5 nA N I P
Em,;Ze w,(F—R) = > 5 U7 — R) | € w, (7 — R)
7 7 m
+ 33 U7~ R)e* R, (F - R)
R Ri#R
h2A - .
=3 (—2 Ud (7 — R)) e* B, (F — R)
+ S AU, R)e* Fu,(F - R) (75)
R

—

where AU(7, R) = X5 5 Uo7 — By) = U(7) — U (i — R).

C. Linear Combination of Atomic Orbitals (LCAO)

Simplest approximation for the Wannier function w = >, b,,,¢,, where ¢,,, are the atomic

orbitals, such that H,¢,, = E, n¢m. This can be, e.g., a multiplet of the orbital momentum

21



L with 2L 4 1 degenerate states (we omit the band index n). This gives

qﬂ

S b(Ep = Eap) S e F6,, (7 — R) Zb ZAUM? Ry (F—R) | (76)
m R

We have restricted our Hilbert space to linear combinations of atomic orbitals ¢, (7" — ﬁ)
shifted to all vectors of the Bravais lattice. While we cannot guarantee that Eq. (76) holds
exactly (in the whole Hilbert space) we can choose the coefficients b,, and the energy Ey
so that Eq. (76) holds in our restricted space. That is we demand that Eq. (76) projected
on all ¢,,,(F — R) holds. Due to the periodicity of the Lh.s. and the r.h.s. of Eq. (76) it is
sufficient to project only on ¢,, (7).

Projecting on ¢;(7) we obtain

(EE — Ea,l)bl + Z bm(EE - Eam Zk R / d37’¢l F)qu(T - )

R0
= Y b SR [ @roi (AU, Rjon(F— R) | (77)
m R
Introducing
Iin(B) = [ &r6;(7)0m (7 - R) (78)
and
him(B) = [ dr6; (AU, B)o(F ~ F) (79)
we obtain

(Ep — Eo))bi+ 3 bu(Ez — Eapn) S €1, (R)
m R#0

= b > By (R) (80)
m R

This is a homogeneous matrix equation on coefficients b,,. To have solutions one has to
demand that the determinant of the matrix vanishes, This determines the band energies

E . The number of bands is equal to the number of states in the multiplet.

D. Single orbital (s states), one band

We obtain




Assume that only nearest neighbors matrix elements, do not vanish (and also h(0)). It

—

is important to note that I(R) < 1. Thus
Egm E,+h(0)+ Y (A(R) — h(O)I(R))e™ (82)
Ren.n.

Then, for different Bravais lattices with one ion per primitive cell we obtain

1) 1-D lattice with step a.
Er = E, + h(0) + 2W cos(ak) , (83)

where W = h(a) — h(0)I(a).

2) sc-lattice, d; = af, dy = ayj, ds = aZ, ¢(r) is rotationally symmetric:
Epy = Eq + h(0) + 2W (cos(ak,) + cos(aky) + cos(ak.)) , (84)

where W = h(a) — h(0)I(a).
3) bee-lattice. One of the possible choices of the primitive basis is: @ = aZ, dy = ay, ds =

1a(Z + ¥ + Z), however the nearest neighbors are at R = S(+xr £y £+ 2). Altogether 8
neighbors each at distance \/ga/ 2. We obtain

E; = E, + h(0) + 8W cos(ak,/2) cos(ak,/2) cos(ak./2) , (85)

where W = h(v/3a/2)—h(0)I(v/3a/2). (Interesting exercise: show that the reciprocal lattice

in fec).

E. Alternative formulation of tight-binding method

Each primitive cell is characterized by states )ﬁ, m>. Index m can count either states of
the same atom or states of different atoms in the cell. For example in graphen we would

have m = A, B, where A and B denote sub-lattices. The overlaps of different states vanish:

(R1, my| | Ry, mg) = 07, f2,0m1,mo- One postulates a tunneling Hamiltonian

H= 3 3 twma(R1 — Ba) [Ra,my) (From| (86)
Ri,m1 Raymo
The Hamiltonian is hermitian, i.e., tmhm(ﬁ) = t;‘nz’ml(—ﬁ).
The Bloch states:
(87)

Yp = Z eiE'Rme ’é, m> .
R’ m
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The Wannier w.f.: w =73, b, ‘R, m>.

The energies and the coefficients b, are determined by substituting the Bloch wave func-
tion into the Schrodinger equation: Hvy = Epiy.

We obtain

Hig = 3 3 tmyms(Fr = ) |[Fayma) (Ry,ma ZelkRme\R m)

R1 mi RQ mo

- Z Z elk.Rlbml tml,m2(R1 - R2) ‘R% m2>

Ri,m1 R2,m2

= EE Z eiE.EQ Z bm2
]3L2 ma

ﬁg, m2> (88)

Comparing coefficients in front of ’13@, m2> we obtain

ST @R b (By — Ry) = Ege™ R, (89)
Ri,mi
With R = R, — R,
Z 6 m1 mhmz(ﬁ) EEme . (90)

le

We again have reduced the problem to a matrix equation.
Examples:
1) 1-D, m=0 (1 state per primitive cell)
B =Ytz h (91)
R
For nearest neighbors tunneling E; = 2t(1) cos(ka).

2) Exercise: graphen.

VIII. DYNAMICS OF BLOCH ELECTRONS

A. Semi-classical equation of motion of Bloch electrons

We want to describe the evolution of electron’s wave function when a weak and slowly
changing external field is added. That is the Hamiltonian now reads
- — 2
(—ihV + £A() ) )
H = +U(7) —eo(r) (92)

2m
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where (the signs are consistent with negative charge, that is e = |e| > 0, but the charge of
the electron is —e < 0.) The potential U(7) is periodic while A and ¢ change little on the
scale of primitive cell of the Bravais lattice (slow fields).

Our aim to prove that the electrons in the band n are governed by the following effective

Hamiltonian

=, e
Han = en (—zv 4 hcA) —eh. (93)

B. Wave packet argument

We localize the electron of a certain band n into a wave packet:

O(7) = / &k g(Fyo, / &k g(F)u, o(7)e*T. (94)

The function g(E) is centered around a certain quasi-impuls k and has a width Ak such
that the width of the wave packet in the real space Ar is small enough. The two are related
as AkAr ~ 1.

The time evolution of the wave packet is given by
O(7,1) = / @k g(Ryu,, p(F)e™ e st/ (95)

We expand around ko and €, . We assume one can approximate u,, (F) ~ u, i in the

whole interval of Ak. Then

— i ‘“"n_,fs
O(7,t) ~ unﬁo(?ﬁ)elko'rﬂenﬁot/h/d35k:g k)e k( ok tm), (96)

Thus we conclude that the wave packet propagates with the velocity
or  10e,;
ot h ok

U=

(97)

Assume now the electron is influenced by an electric field E. The work done by the field

pro unit of time is —eE - . This work is "used” to change the energy of the electron. Thus

we obtain 5
Oe €Lk dk dk: —
— =2 — = —=—eF-U. 98
ot ok di a7 (98)
Thus we obtain
dk -
h— = —ek . 99
7 e (99)

The quasi-momentum hk satisfies the same equation as the usual momentum for free elec-

trons!
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C. Proof for potential perturbation (not for vector potential)

We consider the following problem

(~inv)’ )
H= T + U(7) + Ut (T) = Hoy + Uext (7) (100)
Here U is the periodic lattice potential and Uy = —e¢ is the external and weak potential.

More precisely what has to be weak is the external electric field, i.e., ~ VUexs.

We want to solve the time-dependent Schrdinger equation:

50V

hose = Hi (101)

We expand 1 (t) in basis of Wannier functions
=Y a, z()w(F — R) (102)
n,R
Recall the representation of a Bloch wave function
(7)) = e® Ry, (7 — R) . (103)
R
In this case a,, 5 = "B Wannier functions are given by

w =5 Y ). (104)

kel. B.Z.
and
. = 1 _ik-R >
wa(F = B) =~ 3 ey i) (105)
kel. B.Z.

First we investigate how Hj acts on the (shifted) Wannier functions using the fact

Hoiﬁn,;; = €nkVn k-

1

—» 1
How,n(F — R) = —

> e Hw, (=5 Y e e, (7). (106)

kel. B.Z. kel. B.Z.

We use now the Wannier expansion (103) and obtain

How,, (77— Z > emkei’g'(él_é)wn(F— 1%1)
R1 kcl. B.Z.
= > en(By — Ryw,(F— Ry) (107)
Ry
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where

En(é)

1 25
N Y e LR (108)
The Schrodinger equation now reads:

m‘?f =ih a, 5(t)w. (7 — )

= Hyp = (Hy+ Usc)0 = Y., 5, () (Ho + Uext)wn, (7 — R,)
n2»§2

= Z an2,R2 ZGTLQ R2 w’ng( - Rl) + Z an27R’2<t)Uethn2(

no,Ra

n27ﬁ2
(109)

7= R,) .

The Wannier functions form a complete orthonormal basis. Thus we just compare the

coefficients:
iha,, 5 Zan iy €nl( (R — R,)
Ry
+ > Qy,. RQ/d?’rw 7 — B)Ue (F)w, (F — Ry) . (110)
nz,Ra
The first term in the r.h.s. of (110) is rewritten as follows
Sa, gen(B—FRe) =Y en(Ri)a, gz = en(Ry)e Vg, 5
i Ry R
= eu(k = —iV)a, 7 - (111)
~BiVg . That is already here we consider a,, 5 as a ”good”

Here we have used U, F_f, =€ 4

function in all the space, i.e., a, 5.

The second term of the r.h.s. of (110) is approximated as

S i, [ @ w7 = BUea(Fn, (7= o) U (R (112)

na,Ra
That is only diagonal matrix elements of Uy are left. Since Uy is slowly changing in space,
i.e,. it changes very little on the scale of promitive cell, while the Wannier functions are

localized on the scale of a cell this approximation is justified.

Thus, the SE for the ”envelope” wave function a, 5 reads

iha, 5= len(=iV) + Usa(F)] a, 5 - (113)
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If we now 7forget” that a, 5 is defined only in the locations R and define it in the
whole space, a, » we obtain a Schrodinger equation with the effective Hamiltonian Heg,, =
€n(—iV) + Uee (7). In presence of vector potential it becomes (with no proof given here)

o, €5
Hegrp = €, (—ZV + hcA) —ed . (114)

D. Effective mass

We see that the operator e,(—iV) plays the role of the kinetic energy. The free kinetic
hQ(E)Q

2m

energy reads €gee = In many cases the relevant values of crystal momenta lay around

-,

an extremum of €, (k) at k = Ko. Then one can expand to the second order

- - 1 0%e,
) )+ 5 (g ) o= ko)l — ). (115)

In analogy to the free case the tensor

_ 1 < 0% >

*—1 n

m = o (116)

( )a76 h akaakﬁ E:EO

is called the effective mass tensor. In the simplest case when the tensor is proportional to

the unity matrix, i.e., (m*’1> 5= (1/m*)da,p one cane introduce the effective (band) mass
a,

m”.

For example in a simple cubic lattice we have
e(K) = const. — 2W (cos(ak,) + cos(ak,) + cos(ak,)) (117)

where in comparison to what we did earlier we change the definition of W so that W > 0.
The energy has a minimum at k, = 0 and the effective mass is obtained from Wa2k? =
h*k?/(2m*) and is given by

m* . (118)

1. Ezample

Consider a semiconductor with fully occupied valance band and an empty conductance

band. The conductance band is characterized by an effective mass m* =~ 0.1m. That is
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Econd(lg) = Eeona + h?k?/(2m*), where E.oq is the bottom of the conduction band. An
impurity (dopant ion) creates a potential

62

elrf”

where € ~ 10 is the dielectric constant. The dynamics of an extra electron added to the

Uext = — (119)

conduction band will be governed by an effective Hamiltonian which has the form of the

Hydrogen atom one, but with different parameters:

RAVEEE
Hg=Feonq— —— — — . 120
i T omr e (120)
The energy levels are known
m*et 1
E,=Fon— ——— 121
17 9ep2 2 (121)

The binding energy
m*e*  m* 1
= — —Ry, 122
2R m e (122)

where Ry ~ 13eV. Thus we obtain a binding energy of order 10~3Ry. The size of he bound

state, i.e., the new Bohr radius is given by 637;‘;* ~ 10%ay. Thus we obtain Hydrogen-like

bound states in the energy gap.

E. Classical equations of motion

Considering now the effective Hamiltonian classically, i.e., replacing —ihV with P we

obtain

H=e, (g + ;E) — ed(7) (123)

This Hamiltonian is useful for description of dynamics of wave packets.

The equations of motion read

d , =
% T = VpH
d —
—p=-V,H 124
==V (124)
The first equation gives
d o 1 ( Oe,(k)
= = — ) 125
U] dt T] apj h ( ak,j ) L B ( )
k=2+2



The second equation reads

B _Ezvi <87“j Oy * 87‘1> Tevio

e/, = e 0A,
:—C(/UXB>J'—C%: 87+€v¢
Using
d 04 0A,;
a T o T Z ar;
we obtain
d e e/, = 0A,;
G (o) = =2 (7 B) + S Vg
Introducing pii, = p+ eA and recalling that E= —%% — qu we obtain
d e/, = -
%pkm —E (UXB) — el

F. Only electric field

The equations of motion read

This gives

Or, one can invert the effective mass tensor and obtain

Z(m*)z] = —el; = F, .

J

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

These relations once again show the role of the effective mass. The mass tensor can have

negative eigenvalues. Then, the acceleration of the electron has an opposite to the force

(F = —eE) direction.

Bloch oscillations!!
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G. Concept of holes

Consider an almost full band. As an example take the sc lattice.
e(K) = const. — 2W (cos(ak,) + cos(ak,) + cos(ak,)) | (134)

Near the top of the band, where the unoccupied states are, at IZO = 7(1,1,1) the effective
mass is negative 2
m* = iR (135)
Instead one can introduce holes. The unoccupied states are now called occupied by holes,
while occupied states are unoccupied by holes. So a hole is an absence of an electron.
This is useful since the fully occupied by electrons band does not contribute to the current.
The current provided by the band n (we do not use the band index as we limit ourselves

here to a single band) is given by

J=-tX % alhs)ilhs) = —eX [ oy (s 5) TR ) (136)

where n(E, s) is the occupation number of the state with crystal momentum k and spin

s = £1/2 (in the band n). The velocity’s components are given by

- 1 Oe E,s
va(k,8) = 5 8(/{ ) : (137)

Here we generalized the band energy e(l;) to depend on the spin index e(lg, s). We did not
yet consider spin-orbit coupling. Thus e(/;) does not depend on the spin s. In general case,
when the SO coupling is present, it does. The time reversal symmetry requires in general
case e(k,s) = e(—k, —s). Thus v(—k, —s) = —v(k, s). In the absence of spin-orbit coupling
e(k) = e(—k) and v(—Fk) = —v(k).

The occupation numbers are between 0 and 1. For the fully occupied band n(E, s) = 1.

Thus we have

d3k: 86

Ja = _62/1.13.2 (2m)3 va(k,5) = _72/32 ka = =0 (138)

s

The integral vanishes since 6(]2, s) is periodic with the period given by the vectors of the

reciprocal lattice.
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For the holes we have the occupation numbers ny,(k, s) = 1—n(k, s). A hole characterized
by E, s moves with the same velocity as the electron with E, s. This follows just from the
fact that Schrodinger equation for the state do not depend on whether the state is occupied.

Then we obtain for the current density

j = ey /- (Z:):?’”(E’ il s)=ey [ (%3 (1= n(F, )] F, s)

—ex [ (%3 (R, 5) 5(F. 5) (139)

Thus we can say that the charge of the hole is +e.

Finally we recall the equation of motion

S (m*) gty = —cF; (140)
J
Defining the hall effective mass as mj = —m* we obtain

J
Thus if the electronic effective mass is negative it is more convenient to use the picture of
holes. They have positive charge and positive mass.
Thus far we characterized holes by the crystal momentum and the spin of the absent electron
E, s. It is more logical to say that the hole has a crystal momentum l;:h = —k and spin s, = —s. We
also define the energy of the hole as e, (kp, sp) = const. — e(k, s). For the constant it is convenient

to chose the upper edge of the band. Then we can have the usual relation

1 8€h(Eh,8h) 1 aG(E, S) o7
— T 0 — (ks . 142
Fon, h o (; s) (142)

It is now easy to check that the usual relation is satisfied for the hole effective mass mj .

T (kn, 1) =

IX. BLOCH ELECTRONS IN MAGNETIC FIELD

For piin = p'+ %ff we obtained

jtﬁkin = —g (17 X E) — ek . (143)

Recalling also that the effective Hamiltonian reads

H=e, (2 + ;Z) — ed() (144)
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we conclude that the Bloch wave vector is related to pin, i.e., hk = Dhin-

This gives for the case E=0

d - e /- -
k= (#(k) x B) , (145)
where ~
d?”j - 1 aGH(k)
I — (k)= = ) 146
First, we observe that the energy is conserved:
de dk
BT =0 147
g =g =0 (147)

Second, the vector dE/dt is perpendicular to g, ie. k, = const. if z is the direction of
B. Thus, in the k—space the motion is along lines of equal energy which belong to planes

perpendicular to B. One obtains these lines by cutting the equal-energy surfaces (e.g., the

-

Fermi surface) by planes 1 B.

FIG. 4: Fermi surface cut by a plane perpendicular to B.

Next we consider the trajectory in the real space. We obtain

Bx k=< Bx (olF) x B) = — ((F)(BY ~ B(B-u(k))) = —efc B (148)

— 7, (149)

where b = B/|B|. Integrating over time from 0 to ¢ we obtain

- - - Be

e AGIOREAO (150)

Thus the trajectory in the r"—space is obtained from the trajectory in E—space by a 7/2

rotation around the axis of the magnetic field and a rescaling by a factor —hc/(eB).
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A. Closed and open orbits

If the orbit in the k-space is closed, then also the orbit in the r-space is closed (see

Fig. 5a). However, there exist situations when the orbit in the k-space is open (see Fig. 5b).

BO

[ BO

k(t)

— UAVA

FIG. 5: a) Closed trajectories;b) Open trajectories.

This happens when the Fermi surface reaches the border of the Brillouin zone.

B. Cyclotron frequency

Assume the direction of the magnetic field is z, i.e., b = 7. Also assume that all the orbits

are closed. We write the equations of motion

eB

7 x E:—%m (151)
in components:
eB eB
k’x = —%’Uy s ky = % = (152)
From here we obtain
e’ B?
(dk)* + (dk,)* = W(vi +02)(dt)’ (153)

Introducing the length element along the trajectory in the reciprocal space dk =

\/(dk:gc)2 + (dk,)? we obtain

dk  |e|B
dit = 7hc vy, (154)
where v, = ,/v2 4+ vg. The inverted relation reads
he dk
dt = —— — 155
|€|B vl ) ( )
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For the period of the orbit we obtain

p_ he gdk he j{dk
“lelBJ vy |e|BJ |oe
dq

where dq is the differential of the wave vector perpendicular to the trajectory (and laying in

, (156)

the plane of the trajectory, i.e., k, = const.). This gives

h2c dq h2c dq
T = fdk; - ]{dk— . 157
le| B % dqg le|lB de (157)

We choose the differential dg so that at any point of the trajectory k(t) we have de = const.,
i.e., de is independent of k(t). We identify the integral along the trajectory in the k—space

/ dkdg = dS | (158)

where S is the area of the closed orbit. Thus

h%c 0S
=— — . 159
|@|B O¢ lkz=const ( )
One can also define the ”cyclotron mass”

h? 9S(e, k.)
= ) VE) 160
2t e (160)

so that the cyclotron frequency is equal to

27 le| B
c = = ——— ]. 1
YT T m*(e, k,)c (161)

For a simple parabolic band the cyclotron mass is equal to the effective mass. In more

complicated cases they are different (exercise).

C. Semiclassical quantization (Bohr-Sommerfeld) of orbits

We have seen that the effective Hamiltonian

P ez
H=¢,|-4+—A 162
‘ (n T ) (162)
is obtained by substitution
Wk —p+ A, (163)
c



We obtain
fﬁ.dfzyf(nﬁ—el) dF (164)
C

£ (R (t) = FL(0)) = ~ 1o (L)~ 72.0) (165)

multiplying both sides from the left with zZ’x we obtain

From

hk, = —971 x B + const. . (166)
C

Thus

%ﬁ-d?z ef(mxg—i—ff) dr

- °B. %erdr—fj{A dr

C
€

= ‘po-o)="0, (167)

c c
where ® is the magnetic flux through the closed orbit (in 7~space). The quantization condi-
tion reads § p- dr' = 2wh (n + %) This means
he 1 1
b =— -] = = 168
e<n+2> 0<n+2>’ (168)

where ®y = hc/le| is the flux quantum. The allowed areas of the orbits in the 7-space read

0N 1
A, =20 ( ) . 1
7 n+ 5 (169)
and in the /;—space
B?e? B?e? ® 1 27 Ble] 1
Spn==7An= 55— - = - . 170
n2e? W2 B (n+ 2) he (n+ 2) a70)
Comparing now with ,
h* 0S(e, k)
R 171
=0T 9 (171)
and
27 le| B
= — = — . 172
YT T m*(e, k,)c (172)
We see that the energy difference between the levels n and n + 1 is
1 h*  2nBlel
6(77/ + 1, kz) - 6(”, kz) = m (Sn+1 — Sn) = Sy 7 = hwc (173)

Oe

Thus we obtain the Landau levels quasi-classically. In what follows we will obtain Landau

levels for a parabolic band exactly.
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D. Magnetic susceptibility

Magnetization: M
B=H+47M (174)

For small H we have M = yH. Then B = (1 + 4wx)H = pH. Finally

Susceptibility

- X = X =
M=2B= B. 1
I 14 4myx (176)
Ifx<<1wehave]\2zXB.
Internal energy
dU = dQ + dA = TdS — MdH (177)
Free energy
F=U-TS , dF=-SdT — MdH (178)
From here
oF
M=—-|—-— 179
(o), o
and
82F>
x:—( (150)
OH? T,H=0

Thus we need the free energy F' = —kgT'In Z, where Z = ¥, e Fi/(ksT),

1. Grand canonical ensemble

In the grand canonical ensemble we have instead 2 = —kgT'InZg, where Zg =

SN [e“N >, e Pin/keT) | For free Fermions this gives

Q= —ksTY In [1+exp <”_€’“>} . (181)
g T T
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E. Bohr-van-Leeuven Theorem

No magnetization due to classical motion of electrons.

(Classical partition function:

Z = {/ d*rd*p exp (_k:BHT)]N (182)
and L
H= (7 £A) +U() (183)

Integration over p eliminates the effect of A.

X. PARAMAGNETISM PAULI AND DIAMAGNETISM LANDAU

A. Pauli paramagnetism

H = Hy+ Hyeeman - (184)
B’—’
HZeeman = _gluBz 7 ) (185)
where g = 2, ugp = 22:2.

The energy enters into the expression for 2 as u — €. Thus for spin "up” we can say that
the chemical potential is p + ugB while for spin "down” it is u — ugB.
For the potential €2 we thus obtain

1 1 9%
Q=2 (Qlp+ psH) + Qo+ ppH)) = Qo + S H au;) : (186)
We obtain
1 <029> 1, 0%
Xpara = — 17 = —5Up . (187)
P VNOH? ) o, V0 O

(Q should be divided by the volume to get the magnetization as density).
At T = 0 all states up to £ = Ep are occupied where E = e+ ug B. In other words for electrons
with o, = +1 we have all states up to ¢ = Er + upB occupied. For 0, = —1 we have all states up

to e = Er — upB occupied. The difference of total densities is given by

Ep+ppB Ep—ppB
Ny —n_ = / v(e)de — / v(e)de ~ 2 Bu(Er) | (188)
0 0
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where v(e) is the density of states (pro spin). The magnetization is given by
M = pug(ny —n_) =2ujBv . (189)
Finally
X = 2ufv = pjvs (190)

where vy = 2v is the total density of states at the Fermi energy (including spin).

B. Landau levels

Consider now free electrons or equivalently a parabolic band. The magnetic field B | Z.

The vector potential is, e.g., A = (0, Bx,0). The Hamiltonian reads

w0 § ieB \° &
e L (L (R L 191
2m (0$2 + <8y + he x) + 822) (191)
Ansatz
V) = ¢(x)evvek (192)
This gives
n* [0 ieB \? 2 ikyy iksz ikyy iksz
7y —m[aW(kywc v) 6= k2g| et — Bg e (193)
Thus ) ) )
e [0% ieB h°k?
= )/ =FE— z 194
2m[8x2+(l‘y+ hcx> 4 < 2m>¢ (194)
R 9%¢  h? eB \? n*k?
. P+ = =|(FE - z 1
2m8x2+2m<y+hcx> ¢ 2m ¢ (195)
R 9%  2B? he \? h2k?
S —— =|FE— z 1
2m Ox? + 2mc? (3: * eBky> ¢ 2m ¢ (196)
_Fi@er“’g(J;_x)?(ﬁ— E_ffkﬁ b (197)
2m Ox? 2 0 B 2m ’
where zy = —f—gky and w, = %. We can also introduce 1% = |eh|—%. Thus z¢ = %k,
The energy levels
n°k? 1
E="" 4, <n + ) . (198)
m 2
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C. Degeneracy of the Landau Level

The degeneracy is obtained by introducing the volume V' = L, L, L, and introducing the

periodic boundary conditions in the y and z directions. Then k, = QE& and k, = any. The
z Yy

k, values are also limited by the fact that xg = —@k‘ € [0, L,]. Thus the number of states

for a given k, is given by Z St (ke — k;mn) = ;y e,i’f . The number of states in an interval

dk, for each Landau level is thus given by

L,L,eB L eBV
dn, = —2——2dk, = ————dk, 199
" 2 he 2w (2m)2he (199)
D. Landau diamagnetism
The energy levels
E=E L, ( 4 1) (200)
= We | M .
2m* 2

with w, = <2 (it is now important to differentiate m* from m).

The number of states for a given k, is given by Ly EB . The number of states in dk, at
the level n
_ L.L,eBL, eBV
dn,, = ———dk, . 201
" or  he 2w (27?)27‘10 (201)
We obtain
h2k?
L.L,eB p— i — hwe (n+3)
Q = In 1
e S (M
h2k2 1
eBV ft— g — hwe (n T 5)
= T / dk,In | 1
o ehe 2 . ( Texp ( T
k:BTeBV
= F 202
(27)2he nz:: < > (202)
where

[e'e) h2]€2
_EE b,
F(z) = / dk. In (1 +exp (“ T x)) (203)
. knT

00 h2k2
= / dk, In (1 + exp (yk;”)) : (204)
B

We use the variant of the Euler-Maclaurin formula

ZF<n+> /d:cF + F’(O)+ - (205)

We also introduce
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We obtain

7dxF<x> o [t

o
Thus the integral contribution to €2 reads

0 kgTeBV 1 /l‘ kgTm*V
int — — -

(2m)2he hw, J—o - (27h)?
We also obtain

F(0) = —hwef'(y = )

and the correction

m

1 kgTeBV 1 kgTeBV O

o0 = 24 (2m)2he wel (1) = 24 (27)2he e 8;1?_[0 J(y)dy
1 , O 1 (heH\? &
Y (hewe) aTLQQo(M) Y (m*c) aTLQQo(M) :

Thus

1 (82(2) 1 e 0 (1)
Xdia = — 15 = o A 2 tolH) .
V\OH? )}y, V 12m*c Op?

Comparing with

Xpara =

eh

5 We obtain
mc

and with ug =

E. van Alphen - de Haas effect

(206)

(207)

(208)

(209)

(210)

(211)

(212)

The correction to 6 in Eq. (209) is proportional to H?. The next correction is an

oscillating function of H with amplitude oc H*2. The magnetization M = —9Q/0H is

also oscillating and the amplitude of oscillations at low temperatures may become bigger

than the non-oscillating contribution. This is the van Alphen - de Haas effect (predicted

theoretically by Landau).

Qualitative explanation of oscillations due to changing occupation of Landau levels as

function of H.
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XI. BOLTZMANN EQUATION, ELASTIC SCATTERING ON IMPURITIES.

A. Kinematics

For quasiclassical description of electrons we introduce the Boltzmann distribution func-
tion fn(/;, 7,t). This is the probability to find an electron in state n, k at point 7" at time
t. More precisely is f/V the probability density to find an electron in state n, k in point 7.
This means the probability to find it in a volume element dV is given by fdV/V.

We consider both k and 7 defined. This means that we consider wave packets with both
k and 7 (approximately) defined. The uncertainty relation AkAr ~ 1 allows us to choose
both Ak and Ar small enough.

The electron density and the current density are given by

1 -
n(r,t) = v > fulk, 700 (213)
n,E,U
25 € - o
j(T‘,t) = _V Z Uﬁfn(kvrﬂt) (214)
nl;,a
The equations of motion
d . . 1 [0e,(k)
== A 215
it T h ( ok ) ’ (215)
dk e, o
hor =—eE—~ (¥x B) . (216)

determine the evolution of the individual k() and 7(t) of each wave packet.

If the electrons would only obey the equations of motion the distribution function would

satisfy
Fall(2), (1), 1) = fu(k(0),7(0), 0) (217)
Thus, the full time derivative would vanish
a _ of
— = 21
7 8t+k ka+7“ Vf 0 (218)

However, there are processes which change the distribution function. These are collisions

with impurities, phonons, other electrons The new equation reads

4 _of

- at+k Vif +7- Y, f = (af> (219)

ot

where (%)C et [f] is called the collision integral.
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Using the equations of motion we obtain the celebrated Boltzmann equation

o (v (9% B))-Fuf+ - Fos =111 (220)

B. Collision integral for scattering on impurities

The collision integral describes processes that bring about change of the state of the
electrons, i.e., transitions. There are several reasons for the transitions: phonons, electron-
electron collisions, impurities. Here we consider only one: scattering on impurities.

Scattering in general causes transitions in which electron which was in the state nq, El
is transferred to the state no, Eg. We will suppress the band index as in most cases we
consider scattering within a band. The collision integral has two contribution: ”in” and
Tout”: I = Iy + Iout-

The ”in” part describes transitions from all the states to the state k:

-

Il f) = S W (k. 1) f Ok, 1 = £ (R, 7)) (221)

where W (ky, k) is the transition probability per unit of time (rate) from state k; to state k
given the state Ky is initially occupied and the state kis initially empty. The factors f (/%)
and 1 — f(k) take care for the Pauli principle.

The "out” part describes transitions from the state k to all other states:

]out[f] == Z W(’% El)f(lzv F)[l - f(El7F)] ) (222)

The collision integral should vanish for the equilibrium state in which

f(R) = fo = - : (223)

This can be rewritten as

e(k) — p

exp

The requirement i, [fo] + Iout[fo] is satisfied if

(k)
| (225)

e(ky)
kT

—

W (K, ky) exp

—

= W(kh IZ) exXp
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We only show here that this is sufficient but not necessary. The principle that it is always so is
called ”detailed balance principle”. In particular, for elastic processes, in which 6(E> = e(l%),
we have

—

W(k, k1) = W(ky, k) . (226)

In this case (when only elastic processes are present we obtain)

11} = 3o W (kL B)f(R)[L = f(R)] = 3 W (k. k) F(R)L — f (k)]

= Wk, k) (k) — S (k) - (227)

Thus, Pauli principle does not play a role in this case.

C. Relaxation time approximation

We introduce f = fo+ §f. Since I[fy] = 0 we obtain

I1f] = S Wk, k) (8f (ky) — 6 (K)) - (228)

—

k1

Assume the rates W are all equal and 32; o f (k1) = 0 (no change in total density), then
I[f] ~ =6 f(k). We introduce the relaxation time 7 such that

_of

T

1[f] = (229)

This form of the collision integral is more general. That is it can hold not only for the case
assumed above. Even if this form does not hold exactly, it serves as a simple tool to make
estimates.

More generally, one can assume 7 is k-dependent, 7;:. Then

117y = ~ 28 (230)

Tk

We will keep writing 7 even if we mean that it is actually 7.
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D. Condutivity

Within 7-approximation we determine the electrical conductivity. Assume oscillating

electric field is applied E (t) = Ee~®!. The Boltzmann equation reads
of e I —Jo

hC A S B v e -V, f = — 231
% % Vif+ 0V, f . (231)
Since the field is homogeneous we expect homogeneous response ¢ f(t) = 0 fe~™!. This gives
. 1
—;E~ka:(iw—T) 5f . (232)
In the L.h.s. we replace f with fy. This gives
€ 8f0 . — ( ].)
—— —ht - E = ——df. 233
h Oe vk W / (233)
Thus we obtain
eT 8f0 - —
of = - B 234
/ 1—iwr dc 'F (234)
For the current density we obtain j(t) = je ™!, where
J =5 X0
k,o
262 T afo -
- = (G- E) -
V 21— iwr e " F )
d3k T 8f0 =
:_22/ L G B . 235
‘ (27m)3 1 —iwT Oe (0 - ) % (235)

We define the conductivity tensor o via j, = 3., 0a sE5. Thus

A3k T 0fo
g =—2 2/ — s . 236
o ¢ (2m)3 1 —iwT Oe Valp (236)

At low enough temperatures, i.e., for kgT < p,

o 2
0o s —b(e — 1) = = (ke T)26" (e — ) (237)
Oe 6
Assuming 7 is constant and the band energy is isotropic (effective mass is simple) we
obtain
2e*T / (e)d dQ dfy
af = — , v — UV
Oof 1 —dwT VU e g
2e¢rv(p) dQ 2e¢rv () vh

Ay = 2TV VR 238
1—iwr J 47 T 1 —iwr) 3 " (238)

For dc-conductivity, i.e., for w = 0 we obtain

2 2 2 2 o 2
MV3<M>’UF 5oy = W?EMUF S (239)

where v, = 2v is the total density of states.

0&76 =

45



E. Determining the transition rates

Impurities are described by an extra potential acting on electrons
Usnnp () = 3 0(7 = d) | (240)
J
where @; are locations of the impurities.

In the Born approximation (Golden Rule) the rates are given by

B =T * 8(e(r) — e(R)) | (241)

impJ;IJZ

where the delta function is meaningful since we use W in a sum over /;1. Thus far we
normalized the Bloch wave function to the volume V. That is (¢ 1) = V (this also means
that the Wannier functions were not normalized to unity but to v = V/N). For the matrix

element in the Golden Rule we need state normalized to 1. Thus we have
1 L« o~ i(R—k1)F
Ui = 77 2 [ AV 07 = )u, (Fug(F)e ™) (242)
J

We assume all impurities are equivalent. Moreover we assume that they all have the same
position within the primitive cell. That is the only random thing is in which cell there is
an impurity. Then a; = ﬁj + d0a. Shifting by ﬁj in each term of the sum and using the

periodicity of the functions u we obtain

1 — i o o
J
1 R
ST DIL (243)
J
This gives
2_ 1 2 N~ iR (- R
Upii| = 772 1z, el 2o 0= (244)

This result will be put into the sum over k1 in the expression for the collision integral 1.
The locations ﬁj are random. Thus the exponents will average out. What remains are only

diagonal terms. Thus we replace

U,

2
1mp,l_51,12‘

1
- W ’UELEP Nimp ) (245)

where Nip,, is the total number of impurities. In other terms what we perform is the

averaging over positions of the impurities.
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This gives for the collision integral

1111 = YWk E) (f(R) — £(R)

21 Nimp 2 e 7 7 I
- 2o %; o, 2% 8(e(Fr) — e(R) (F(F2) — £(F))

ot [ o o, 2 0(e() = ) (£ — £(B) (246)

where Nimp = Nimp/V .

We introduce the surface S defined by e(k;) = e(k) and then
d*k _ dSdk, dSde

= = (247)
3 3 Oe
@rp ~ P (2
Now we can integrate over energy and we obtain
- 2w ds(k - -
1N = 2y [ ) (£ - 1) (248)
h 913 | 2<(kn)
(2) ok,
Note that the density of states is given by

F. Transport relaxation time

As we have seen the correction to the distribution function due to application of the
electric field was of the form §f ~ E-¥. Ina parabolic band (isotropic spectrum) this

would be §f ~ E - k. So we make an ansatz
5f = —iix - 3(e) | (250)

where 7, = k/|k|. For isotropic spectrum conservation of energy means |k| = |k|, the
matrix element vz - depends on the angle between ki and k only, the surface S is a sphere.

Then we obtain

B dsS B ds2 951
1/—/(2#)3)6(21 =v | (251)
Thus
L — 1/@ (252)
(27)3 ‘6% Ar
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and

2 ds? - -
1064] = i vt el (5f<k1) 10)
ds?
= nlmpy\g\ / : 0z ,) (cos 0 5 — cos 6’,31@) . (253)

We choose direction k as z. Then the vector k; is described in spherical coordinates by
0z, = g, and ¢p . Analogously the vector g is described by 67 = 0; 5 and ¢gz. Then
dQl = sin €E1d€E1d¢El.

From simple vector analysis we obtain
cost;r = cosfcos b +sinfzsinby cos(¢g — éf, ) - (254)
The integration then gives

nlm v
16y = Mme? |g|/sm9 do deg |v(0z )|? %
X (cos 05 — cos 05 cos 0 — sin 05 sin 0 cos(dg — qb,;l)>

= Wni;lnpy K cong/st by [v(0z)1*(1 — costy,) . (255)

Noting that |g| cos; = g - fl, = —df we obtain

J
1[6f] = th (256)
where
1 _ iy 2 sinf(1 —
—=7 /d@ [v(0)]* sinO(1 — cosl) (257)

Note that our previous "relaxation time approximation” was based on total omission of

the ”in” term. That is in the T-approximation we had

ZW ki k) (87 (k) = 0f (k) =~ =0 f (k ZW R ) (258)
Thus
71_ = %W@hg) = % /d@ [v(6)|? sin6 . (259)

The difference between 7, (transport time) and 7 (momentum relaxation time) is the

factor (1 — cosf) which emphasizes backscattering. If [v(0)|? = const. we obtain 7, = 7.
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G. Local equilibrium, Chapman-Enskog Expansion

Instead of global equilibrium with given temperature 7" and chemical potential p in the

whole sample, consider a distribution function f(7, E) corresponding to space dependent
T(7) and u(7):
1

exp {E,f :ﬁ‘((;ﬂ +1

fo=

(260)

This state is called local equilibrium because also for this distribution function the collision
integral vanishes: I[fy] = 0. However this state is not static. Due to the kinematic terms in
the Bolzmann equation (in particular @, - V,.f) the state will change. Thus we consider the
state f = fo 4+ 0f and substitute it into the Bolzmann equation. This gives (we drop the
magnetic field)

agf_;E'ﬁ’“(f”df)*ﬁkﬁr(fﬁﬁ)21[5f]- (261)

We collect all the 0 f terms in the r.h.s.:

9o L -
—% Vido+ O Vifo = 1[6f] + 8Z+;E-Vk5f—vk-vr6f. (262)
We obtain
VA R (N A C el DR
Viofo=— B, (v = VT (263)
and
0 - = — 96
—af:ﬁk ((VTIH*@E) kTMVT>—I[5f]+ af+hE Vidf — - V,0f . (264)

In the stationary state, relaxation time approximation, and neglecting the last two terms

(they are small) we obtain

00 (G 0 %) = 2
5f = af“ 2 ((ﬁ;ﬁ eB)+ 2L ﬁT) . (266)

Thus we see that there are two "forces” getting the system out of equilibrium: the
electrochemical field: E_’el.ch. =F+ (1/ e)ﬁu and the gradient of the temperature VT. More
precisely one introduces the electrochemical potential ¢ o,. such that Eel_ch. = E—{—(l / e)ﬁu =
~Vereh. = —V¢ + (1/€) V. Thus ¢eron. = ¢ — (1/e)p.
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On top of the electric current

— 5 (& - -
Je(rt) = v U0 f(k,7,t)
ko
we define the heat current
— 5 1 -
]Q(Tat) = VZ(Ek M)Uﬁéf(karat)
ko

(267)

(268)

This expression for the heat current follows from the definition of heat d@) = dU — udN.

This gives
jE Kll K12 Eel.ch.

jo Ko Ky | \ VTYT
For the electrical current density we obtain

-

- € N =
JE = —Vzvkéf(k)
Ko
:_EZT af[’{gﬁ(eﬁ Sl v ﬂ -
Ve T oe |F o T ke

Thus for K1; we obtain

Knaa = - ZTtr ’Ulmvkﬁ

For K5 this gives
Kizap = —— Z Ttr Ek — L) Vk aVk 3 -

For the heat current density we obtain

—

Jjo = *Z e — )0 f (k)

dfo [~ = €& — e .
= VZT“(E’“_“)ETS [k(E +7 )] Uk
k,o

Thus for K5 we obtain

e 0
K05 = % > T (66 — 1) aiovmvk,ﬁ :

For Ko this gives
1 dfo 9
K45 v ,;EU Tt De (€x — 1)” Vk,aVkp

20

(269)

(270)

(271)

(272)

(273)

(274)

(275)



1) K1 is just the conductivity calculated earlier.

2) K2 = —Ky. This is one of the consequences of Onsager relations. Thermo-power

etc. Kiy # 0 only if density of states asymmetric around g (no particle-hole symmetry).

3) For Ky we use
dfo s 2 ¢
L —8e —pu) — — [ —
86 5(6 :u) 6 (kB ) 5 (6 /'L) )

This gives

1 0
K22a,8 = V EZ Ttr ajeb(ek - :u>2 Vk,a Uk,

d) 0
= 2Ttr/V( )de4— afo( — 11)*Vav5
ds) 2
= —27'tr — (kBT)zu — Vg = —l (kgT)*vviTii0as -
3 Am 9
Thus, for thermal conductivity s defined via jQ = —kVT we obtain
KQQ 27T2
KR = —m = T k%TV'U%Ttr
Comparing with the electrical conductivity
2 9
g = g VURTir

We obtain the Wiedemann-Franz law:

o e 3
H. Onsager relations
The relation
jE . Kll K12 Eel.ch.
jo Ky Ky | \ VT/T

can be slightly rewritten to fit Onsager’s logic.
The entropy production is given by

g = /dV]E

(276)

(277)

(278)

(279)

(280)

(281)

(282)

The last term expresses the heat brought to dV by the heat currents. We perform partial

integration in the last term and obtain
g = /deE /deQ vf

o1

(283)



Thus
S = /dV (- X + o - Xo) (284)
with XE = % and XQ = —%.

The linear response relations read

Je|  [@Qu Qu)(Xe| [Qu Qu

o Qa1 Qa ) \ Xo Qun Qx| \ —

The Onsager theorem states that the matrix @);; is symmetric.

(285)

%‘ﬂl S|t

XII. MAGNETO-CONDUCTANCE, HALL EFFECT
A. Hall effect

We consider a situation when a relatively strong magnetic field B is applied and, on top
of that, a weak electric field E. For simplicity we consider € = A2k%/(2m), where m can be
the band mass.

The Boltzmann equation reads

of e (=4 1, = - I
at—h<E+c(va)>-ka+vk-VTf:][f]. (286)
We assume [[f] = —g (by 7 we mean T,). As long as we do not consider very high

magnetic fields where Landau quantization is important we still have the Fermi distribution
function fy for E = 0. However we no longer can neglect the magnetic force (Lorentz) acting

on the § f function. Thus the stationary Boltzmann equation for d f reads:

€ = = e /. o =
—5 E-Vify =10/ + o (t x B) - Vi . (287)
or
= - a,f() o 5f e = — —
We look for a solution in the form (in analogy to the calculation of conductivity)
> dfo
5f=r1e X -7 2
f=1eX -0, ( 86) (289)
We obtain (using v = hE/m)
= fire (0 fo > F o ano S



The second term multiplied in the Boltzmann equation by ¢ x B gives zero. Thus we

obtain
= 8f0 = 6f0 — hre 8f0 =
- — ¢X. © ATe (%) 1
eEv(8€> e U((% —i— ( xB) ol , (291)
or
S . TE N
E-#,=X- vk—%(vka> X, (292)
or
E'ﬁk:X'ﬁk—wcT<Ung>'X, (293)

where b = B/|B|. Note that now we assumed both e and m positive. However we should

also be ready to change the sign of one of them if we have holes. We make an ansatz for X:

-

= |E|(aé+ Bb+~(gx b)) , (294)

where &= E/|E).

This gives
aé - Ty + Bb- T, + (€ X b) - T,
— wr (T x b)(a@ + b+ (€ x b))

™
S

ES
I

= af T+ Bb- T + (@ X b) - T,
— wer [a(bx &) - B + (€ x b) - (h x b)]
= af T+ Bb- T +Y(E@X D) - T

— W,T [—a(g X b) - Ty, + YUpE — 7(55)(ﬁk5)} : (295)

-

We collect coefficients in front of €' 0, b- U, and (€'x b) - U). This gives

v+ wsa =0 (296)

We thus obtain

1+ w?r?
WeT
1+ w?r?

CU27'2

g = =T (@b (207)

1+ w?r?
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Thus

The current density is given by

—

j=00X ,

2

(298)

(299)

where o = 2 e?vpTv? (with v being density of states per spin). With v(e) oc \/e we obtain

3

n = 2(2/3)eprp we obtain
ne*rvi  ne’r
0’0 = =

2% m*
This gives for the conductivity tensor (choosing b = )

1 —w.T 0

% 1 0
o=———
T+ w22 | T

0 0 1+w?r?

The inverse tensor of resistivity reads

where py = Uio

Thus from E, = 375 pagjs follows

Hall effect. Hall coefficient

E WeT
With w, = ni]fc we obtain
m* eB T 1

e2nt m*c B enc

Note that for the hall coefficient R the sign of the charge is important.

B. Magnetoresistance

We obtained p,, = pyy = p.. = po = const.. Thus no magnetoresistance.

In general one should distinguish two cases

o4

(300)

(301)

(302)

(303)

(304)

(305)



1. Closed orbits

We have obtained for the parabolic band (with only closed orbits)

1 —w.T 0
0o
0 = m WeT 1 0 (306)
0 0 1+uwr?

At high magnetic fields w.7 > 1 we obtain

wngQ _Tifr 0
g ~ 0y w—iT w2.17'2 0 (307)
0 0 1

2. Open orbits
For open orbits the situation is different. Imagine the open orbit is in direction £,, Then

there is a finite average velocity v,. Thus change of v, is possible exactly as in the case of

no magnetic field. This gives

1 —-L 0
o~og | = =5 0 (308)
0 0 1
For the resistivity tensor we obtain
/2 wer/2 0
pr~po | —wer/2 wir?/2 0 (309)
0 0 1

Thus strong magnetoresistance. Namely 1) The Hall coefficient R is 2 times smaller; 2)
Pyy 1s greatly enhanced. Since open orbits appear usually only for certain directions of the

magnetic field, one can expect strong dependence of p or R on the direction of B.

C. Quantum Hall Effect (QHE)

Qualitative discussion: Fig. 6.
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FIG. 6: Quantum Hall Effect.

XIII. FERMI GAS

We consider a collection (gas) of N free electrons (fermions with spin 1/2). The ground

state is given by

o) = I al,10) (310)

|]€|<kF,0'
(some order of states should be chosen).

The value of kr is determined by the number of particles N. Namely

2V
=1 X 1) =2 ( ) (311)
(k<k‘p,a |k|<kp 3”2
Thus kp = (37%n)'/3, where n = N/V is the density of electrons.
(dol p(r) [do) = D {0l Wh(r) o (r) o)
77,]6/ etkr N

; % \/V <¢0’ Ay 01/ & |¢0>

ZZ —zk’ etkr
O O(kr — |K[) = (312)

o VY



A. One-particle correlation function

Go(r = 1) = (g0l WL(r) ¥, (") o) (313)

Meaning: amplitude to remove an electron with spin ¢ at ' and insert it back at r.
Clearly G,(0) = n/2. So we define g,(r — ') such that G,(r — ') = (n/2)g,(r — r') and
9-(0) = 1.

Go(r—7') = Z TR (ol i o [ D0)

k
Bk
k|<kp (27)3

k(") 3(sinz — z cosx)
(A =

n
—- 314
2 ? ( )

23
where x = kp|r — 1’|
B. Two-particle correlation function

Probability to find a particle at 7" with spin ¢’ if at r there is already a particle with spin

rrlr = 1) = (2) {00l BV IL) D, (), () 60)
= (2) 160 3ol)) ) = 8l = 10300 ) (313)
We obtain

2\* 1 —i(k—k")yr  _—i(g—q")r’ AT~ ~ o
Go,o' (7" - 71/) = <n> W Z € (h=Hr. € (=) <¢0‘ aJIrc,aa:;,cr’aq’,cr’ak’,a ‘¢0> (316)
k,k',q,q"

If o # ¢’ the calculation is simple
go,a (7“ - 7” ( ) Z (b0| ﬁk,a’ﬁq,o’/ |(b0> =1 (317)
kg
If, however, 0 = ¢’, then we use Wick’s theorem (in this case it is not difficult to prove)

<¢0| dk Ua:; an’ a'ak’,a |¢0> = (5k‘7k'5q7q/ - 5k7q,5q,k')nk70nq70 (318>
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Thus

2 : 2
Goo(r —1') = (VZ) 3 (1 B e*i(k*qxrﬂ"/)) 1 9(sinx —6xcos )
"7 i<k lal<kr v
4
=1-g*(r—r)=1- —QG?T(T -7, (319)
n
where again x = kg|r — 1’|
1,0j
0.8}
0.6}
0A4}
0.2}
2 4 6 8 10
FIG. 7: Function g, ().
There is a "hole” due to the Pauli principle. One can check that
n/d?’r(gg’a(r) —1)=-1 (320)

Exactly one electron is missing. The radius of the hole ~ k'. From the density we obtain

the volume taken by one electron 0V = 1/n. Radius of a sphere corresponding to §V is
1/3 1/3

obtained from 1/n = §V = (47/3)r3. Thus, indeed, rp = (ﬁ) o (‘({f) / kz'. In what

follows it will be useful to introduce a dimensionless parameter by dividing rr by the Bohr

radius ag = h*/(mee?) and obtain

(321)

_Tr (97T)1/3 771(362
-\ 4 B2k

C. Jellium model, energy of the ground state

We consider now the gas of interacting electrons. There are N electrons in volume V. The
positively charged N ions are distributed homogeneously over the volume V. One neglects

the crystalline structure and considers ions as an absolutely homogeneous charge density
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n = N/V. Thus the Hamiltonian of the electrons reads

A

= S [ @ { - 80,0+ B0 0}

Z 1 . . . R
+ 5 //d37”1d37“2 \111;1 (Tl)\IIjTZ (r2)U(2) (Tl - 7”2)\1/02(7“2)\1/01 (Tl) ) (322)
01,02
where
2 2
2 1 3 (&
U )(Tl —ry) = P— and U )(r) = —/d r'n(r') P (323)

Since the density of ions n(r’) does not depend on 7/, we obtain, that UM (r) is also 7-
independent (except for boundary effects) and is given by UV (r) = —nlU,, where Uy =
J dST%. This integral would diverge if V' — oo.

We want to calculate the average value of the Hamiltonian in the free electrons’ ground

state
E = (¢o| H |¢o) - (324)

That is we do not look for the real ground state of H, but take the simple one (|¢o)) and

calculate the expectation value of the energy.

1.  Kinetic energy

Eyn = <¢0|;/d3T{—;@L(T)A‘i’U(T)} o)

’k? 3 3 1k}
= > = NEp=_-N— = Neg, , (325)
k| Fpo 2m 5 5 2m
where e, = (3/5) E is the kinetic energy per electron.
2. Potential energy
Bpor = (0] 3 / dr { W (UO ()T, (r)} |go) = —n?VUy = —nNTy . (326)
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3. Interaction energy

By = ¢0| Z //d37”1d37”2 \I’T (7’1)‘1’T (7‘2>U( (7"1 —7”2)@02(7’2)@01(7’1)|¢0>

g1,02
= > - //d3r d*ry UP (ry = r5) (o] WE (m) UL, (r2) W, (ra) W, (1) | o)
1,02 3 n2
= //d rd® 7“2U (T1—7°2) Z Zgal,oz(rl_ﬁ)

01,02

= ; //d3r1d3r2 U (ry —ry) (ng =Y Go(r1 — 7‘2)2> (327)

The first term in called the Hartree term. It gives

Fiartree = 1°VUy/2 = nNUy/2 = N?Uy/(2V) . (328)

It does not exactly cancel E,q as sometimes (wrongly) stated. To get a full cancellation one
has to consider the energy of the ion charges interacting with themselves (not included in
the model). This one is also given by Eion_ijon = n?VU, /2. More logical within the current
model would be to say that Epor + Fhartree = —NeilionV Uy + n4VUp/2 is minimized by
Nel = Nion = N. The minimal value of Epo + Fhartree 1S given by —n?VU,/2.

The second term is called Fock or exchange contribution
1
Eroc = —3 //d3T1d37“2 UP(ry — 1) 3" Golrr —12)?

. S [ @U@ ) Y60y

_ 9n/d3 e? [sinkp|r|—kplr|coskp|r\ ?

Ir| (kplr])?
- _Neexch ) (329>
where
97me (sinz — x cosz)? 3e?
€oxch = / dz = — =k (330)
Thus the total energy balance reads

E 221 0.916] €2
7 — Ckin exch — - 5. 331
N F Cexch [ T2 T ] 2a0 (331)

Minimum is reached for ry ~ 4.83. This value corresponds to Alkali metals. Around

these values of r, the ground state of the Fermi see type is a good approximation.
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For much bigger values, ry — oo, which corresponds to a dilute limit, the energy per
electron approaches zero. It turns out one can find a better ground state with a smaller
energy per electron: the Wigner crystal. In this state the electron avoid each other and.
thus, minimize the interaction energy.

For ry — 0 the energy per electron becomes positive, thus it seems the system is unstable,
i.e., the electrons would be "better oft” out of the system. This is however not so. In this limit
the Fermi gas is a very good approximation. The positive kinetic energy is still compensated

by the (infinite) negative energy (work function) [Epet + EHartree)/nV = —nUy/2.

XIV. FERMI LIQUID

A. Spectrum of excitations of the ideal Fermi gas

We begin again with the ideal Fermi gas (no interactions). The Fermi distribution func-

tion (the average occupation of a level with energy ¢;) reads

np = —: (332)

e*sT 41
Here ¢, = %’f In general the density n = N/V is fixed. Thus the chemical potential is
temperature dependent, u(7T"). We define ey = h;:? = 11(0). One can obtain kp = (372n)'/3.

At T = 0 the Fermi function is a step function np = 6(ep — €;). At T > 0 the step
gets smeared. This can be thought of as a result of excitation of ”quasiparticles”. Namely,
assume we transfer one electron with energy €; < er to a state with energy e; > ep. The
energy we have to pay is equal to €3 — €. We say that we create two quasiparticles: 1) one of
the particle (electron) type with energy &; = €5 — er and the other of the antiparticle (hole)
type with energy & = ep — €;. (One uses here the name "hole” again, although these holes
have little to do with the holes introduced earlier for band electrons with negative effective

mass and/or almost filled bands). If both €; and ey are close to € we obtain

P _ pE
& = 5~ — 5~ (p1 —pr)pr/m = vr(p1 — pr)

2m  2m
Py P
& = 25— B2 (i — poe/m = vepr — ) (333)

It is instructive to study the dependence of the total energy hw = & + & on the total

61



momentum hq = p; — pa. It is easy to show that

h2q(q + 2kp)

for ¢ < 2kp 0<hw<
2m

h2q(q — 2kp) e = n?q(q + 2kp)

f 2%
or 4= 2m 2m

(334)

Provide picture. Exercise: structure factor, reveals the spectrum of quasiparticle - hole

continuum.

B. Landau hypothesis

Fermi liquid is a state (one of the possible states) of fermions (electrons or He® par-
ticles) with interactions. The interactions can be strong. Nevertheless Landau proposed
the following: At low temperatures (when there are not many excitations) the
excitation spectrum of the Fermi liquid has the same form as that of the free
Fermi gas. Namely, the excitations are characterized by their momentum. There exists
a special momentum pp related to the density of the liquid. The energy of quasiparticles
reads & = vp(p1 — pr) and of quasiholes & = vp(pr — p2). Now vp is just a parameter
with dimensions of velocity. One can also introduce an effective mass via m*vp = pp. This
effective mass has nothing to do with the band effective mass.

The Landau Hypothesis can be proved by the diagrammatic technique (course TKM 2).
Here we just provide a motivating argument about weakness of relaxation in a Fermi gas
with weak interaction. We consider an initial state with a filled Fermi see and in addition
we have an electron (quasiparticle) with momentum pj; and energy €; (§; = ¢, —ep > 0). We
assume p; ~ prp and & — 0. More precisely & < er. The only possible scattering process
should take an electron below the Fermi level with energy e; < €. Two "new” electrons will
be created with energies €] > er and €, > ep. We have €; + €3 =€) + €, or & +& =& + &
with & > 0, & < 0, & > 0, and & > 0. The energy &} is given by the energy conservation.
Two energies & and &; are "free”. We obtain |&| < & and & < &. Thus, the volume of the
phase space available for the scattering process can be estimated from above to be smaller
than 122, where v is the density of states at the Fermi level. Of course one also has to take
into account the conservation of momentum. In 3D this does not change the result and one
arrives at the scattering rate: v ~ £2/ep < & . Thus, it is the filled Fermi sphere which

prevents particle from scattering. This is why quasiparticles with a given momentum have
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long lifetimes. In a Fermi liquid the quasiparticles will have energies of order kg7T. Thus

they are "good” quasiparticles and the Fermi liquid description holds as long as kgT' < €p.

1. Implications

One of the important implications of the Landau hypothesis is the fact that the specific
heat is still given by the formula similar to that of the free gas:

7T2

Cy 3

kgTvs(u) (335)

where v, is the (total including spin) density of states at the Fermi energy. However in a

Fermi liquid it is given by
prm’

Here instead of the free mass we have the effective mass.

C. Gas model

Once having postulated the quasiparticles near the Fermi momentum pg with the effective
mass m* we can ”go back” and postulate a gas of (quasi) particles with mass m* which fill
the whole Fermi see. We describe it by the distribution function nz, such that at 7" = 0
all states with p < pp are occupied. At low temperatures this description is equivalent to
the one with quasiparticles. We postulate that the energy eigenstates are product states
characterized just by the occupation numbers n,, = 0,1, with n,, = (2,,). Then the

entropy of the system is given by

S =—kp Z [Mponng,, + (1 —n,,)In(l —n,.)| . (337)
p,o
This expression follows from the definition S = —kg >, wsInw,, where s denote the mi-

croscopic states characterized by which one-particle states are occupied and which are not.
The probability of a particular microscopic state w; is given by the product of occupation
probabilities n, for occupied one-particle states and 1 — n,, for unoccupied ones.

Proof: Assume we have already computed the entropy Sy, for a set of momenta {p} =
(p1,p2,--.,pn). That is only the states from {p} can be occupied by particles. We have

Sipy = —kB >, wsInw,, where s is restricted to the appropriate occupation states of {p}.
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We want to add to the set another momentum ¢. The new macroscopic states have the
probabilities wyn, if the state g is occupied and ws(1 — n,) if it is not. Then

Siprg = —ks Z [wsng In [wsng| + ws(1 — ngy) In fws(1 — ny)] |

s

= Sy — ke [ngInng + (1 —ng) In(1 —ny)| . (338)

Thus, the expression for the entropy follows from the combinatorics and has nothing to do
with the energy of the states characterized by the occupation numbers.

In a free Fermi gas the (average) energy would read E = >, ; €,n,,. From this follows
the variation of energy for a variation of the occupation probabilities dn, namely 6F =
> opo €pONp o

In the Fermi liquid theory one uses a slightly more general relation. One considers the
distribution function as a matrix in the spin space n, = n,.g. While in the free gas it was
sufficient to fix a spin quantization axis and to consider only diagonal matrices n,, = np o,
in the Fermi liquid theory the spin-spin interaction between the quasiparticles makes a more
general consideration necessary. Thus the basic relation reads

0E =" €popOnppe =Tr> & 0n, . (339)

p,af P

The trace is over spin variables. The relation (339) serves in the Fermi liquid theory as the
definition of quasiparticle energy €,. That is creating a particle with momentum p would
cause 0n, and a respective change in £. However in the Fermi liquid the energy is not
given by a sum of single particle energies: E # Tr ", €,n,. Rather €, is a functional of the
occupation numbers for all momenta {p}: €, = €,(0n,,,0n,,,...). Here by 07, we mean the
deviation from the T" = 0 step function.

We rewrite the entropy in the matrix form
S =—kgTr> [A,Inn, + (1 —n,) In(l —n,)] . (340)
P

Using 6N = Tr >, 67, we look for a maximum of entropy for a given average energy and
average number of particles. Thus we maximize S’ = S + aF + SN. From the condition

05" = 0 we obtain

A(p) = lexp (2}3}“) + 1] h , (341)

where p and T are related to o and . (To prove it is better to diagonalize 7, for each p.)
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Have we obtained the usual Fermi occupation probability? Not really. Since €, depends
on occupation numbers of all other states, we cannot independently determine 7.

At T = 0 we can define e = u(T = 0). Note: It is a remarkable fact that the relation
kr = (3m2n)/? holds also in the Fermi liquid, i.e., the value of pp = hkp is unchanged (proof

of this is not simple).

D. Landau function f
If one varies the occupation probabilities one obtains for the energy functional €, ,
A~ 1 r / ~
56y = = 3 F(p.0!) iy (342)
p/
The same with indexes reads

1 /
56107045 = V E :f(pap )aﬁ;*y& 5np’,'y§ . (343)
p/

In the Landau theory one postulates the function f (p,p’) to be independent of on,. Thus
one postulates that the ”quasiparticle energy” €, is a linear functional, while the total energy
E is the quadratic functional of 0n,. Here, again, 0n, are the deviations from the 7" = 0

step function. Thus we obtain
A~ 2 1 r / A
€p — €F :UF(p—pF)1+VZf(p,p)5np/ . (344)
pl

Obviously the function f(p,p’) is symmetric: f(p, 2 )agqre = (', D)r6.08-
Only the momenta at the Fermi surface are important. Thus it is convenient to use the
function vg f (p,p'). Then in an integration over p’ only the angular dependence will remain.

Usually the function f (p,p’) has spin-independent part and a spin-dependent part:
vr f=F(0)1+G0)dd" . (345)
Here 6 is the angle between p and p’. The form with explicit spin indexes reads
Vi fapns = F(0)0apdys + G(0)0as0ys - (346)

The second term has the usual form of exchange interaction.
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E. Zero sound

Here we disregard the spin degree of freedom. The Landau function f modifies the

Boltzmann equation. Namely, assume we have an r-dependent deviation from equilibrium:
n(p,r,t) = no(p) + on(p,7,t) . (347)

We use ¢, as a Hamilton function of the particle and conclude that the equation of motion

(with the external force ﬁext, e.g., —eE) reads

d ~ Oe
—p=F — —2 . 348
T (348)
We obtain
Oep 856p 35np
e - — 349
5= = a7 Zf p.p) (349)
(we omit the spin indexes). Analogously
d Oep
—r=—= . 350
at’ ~ op (350)
The Boltzmann equation reads
0 N, N,
U ALy S 1) (351)

a—i-r%‘i‘pa*ﬁ

We retain only first order terms (omitting thus a correction to 7 ~ wvpfi) and we assume

Fext =0:
@ aon _ dde, Ong
ot or or op

Here 77 is a unity vector in the direction of p.

—

Vrn

= I[n] (352)

We consider oscillations with high frequency w7 > 1. Then one can neglect the collision

integral. Taking into account that dng/0p = —vpiid(e) — €p) we obtain
o) _ 0on 85
6:+ VpTl —— 57 +vpid(e — ep)— Zf P, p anf =0. (353)
i(kF—wt)

We look for a solution of the type dn = z(71)d(e) — ef)e , where z(77) is an unknown

function of the direction 77. We obtain

=7 — =7 dQTL’ —
(w — vprik)x(id) = UFnk/ o UF f(Ozm)z(i) . (354)
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We chose direction of k as Z and introduce s = w/(kvg). This gives

d€,,
At

(s — cos@)z( = COS@/F B @) (355)

Simplest case: F' = Fy = const. If s > 1, i.e., the sound velocity w/k bigger than vp we

have a solution of the form

cos 6
0) = te— . 356
x(0) = cons pPp—"; (356)
Discuss: shape of the deformation.
To find s substitute (356) into (355). The condition reads
7 2msinfdd  cosd
F | —1. 357
0 J AT s — cosf (357)
With y = —cosfl we obtain
dy Y s+1
—F —Fy + Fy=1 =1. 358
)2 sy 0t 02n3—1 (358)

Solutions exist for Fy > 0. Discuss the case Fy — 0, s — 1. The deviation from equilibrium

only for small 6.

XV. PHONONS

We come back to the potential energy Vi,, (see Eq. (12)) describing the interaction energy
of slow ions due to their direct Coulomb repulsion and due to the electronic ground state
energy.

The positions of ions are given by
=R, +a", (359)

where R, are the Bravais lattice vectors. The superscript k stands for the ion number £ in

the unit cell. The deviations are denoted by @* or in components by u” . where o = z,y, 2.

n,o?
As uﬁﬂ = 0 is the absolute minimum of the potential energy we can expand and obtain
1 k& '
VEOH = Vb +35 Z (I)n n’;a, 3 ufz,a ug’,ﬂ (360)
n7n,7a7/87k7k,

The equations of motion:

%k/ (I)nn oe,Bun B (361)
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. koK' . .
The coefficients @, 5 have certain symmetries:

1) Translational symmetry

BN, 5 =O(R, — Ry)Y (362)

n,n’;
2) Symmetry (partial derivatives are symmetric)

OFF = Fk (363)

nﬂnl;a’/B o n/7n;/Bia

3) Homogeneous shift should not produce any force

Saekk =0 (364)

n',k’/

It is very useful to introduce amplitudes AY , = \/miu; .. We look for solutions of the
following form
Ak = Al(q) e (Tner) (365)
or equivalently
e A (g wr)

up o, = ﬁ e (366)
The eigenmodes are found from
det(w?1—-D) =0, (367)
where the matrix D is given by
DLE(@) = 3 D e M)
=% e Wil ) = (@l (369

We have introduced the Fourier transform, which is defined via B(q) = 3, Bp,e " and
B, = (1/N)3,B(g)e». Here N is the total number of the Bravais cells in the lattice
(N = N1N3N3). The wave vector ¢ belongs to the first Brillouin zone. It is quantized due
to the finite size of the crystal.

Easy to show that Dgg(cf) = [Dglf(cj)]* This means that the matrix D is hermitian and
that 3M solutions exist, where M is the number of ions in a unit cell. We denote solutions

by the subscript j: w;(¢) and €% . The eigenvectors €, should be normalized (see below).
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Also easy to show that Dgz’g(—q) = [Dzlg((j)]* This means that

wi(=q) =wi(@) and €f,(—7) = [ej(D)]" - (369)

Now consider the limit ¢ — 0. From the property >, 1 <I>nn o = 0 follows that there
are 3 modes for which w;(0) = 0. In this modes e} ,(0)/vm* is independent of k. That is

k

all ions are shifted exactly the same, i.g., u, , is independent of k.

All other 3(M — 1) modes are optical. We obtain from the equation of motion for ¢ = 0:
A4(0) _ A5(0)

VM n' B,k e My .
kK’

Using again 3, , ;... 5 = 0 and assuming w(0) # 0 we sum over n, k and obtain

w?(0) my, (370)

>y, ’L&%) = zkjmk ub(0)=0 (371)

k

Thus in optical modes the center of mass is constant.

Acoustic modes are divided into 1 longitudinal and 2 transversal.

A. Quantization of phonon modes.

The kinetic energy of vibrations reads
1 1
T=— Z my(w = Z . (372)
2 n,k,a 2 n,k,x
The potential energy reads

1 k,k' 1 k,k' /
U=- Y o aﬁufza 7’;5_* > Dn,n,;aﬁAgaAﬁ,ﬂ. (373)

n,n’;

n,n',0u03,k,k' n,n',a,B,k,k

The Fourier transform of the D matrix D ((j) is a Hermitian matrix. Thus, it has 3M

orthonormal eigenvectors e¥ () with real elgenvalues w3 (q):

Z e?,a[e?’,a]* = 5j7j/ : (374)
a,k

Another property is
&o(—0) = [ejo (D] (375)

We expand the amplitudes A}, () using the eigenvectors e ,(q):

=D VNQIT.)ef (@) - (376)
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The normalizing factor /N is chosen to simplify the later expressions. We obtain
1 L 1 .
A )= =Y Ab(qt) el = —— y (g, ) T 377
n,a( ) N %: a(Q7 )6 \/N jz(; 6],01(@ Q]((L )6 ) ( )

where N is the total number of unit cells (N = Ny N,N3). Since A% (t) is real we must have
Q;(=q:1) = [Q;(g, )],
Using othonormality of the vectors e} ,(¢) we obtain
Toamin o2 1o o
T=3 2 |Q@n] =5 X Q@0 . (378)
a7 37

and for the potential energy we obtain

> W) Qi (DR (—7) - (379)

77

N | —

1
U= Y@ Qi@ =

To formulate a Lagrangian theory it would be better to have real coordinates instead of
complex Q;(q). Alternatively one can use Q;(¢) and Q;(—¢) as independent variables.
To simplify we will suppress the index j and use Q(q) = Q-

The conjugated variables:

oT .
=—=0Q_, . 380
1= 56, = O (380)
The Hamiltonian:
1 1
H = 3 zq:PqP,q + 3 ng Q.Q—4 - (381)
j?q
We introduce the creation and annihilation operators:
a:rl = ! (qu*q - ZP!]) )
V2w,
1 :
ag = —5=(WeQq +iP—q) . (382)

The inverse relations

0 aq +a_,
q )
V24
. [w

P, =1 ?q(aj] —a_g) . (383)

This gives
1
H=> w, (a;aq + 2) : (384)
q

It is important to express the physical field Uﬁ,a
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Ak 1 . -
n,oo — = Z ej,a(@ Q](Qj ettt
A/ Mk \ Nmk 5

- v > [@@ (@ ™+ Q=D fal-D e

1 1 k iGRn Tk * _—igR,
- V2Nm, Z\/Fq (4 ¢5a(@ €T + ) gl (@] e (385)
]7q

B. Phonon density of states

3
q dsS 1
6w = wi(a) =3 [ oo 7= (386)
’ ZJ: (2m)% 1V w]
Van-Hove singularities: 6(1 wj = 0.
For ¢ — 0 we consider only acoustic phonons. We obtain
= cs(7g)|q] (387)

where s = 1,2, 3 counts the acoustic modes.

Then
dQ q2 (w) 3w? /1
= W2 Z/ — 52 <3> , (388)

where

.

C. Specific heat

Bose function:
1
N e
2,4 eﬁhwqu . 1 ?

(390)

where 8 = (kgT)~!. The chemical potential ;1 = 0 since the number of phonons is not fixed
and in the ground state there are no phonons.

The internal energy

1
U= Z hwj,q (ang + 2) = Uo + Z hw]‘g Nk - (391)

7,9 J:q
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Specific heat

1 oU

Cv =1 (‘TT‘V . (392)

Two universal properties:
1) Maximal frequency of phonons

2) Linear dependence of w(g) at small ¢ and w (sound waves)

allow for high- and low-temperature expansions.

1. High temperatures

kT > hwpa, (only for acoustic phonons).

1 1 x oz
—_— = l— =4+ —4+... 1.
— x( —+ 5+ ) L r< (393)

10 kpT 1 hw 1 (hw.,\?
Oy = — — S hwey B2 1 - - — 5.4
TS w’qhw&q( 2 Wl 12 <kBT> - )

N 1 B3 (w?
— 3y <1 1 <“s’q>+...),

— 394
Vv 12 (kgT)? (394)
(the first term is Dulong-Petit law) where
2 1 2
(wWia) = 337 2 Wea (395)
s?q

If the temperature is also higher than the maximum frequency of he optical phonons,
then 3 — 3M. All phonons contribute.

2.  Low temperatures

kT < hwpmq, (only acoustic phonons relevant).

1
S meT el (396)

1 0

0 [ 1
CV = — 87T sz’q:hws’qns,q = aiT ZS:O/dWD<w)hweﬁhw—1
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i d i
272 <c> / :1: —1 272

D. Debye and Einstein approximations

4kET3

&
(@

How to interpolate between low and high temperatures.

Simplified model.

3

o 1
> oT Z R34
AkET? 7

B15

/da: x
et —1
0

(397)

For acoustic phonons - Debye model. For optical phonons - Einstein model.

1. Debye

The dispersion law w = cq postulated for all ¢q. Instead of the first Brillouin zone one

takes a sphere so that the number of ¢’s in this sphere is equal to N. That is the radius of

the sphere gp is given by

dr 4 \%4
Bialpe: - N
390" (2r)3
Debye frequency wp = cqp
Debye temperature kg©p = hwp
This gives
47rq
O = vaTZh“’””” 8T 27r3 eﬁhcq 1
_ 3/47rq2dq (heq)?ePhe _%
(2m)3 (eBhea —1)* \ OT
©p/T
_ 3 1 4w(he)? 1 7/ s rle”
- TkgT? (27)3 (Bhc)® / (ez —1)2
N /T \?
— kg () T/Op) .
oy (o) £T/60)
where
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f(y)

4 4
ﬁﬂ'
1
3y®
y
FIG. 8: Function f.
2. FEinstein
Optical phonons. Neglect dispersion
w(q) = wo - (401)
th
U=U+ (3M — 3)N — (402)
eFsT —1
(B2)'
1 0U N r) €°B
Cv=— === (3M — 3) —kp—2 403
eksT — 1

E. Neutron scattering

The spectrum of phonons can be measured by scattering of neutrons on the material.
One measures the differential cross-section:

d20' 1 5Nf(Q,w)

dQdw ~ dQdw N, (404)

where NV; is the flux density of the incident neutrons (number of particles per area and time),

IN;(Q,w) is the flux (number per time) of neutrons scattered into the solid angle interval
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dS) around () with energy transfer in the interval Aidw around hw. The energy transfer is

given by
h2
2M,,

where k; and ky are the initial and final wave vectors of the neutrons. £; and Fy are the

hiw = (k} —k}) = E; — Ey (405)

initial and final energies of the crystal.
Golden rule:

SN(Q,w) =dN(k; — k) =Y W (ki i — kg, f) Vi, Lg Pk, (406)
7 A (2m)
where n; is the density of incident neutrons, N; = n;v; = n; 2 M
3 2 Mn
d’ky = kydkydQ = ky = (hdw)dQ (407)
we obtain
d*c M, V2
pr— 4

Qe <27rh) o ks Wi = Ky f) (408)

To calculate the rate W we take the interactlon potential of the neutrons with the ions
to be upd(Fheutron — Tion) (neutrons interact mostly with nuclei). With 7 = eutron and
Fion = T = R, + 1, (for simplicity we assume one ion per elementary cell, i.e., only acoustic

phonons)

7) = ugd(F — 7). (409)

Here 1 has dimensions F - L2, ug = [ d3rU.
Golden rule:

. . 2
W (Fiyi > kg, £) = S0 kUL )2 6By = Br + ) (410)

-

(i KU k) = o [ dr e TS Wil )

= 10 S BRI ) = 5 e ) (a11)

where ¢ = Ef — l;:;
This gives

d*c M, \? V? ky e P 27T Uo
= (M) s Z i @iy (B — By + h
woi = (o) 2 = Z AN (Sl 10 0(Ey = B+ ho)
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=(%)f2ﬁ T ) e T
=@ﬁff2%f Sl ) (Fle T O]y
- (M)Z 7 12/ oA

Using p(7) = X, 0(7 — 7) we obtain ¥, 7™ = [ d®r p(F)e'T™ = p_y.
Thus

d20' _ ( n>2 u% kf / )>eiwt
dQdw 2rh/) 2mh* k
Mn 2 uO kf
= (= L 8(q.
(2@) o by D)
where
dt dt | ar —igr
S((f, (,U) _ % <p _‘(O)pq<t)>€zwt — % /ﬂ(elqr e—Zq Tn/(t)>ezwt
We obtain
. AU i (Rotin) —id (R4, (D) it
S(@Gw) = X [ o (Tt T Rt @)
‘ T
_ Z el (ﬁn—Rn/) ;Zt <ezq"ﬁn e—i@ﬂn/(t)>ezwt
/ T
_ NS i dt (¢iT0 =TT (D) it
27

Next we consider the average

(/0 =T Tn(H))

We use the formula obtained earlier

1 o .
Un,a = > 0, €5a(@) €T+ ] e o(@)) T
vV2Nm /W
Jq q
We also use a relation
<ei¢1 e*i¢>2> — o 2Wld192)

)

(412)

(413)

(414)

(415)

(416)

(417)

(418)

where 4W = ($1¢1 + ¢2¢2). This relation holds if the operators ¢, and ¢, satisfy the Wick

theorem. They do if ¢/, is linear in a and al.
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Proof
Thus we obtain

(¢TT0 ¢ iTTn(t)y — (=2W (003 (D)

: (419)

where 2W = ([7- 1p(0)]*) = ([¢- @.(t)]*). The last equation follows from stationarity and
translational symmetry.

Thus we obtain

dt

S(q,w) = Ne? 2V o~ i@ Fin o o @0 (0)][F@n (1)) yiwt (420)
n m
F. Results
One can expand the exponent
R o o L o
ATROWDO) =14 ([g- B O[F - T (O]) + {17 OG- T(O])* + . (421)
and obtain
S=S+S+..., (422)
where
So= N2e2V§(w) Y6,z . (423)
K

where K are the vectors of the reciprocal lattice. Physical meaning: 1) w = 0 elastic
processes, no energy transfer. 2) ¢ = K - von Laue condition. Indeed qg= lgf — k. 3) The
factor e72"W is called Debye-Waller factor. It shows that the motion of ions reduces (smears)
the scattering probability. Also zero point motion contributes: W # 0 for T" = 0. One

obtains

W= 370 = 1, & O oy 1 (424

where np(w) = (™ — 1)~1 is the Bose function.

Consider now 1-Phonon processes. We obtain

Si(d.w) = Ne ™ 1 h'zqu,i @)| [ngs0(w = ws(@) + (g5 + V0w +wi(@)] (425)

The two terms correspond to emission and absorption of phonons by a neutron.
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XVI. PLASMA OSCILLATIONS, THOMAS-FERMI SCREENING
A. Plasma oscillations

Consider a gas of charged particles (charge e, density ng) in an oppositely charged static

background. The Maxwell equation that governs the dynamics reads

V-E=dmp. (426)
It is equivalent to
_ - 10E 4r-
B--— =207 42
VX c Ot ¢’ (427)

for B=0 together with the continuity equation: p + v .j: 0.
In Fourier space this gives iq- E(J, w) = 4mp and, with the continuity equation G- j=uwp
this gives (all fields are longitudinal) iwE (7, w) = 47 (,w).
Equation of motion
T _ B (428)
m— =e
dt?

and ;': engv lead to —z‘wmj' = nge*E. This gives

o, Amnge?

= 429
Wi == (429)
One can also associate the dielectric constant via p = ~V-P= —iq- P. Thus (everything
longitudinal)
' ' 2 1 w?
p=P_; ) _ M p_ - %p (430)
q w w?m 47 w?
Thus
W2
DZEE:E+47TP:E< —g) (431)
w
and

e(w) = ( - wﬁ%) . (432)

B. Thomas-Fermi screening

One studies reaction of the electrons on an external charge/potential. The Poisson equa-

tion for the external charge/potential reads

¢ () = 4mp™(q) (433)
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For the full charge/potential

¢*¢ = 4mp (434)
The dielectric constant is defined by
Amp™ =V - D =i D = ige(q)E = iGe(q)(—iGo) = e(q)q*¢ (435)
Thus
e(q)p = ¢ (436)
We introduce susceptibility x(q) by
P = p—p™" = x(a)9(q) (437)

That is the charge density is induced by the full potential. Then

2 4
L0907 =x6 ad e=1-_x (438)

The idea how to calculate y is as follows. If the potential ¢ is a slowly changing function of
coordinate, then it adds to the local chemical potential and locally one has an electrochemical

potential p+eg¢ (charge of electron is —e). The electron density is then n(7) = ng(u+ed(7)),

where
_ 2 L o (devte— L 439
(1) = 3 X 7 =2 [ 40 i (439)
In linear response
ind 5, Ong 2
p"t = —e(no(p + ed) — no(p)) = —e ¢aTL ~ —e"o2v(p)] (440)
Thus we obtain
on 4me? On
_ 270 _ 0
X——ea—M and e=1+ 2 o (441)
We define
2 _ > Ing 2 2
kip = 4me® —— = 4mwe”[2v] = 4me v (442)
op
Thus
kir
e=14+—- (443)

q

In real space this means the following. If a point charge @ is introduces as an external

charge. Then
47 Q)

o g — ¢7(q) (444)
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and
B ¢eact _ 47TQ
I e

¢

The inverse Fourier transform gives

o) = Lehor

(445)

(446)

It is important to notice (although we did not prove it) that € is independent of w up to

hw ~ Ep = p. Thus, electrons screen instantaneously.

C. Dielectric constant of a metal

We have now ions and electrons and want to calculate their total dielectric constant

defined via

e(w,cj)qbtoml(w,cj) — ¢ezt(w’q)

(447)

One can apply the following logic. Consider the potential/charge of ions as part of the

external one. Then

eclggtotal — geat | gion
Another logic is to consider electrons as external. Then
gion gtotal — geat 4 el
Since ¢t = ¢t 4 " 4 ¢¢ we add the two equations and obtain
(el 4 iom)total — gtotal | st

or
(Eel + 6éon . 1)¢total — (bext
or

=€l fem 1.

For electrons one takes Thomas-Fermi

2
kTF

e(w,q) =1+ 2

For ions - dielectric constant of plasma oscillations
2
on _p

€ (W,Q):l_wz )
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(452)
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4 ion VA 2
where 2 = A (Ze)” Ty

Mion

QQ k2

won

This way we took into account the bare ions. Thus the notation €;". Alternatively we

can obtain the same if we consider ions "dressed” by screening electrons. That is ”dressed”

ions respond to a potential already screened by electrons:

1 1 1
total ext ext
= — R — 456
¢ Zﬁ»n screened Ezl?nn eel ( )
Thus we obtain
€= emet = ¢ elon 1 (457)
This gives
, - szj kQTTF 0? w?(q)
E?ic;n: w = q —1— p 5 =1 5 (458)
L+ =5 w? (1 + kgf) w
where , )
Q Q
2 — 4 p 2
w”(q) = = q (459)
1+ ke +d®
For g < k%, this gives sound with
Q
c= -2 (460)
krr

or

We return back to the total dielectric constant and obtain

) ]{32 2
e = ciomeel = <1 + Tj) <1 2 (q)> (461)

q w?
1 2 2
2 ! 2 2 - 2 (462)
ew,q) (¢ +ktp) (W —w?(q))
D. Effective electron-electron interaction
Unscreened Coulomb interaction gets screened
4 2 4 2 4 2 2
met |, 4me® 71'62 L+ w?(q) (463)
q? €q> (¢ + k#p) w? — w?(q)

Effective interaction between electrons VEe Jg is obtained by the following substitution
(7: E — E’ hw = € — € (464)
At w < w(q) - overscreening, attraction with retardation.
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XVII. ELECTRON-PHONON INTERACTION, FROLICH-HAMILTONIAN

A. Derivation without taking into account screening

For simplicity we consider one ion per Primitive Unit (Primitive Cell) of the Bravais
Lattice. Thus only acoustic phonons. The potential felt by an electron (neglecting screening

by other electrons) is given by

U =Y VF = R, — i) = Y V(7 Z VVior(r — R, (465)

n

where 1, is the deviation of the ion with the equilibrium position én In the second quan-

tization this becomes
=X [Vl X [V - )] () (166)

With W, (7) = ﬁ Sk Vo (F)c, and Wi(F) = ﬁ Yk Vi o (F)cl and assuming the Bloch

functions are spin independent we obtain

= — 3 (k| elph. |ks) e}, ocr (467)
ki1,k2,0

with

(i elph. ko) = 3 i 7 / AV 4, (7) [VVr (7 — RBy)| i (7) (468)
We expand
VVior(7 — R,) = ‘1/ Z(imxgoneﬁ—ﬁn)ﬁ (469)
b

Then

(k1| el.ph. |ks) = ZZ i) vione—iﬁﬁn‘l/ / AV 5. (F)r, (P (470)

We now use the second quantized form for ,:

_Vh 4

sTal g &(@em (471)

Substituting and using

Ze PR —NZ&H (472)
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where ¢ € 1.B.Z and G are vectors of the reciprocal lattice, we obtain

1 n iV Nk [(@"‘ é)%,q} a 4 al }
cta; o

ki|el.ph.|ks) = — Vio : 3
(lelphlle) = 5 5 Vit par— [t
1 * (5 i(q+G)7
x o [V i, (i (T (473)

For the matrix element we obtain

1 = i(q+G)7 1 * (kg —k1+G+CG)F

7 | WU = 5 [V P e
1 e | N R

- - Z ez(k27k1+q+G)Rn / AV uz (f‘)qu (,,:»)ez(szk1+q+G)r (474)
N < Veu. g, '

We use again the relation (472) which can be written as
1 i(k2—k1+q+G)R
N Z e ( 2 114 ) — Z 5]21,];2-‘,—(?—‘(‘@—@/ (475)
n é/
Here, however, the possible choices for G’ are severely limited. For each G only one term in

the sum remains (one value of G’ ) such that Eg, El, ¢ € 1.B.Z. It is more convenient, thus,

to write
1

N S itk Bt OB 5 (476)

where K P € R.L. is chosen so that ¢ = l% — /;2 + K € 1BZ. Obviously, this choice is

unique. This gives
1 o 1 (Gei]
[V @O = G [ AV, @l @)
4 VP.U.PU
Thus we obtain
OH = > Mk k2@ 5) chy pCho 0,5+ al 4] (478)
k1,k2,q.5,0
where
L ypion YN[+ G)]
1 q+G q,k1—ke+K
Vs V2Mw;,
1

3 / AV, (P, (7)e CHOT (479)
P.U.P'U.

M(Eh];Qu(T?j) = -

Once again, K is uniquely chosen so that ¢ € 1.B.Z.
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B. Including screening

. . . . ; 2 .
Our naive derivation assumed no screaning and thus V7" = 4;—5. Less naively we

. . . . i 2 2 . ;
should include screening by substituting V" = (p;f;% 5~ féi This means V(1) =

dretat 03 (7).

C. Direct derivation with screening

The polarization P() = enii(7) (assume Z = 1) creates a charge density pi" = —V - P.

The interaction of an electron with this charge density is given by
U(r) = —e/d3r1Q F— ) p (7)) = e n/d3r Q(r — rl)ﬁﬁ(*) , (480)

where

(481)

In the continuous limit

NG T .
u(r a,-+a;_-| €(q) e . 482
4) Z\/m { 7,q 7, q} J(_) ( )
Thus
SH =Y (ki|el-ph. |ks) cf, ser, (483)
k1,ka,0
with
(kv | el.ph. [ks) = —e n / &r / &Priy, (MQF — 7)YV )i, (7) (484)
@\/_q €.l ;
(k1| el.ph. ko) = ZQ 2NMij: [amA— ajﬁqq}
/ AV, (7, (7T (485)

With n = N/V we reproduce the previous result. We only lost the "umklapp” processes

due to the continuous approximation for (7).
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D. Phonon induced interaction between electrons

We simplify somewhat. We ”forget” about "umklapp” processes, and also use plane waves
instead of Bloch functions. For each ¢ only one phonon mode (longitudinal with €}, || ¢)

contributes. Then

Hopp = M(@)chyqotho jag+aly| (486)

k,q,0

where

(487)

with V" = dwe*ap.

Consider a process in which an electron with momentum k1 emits virtually a phonon
with momentum ¢, so that its new momentum is /;1 — ¢. Then an electron with momentum
EQ absorbs the photon and its momentum becomes /;2 +q.

In the initial state the energy is Ly = € + €;,. In the virtual state the energy is
FE = P Twwg.

The second order amplitude of this process reads

M@F _ M@

= 488
EO — El EEI — 61317(? — hwq ( )

Another process which interferes with the first one is as follows. Electron with momentum
ks emits a phonon with momentum —¢. Then electron with momentum k1 absorbs the

phonon. The amplitude reads
M(q)|?
[M(q)| (489)

61;'2 — EEZJF(T— hwq

Conservation of energy requires €z + €5, = € gt Hora

The total amplitude reads

|M(q)|? N |M(q)?
EIZI — Egliq.— hwq EIZQ — 6E2+zj_ hwq
_ 2| M (q) [T, (490)
(ez, — €7,_g)% — (hwy)?

We observe that if |e; — 61317(7‘ < w, the sign of the interaction matrix element is negative,

i.e., we obtain attraction.
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1. Comparison

We should compare the phonon mediated interaction

2| M (q)|*hw,

(Ek'l - 61217(7)2 — (hwg)?

where

@ yion L VNR
\/_Z q = —1 —_
TV 2Muw,

q .

with V" = 4me*at, with the one obtained earlier (a factor 1/V needed)

1 4me? 1 4me? 1 4me? w?(q)
L L 1

Vo ¢?

TV ei> V(P4 kip) w? — w?(q)

Neglecting ¢? in comparison with k2. we see that we have to compare

w 1 Nh w
=2|M 279 _ —_9(4 2.2 \2 2 *q
with
1
kok = v 47r62a?pFw2
We obtain
1 N 1 N w? 1
x = 72 (47T626L%F)2 7 @ = 72 (4%62a§F)2 Mc—g =3 (4%62a2TF)2
1 2 9 2 IV 3 M
= (dre”a7p) M, Trne? = sk
XVIII. BCS THEORY OF SUPERCONDUCTIVITY

A. Phonon induced interaction between electrons

Hel—ph = Z M(@ CL+q,Uck7‘7 {a§+ CLE@} )

k,q,0
where
=Y rion 1 \% Nh
M(q) = =iV, = q-
V. 2Muw,

3 on __ 2.2
with V7" = 4dre azp.
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(494)

(495)

QN

=[N
)

o

|

(496)
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The total interaction amplitude reads

2| M (q)|*hw, _ Gk kasg
€, — €5y _q)” — (Twg)? |4

Vkl k2,q = ( (499)

(Introduction of g is convenient since g does not contain extensive quantities like V or N -
check this. ¢ has dimensions energy x volume). This amplitude is only taken on-shell as

far as electrons are concerned. Thus

2 2

(er, = €p,—g)” = (&5, — €h,0g)

That is the effective second quantized interaction between electrons due to phonons reads

1 t f
Helfelfph == Z k1 ko g Ck;1+q,g'1 Ck27q’o'2 Cky,09 Cki1,01 (500)
k1,01,k2,02,q

The noninteracting Hamiltonian reads

Hy=>"€c}, cho (501)
k,o

B. Cooper problem (L. Cooper 1955)

The interaction is attractive and considerable as long as the energy transfer |e; —e El_§| <
hwy < hwp. We simplify the model as follows:
—q if e — ez, §| < hwp

Gk kag = - B (502)
0 if ’6,21 — 6,;1_(7’ > hwp

Cooper considered a pair of electrons above the filled Fermi sphere. That is the Fermi

sphere is given by

@)= I 0, (503)

kSkag

Cooper explored the following state
|©) = > Wk, 01, k2, 02)ch, ok, o, |Po) (504)
k1>kp,01,ko>kp,09

The wave function ¢ (ky, 01, ke, 02) is antisymmetric, i.e, ¥ (ky, o1, ko, 09) = —1)(ka, 09, k1, 071)
(indeed the second quantization is organized so that even if we use here not an antisym-

metric function, only the antisymmetric part will be important). We use ¢(ky, 01, ke, 02) =
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a(ky, ka)x(o1,09). Further we restrict ourselves to the states with zero total momentum,
El + EQ = 0. We also restrict ourselves to the layer of states with energies [Er, Er + hwp].

Any pair out of this layer interacts with any other pair. Thus

@) = ) O‘(E)X(Ul,ﬁ)CL,MCT_k,gQ Do) (505)

Ep<ex<Ep+hwp,o1,02

The Schrodinger equation reads
E|®) = (Ho + Her—ecti—pn) |P) (506)
We count the energy from the energy of the filled Fermi sphere. Then

E ‘(I)> = Z 2€ka<E)X(UlaJZ)CL,UchLk,UQ ‘(I)0>

k,01,02
g -
- V Z Oé(k')X(Jl, O—Q)CL+q,Uchkaq,0'2 ‘(I)0> (507)
k,o1,02,q
This gives
(26, — E)a(k) = % S alk) (508)
EF<€k1 <Ep+hwp
We denote
1
C= v > a(ky) (509)
Ep<ep, <Er+hwp
and obtain
a(k) = —9¢ (510)
Summing this equation we obtain
1 gC
C=— > —7 (511)
4 EF<€k1<EF+hUJD (26k B E)
We obtain equation for
Erp+hw
1= F/ Cge ve)a_ (512)
(2¢ — E)
Er

Approximating the density of states by a constant v(e) = 1y (this is density of states per

spin) we obtain
L 1, Ep+hwp— Ef2
— = —In
gvop 2 Er—E/2

(513)

Thus
2EF + 2th —F 2
pry gv 14
2Er — E o (514)
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(2Ep — E)(em — 1) = 2hwp (515)

For weak coupling gy < 1 we obtain
9By — E = 2hwpe 70 (516)

E = 2Ep — 2hwpe 70 (517)

The binding energy per electron is then found from F = 2FEr — 2A

A = hwpe (518)

1. Symmetry

Since a(k) = «a(—k), i.e, symmetric, the spin part of the wave function xy must be

antisymmetric - singlet.

C. BCS state (J. Bardeen, L. Cooper, and R. Schrieffer (BCS), 1957)

1) Everything done in the grand canonical ensemble. The grand canonical partition

function
Zo = Z ¢ B(En,N—uN) (519)
n,N
shows that at 7' = 0 one has to minimize Hg = H — uN.
We obtain
_ i lg i i
He = kzc;(@c — H)c,w Cho — A% . Ulzk; » Chy+q.01 Cha—q.00 Cha,o Chr oz (520)

where the interaction term works only if the energy transfer €, 1, — €, is smaller than the
Debye energy hwp.
Although the Hamiltonian conserves the number of particles, BCS constructed a trial
wave function which is a superposition of different numbers of particles:
|BCS) = [ (uw + UkCL,TCT—k,ﬂ |0) . (521)
k

with the purpose to use uy and vy, as variational parameters and minimize (BC'S| Hg |BC'S).
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For this purpose one can introduce a reduced BSC Hamiltonian. Only terms of this

Hamiltonian will contribute to the average with BCS trial functions. The reduced Hamilto-

nian is the one in which k; = —ks and o; = —o9:
Ly
HBCS = Z(Gk - IM)CL,O' Cko — 5 V Z k—&-q,o’ —k‘ q,—0 C—k,—o Ck,o - (522)
k,o k.q,0

Renaming &’ = k + ¢ we obtain

1
Hycs = Z(ek — u)c,Tg o Chio — = g Z C};/ " cT_k, o Cokimo Cho (523)
- ) 2 V Py 3 5
Ned N
or
g

Hpes = Z(ek — ,u)c,tp Cho — v Z CL,’T cT_k,7¢ Cok| Cht (524)

ko Kk’

Also the condition on k and £’ gets simplified. We just demand that

n— hwp < €k, €y < U+ hwp . (525)

1. Awerages

Normalization:

1 = (BCS||BCS) = (0] T[(ur, + vi,C—rp.iChoit) [ [ (try + 'Uk10111,¢01k1,¢) 0)

kg kl

= [(ul® + [owf*) - (526)

k
We further restrict ourselves to real uj and vy such that u} + v = 1. Thus only one of
them is independent. The following parametrization is helpful: u; = cos ¢, vi = sin ¢x.

We obtain

(BCS|c} s e |BCS)
= (0] TT(ury + VryCransCro)eh s crg [T (ur, + vineh, 1¢ls, 1) 10)

kQ kl
=0} (527)

(BCS|c}, ey |BCS)
= (0] lk_[(ukz + Uy Cotiy | s 1) Chy ol lk—[(ukl + v, cf, +e g 1) 0)
2 1
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= (O] [T (uury + vyt 1 Chot) CL',T CT—kl,i ¢y it [J(ury + oy CLLTCT—JQ,Q 10)
]{32 kl

= UkVpUL Vgt

This gives

<BCS| HBCS |BCS> = 22(@@ — u)vi — %Zukvkukmk/
k k,k!

We vary with respect to ¢

)
50, (BOS| Hyos |BCS) = 4(ex = wureus — zg(uz — )Y upvp =0 .
k k!

We introduce A = & 37, uprvpy and obtain

2(er, — p)vpuy = A(ui — v3)

(529)

(530)

(531)

(532)

Trivial solution: A = 0. E.g., the Fermi sea: u;, = 0 and vy = 1 for ¢, < p and up =1

and v, = 0 for €, > p.

We look for nontrivial solutions: A # 0. Then from
(€x — ) sin 2¢ = A cos 2¢y,

we obtain

A
VA (6 — )
€ — M
VA2 + (6 — p)?
Then from definition of A = & 3>, uzvr we obtain the self-consistency equation
g A

sin 2¢k = Qukvk =

cos 20y, = up — Vi =

A= py
2V < \/A2+(ek—,u)2
or
hwp
1 = ﬁz i _ 9% / df*
2V < \/A2+(ek—u)2 2 . VAT T &2

hwp/A

1 hwp /A 2hwp
= gu, dr——= =gvo In(V1+ 22+ ~ gy ln
[ g = o nts " = =R
We have assumed A < hwp.
This gives

A= 2th6_“37
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2. Total energy

We want to convince ourselves that the total energy of the new state is smaller that the

energy of the trivial solution (fully filled Fermi sphere).

EBC’S = <BCS’ HBCS |BOS> = QZ(Ek — ,u)v,i — 2 Zukvkuk/vk/
k

4 k!
=2 Z(Ek — p)vi — A Z UV (539)
k k
whereas
ENorm = (Norm| Hgcs |[Norm) = 2 (e — p)8(pn — €,) (540)
k
We obtain
AFE = EBCS - ENorm = QZ(Ek - ,u)(v,z - Q(M - Ek)) - AZukvk y (541)
k k
With &, = e — p,
1-— 2 1
U]%:SiDQQﬁk:M:*—gik (542)
2 2 9 /A2t g
and
A
2\/ A2 + ¢}
we obtain

AE = ; <2€k [; - Z\/Aikiw - 9(—§k)] - 2\/AA27+€2) (544)

hwp

_ 1 5 &

hwp §2 A2
= 2V d — —
b/ IZ0) 6 |:€ /AZ + 52 2 /AQ + 5]%

hwp /A
= 2V A? / dx <x—\/1+x2—|—

0

2v1+ x2> (545)

The last integral is convergent and for hwp > A can be taken to co. The integral gives

—1/4. Thus

AE = — . (546)

Roughly energy A per electron in window of energies of order A.

92



D. Excitations

We want to consider the BCS ground state as vacuum and find the quasiparticle excita-

tions above it. Let us start with the normal state, i.e., vy = 6(—¢&;) and ux = 6(&). For

& > 0 we have

Cko |[Norm) =0

while for & < 0
CJ]L’U |[Norm) =0

we introduce
Cro if & <0

(073 = i ]

or equivalently
_ T
Qo = UpCh o T VkCly o

(the sign to be chosen).

We see, thus, that ay, |Norm) = 0, whereas

[ 1
Oy = UkCp ; £ UpCp —o

creates an excitation of energy |&x|.

For the BCS state we obtain
aro |BCS) = (upcr, = vkc*_k’_a) IT(u, + vqc;TcT_q’¢) |0)
q
We see that the proper choice of sign is
ko = UpCho — avkcik’_g

and
A o |BCS> =0.

The conjugated (creation) operator reads

|- T
ak,a = ukckﬂ — OUC—f,—0o

One can check the commutation relations
Ak o) Oé].;;/p/ kk'Yo,0’
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(551)

(552)

(553)

(554)
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{ang awot, =0 {algal,}, =0 (557)
The inverse relations read:

_ T T T
Cho = UpQpo + ok, O, = UpQy , + OVEQ | 4 (558)

1. Mean field

We adopt the mean field approximation for the BCS Hamiltonian.

g
HBCS = Z(Ek - M)C-I];;’o— Cko — V Z CL/,T Cik/,i C—k,| Ck
k,o kK’

(559)

Note that in the interaction the terms with & = &’ are absent, since the matrix element of
the electron-phonon interaction is proportional to the momentum transfer ¢ = k — k’. Thus
the only averages we can extract in the interaction term are (c_j ¢, 1) and <C£7T cT_,ﬁ 2

We use

)

CJ]L’T Cik,¢ = (ukOéLT + ?}kOé_k7¢) (ukaim — ’Uk;Oé]ﬁT)

= uioz,inoﬂ_k’¢ — vpa_ g ot + upvp(l — a;?akﬁ — Oﬂ—k,&“—k,i) (560)

Cop Chp = UpQ_p, | Qg — v,%ozzﬁoﬁ_k,i + upvg (1 — oz,%am - O‘T—k,¢a—k,¢) (561)
In the BCS ground state we obtain (c_j | cx+) = viuy, and <cL’T cT_,w> = viu,. We use
AB = (A) (B) + (A) (B = (B)) + (A= (A4)) (B) + (A — (A))(B — (4))
and neglect the last term. The mean field Hamiltonian reads

9
Hllg/[gs = Z(Ek - M)C1];170' Ck,o’ + V Z <C£/7T CT—k/,\L> <C_k’¢ Ck7/[~>

k,o kK’
g g
DY <CL/,¢ Cik’,¢> Cokl Chit = 77 D CL/,T Cik’,¢ (ks cen)
4 kK 4 kK
i Pt A?
ko k k
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Substituting the expressions for ¢ operators in terms of « operators we obtain a diagonal
Hamiltonian (exercise)

H=Y EkozL’U Qo + const. (563)
k,o

where Ej, = /A2 4 &2

For proof one needs

3)
CLT Cry + cf_m Copy = (ukoz,Tm + vpa gy ) (Urouy + Uko‘T—k,¢)
—l—(ukofik’i — vp ) (UgQ_g, | — vka%)

= (uj, — o) (@ g + aly o p)) + 200 + 2upop(af ol | + g o) (564)

2. Nambu formalism

Another way to get the same is to use the Nambu spinors. First we obtain

—A c A?
5 UG ey + V? (565)
k

MF
Hpes = 2 <CL,T €kl )

Next we rewrite >, £kc,t’¢ ey = k&l —cpy c,Tm) =3kl —cpy cT_m). This gives

& —A Cr 1 A?
Hyes =) (cL,T Cpy ) N R B (566)
k —A —&C C k| k g
The eigenvalues of the matrix Sk~ read +Fj, where E; = \/m For the
—A =&
eigenvectors we get
—A U U
. Clem] " (567)
—A =& — Uk — Vg
and
AN v v
. le-m| " (568)
—A =& U Uk
Thus
—A E., O
—A =& 0 —Ej
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where

ug v
v=| " " (570)
— UV Uk
We obtain
gk —-A Crt A?
HII;/ICFS = Z ( C};’T C k.| ) uu’ A uut t + ng + V* (571)
k - _Sk C kg,
Diagonalizing the 2 x 2 matrix for each k we obtain
Hycs = ( abs a_y, ) I D D (572)
k O _Ek Oé_khL k g
Using again the commutation relations for the o operators we obtain
MF A?
Hils = > Exaj, ako + Z & — Ex) + V* (573)

k,o

E. Finite temperature

We obtained the energy spectrum Ej, = /A2 4+ &2 in the mean-field approximation as-
suming that (c_j cr+) = vpuk, where the averaging is in the ground state, i.e., there are
no quasi-particles excited. For T" > 0 some quasi-particles get excited and the value of

(c_k, cr 4 ) changes. Namely, we obtain

(corimr) = vkug(l — 2ny) (574)

where ng = f(Ey) = ﬁ.

If we still want to have the Hamiltonian diagonalized by the Bogolyubov transformation,

we have to redefine A as

<\m

Z C_ kickT %Zukvk 1 - 2nk) (575)
k k

Then, however, A is temperature dependent and thus Ej, = /A2 + &2 is also temperature
dependent. We must do everything self-consistently.
From

A%+ &

96



we obtain the new self-consistency equation

A=Y 2 jann OB (577)

To find the critical temperature T, we assume that A(7.) = 0. This gives

th 55 ﬁth/Q
g 1 Bl&k] / tanh 5> / tanh z
1= —— tanh = gy, d = gy dx 578
Assuming hwp/(2ksT,) > 1 we obtain
hu)D
~ 1 579
groln 120 (579
or
_1+ A(T=0
kT, = hwpe 90 = 7( 5 ) (580)
More precise calculation gives
_1 A(T=0
kT, = 1.14hwpe #0 = (176) (581)

For T'~ T, and T < T, one can obtain

T
A(T) = 306k T [1 — (582)

1. More precise derivation

We have to minimize the grand canonical potential Q = U — uN —T'S = (Hpcs) — T'S.

For the density matrix we take (the variational ansatz)
1 _
p=—e B ko Brmko : (583)
Z
where ny , = a,t’gak,o are the occupation number operators of the quasi-particles while Ej,

are the energies of the quasiparticles (to be determined). Here
ko = UrCrg — OUKC (584)

with vy = sin ¢, and uy, = cos ¢, and ¢ is another variational parameter.

We thus obtain

g
<H]BVCFS> = Z gkCL,g ck’,o’ - V Z <CL/’T Cik/7¢> <C—k’7i Ck7T>
k,o kK’

= Y26 (ud - )+ o] - & (gukvka —2f<Ek>>) (5%5)
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For the entropy we have

S = ~2k S [F(Bx) In f(By) + (1 — f(ER) (1 — f(Ey))) (586)
k
We vary with respect to ¢, and with respect to Ej independently. This gives
o)
— =4 1-2f(E
s Erurvr( f(Ek))
2
- 2 (Sunt-21B) 0 -24E) G- d) =0 68
k
Introducing
%Z C_ kickT %Zukvk 1 — 2nk) (588)
k k

we obtain the old equation

& sin 2¢, = A cos 2¢y, (589)

Thus all the formula remain but with new A.

00 oy .08

aEk N aEk aEk
0 f of ..0s
_ 2
0 f of
— 2 2 —
2/ + A 3E. 2E), —— 3 =0. (590)

Thus we obtain

By, = /€2 + A2 (591)

F. Heat capacity

S
Cy=T|—=— . 592
' <8T>V (592)
Using for S Eq. (586) we obtain
— kT Z BEk —9 Z Ek (593)

Let’s introduce g(z) = z+1 Then f(Ex) = g(BEL).

of

TE;C = 59, (594)
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Of _ v (598 598\ _ o (_p B 508\ _ 0f (_Ex A0A
or ~ 7 <E8T+6 )‘g ( 7% )‘a&( T ' E,oT
Thus
Ei  A0AY of
V—QZEk< EaT>aE

First, we analyze at T' — T,. There Fj =~ &.
With

af m "
98 =~ —0(E) — 5 (ksT)*6"(E)

T
A(T) =~ 3.06kpT, |1 — —
T
We obtain for T =7, -0

B DA
CV(TC—O)_ZVO/d§< ) +uy /dgaTag

2121k
- 7 ;0 B 4 (3.06)200k2T, = Cy (T, + 0) + ACy

and

Thus one obtains

ACy

— —  ~1.43
Cy(T. +0)

Jump in 22 leads to jump in Cy (see Fig. 9).
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FIG. 9: Heat capacitance of vanadium.

For kgT < kgT. ~ A(0) one obtains Cy e_’“BAT.
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G. Isotope effect.

We see that T. oc A(T = 0) oc wp o M~/2 where M is the ion mass. This dependence
can be observed by using materials with different isotope content. It was one of the major

motivations for the phonon mechanism of attraction.

XIX. ELECTRODYNAMICS OF SUPERCONDUCTORS.

A. London equations

The zero resistivity and the Meissner effect are closely related.

Assume the electrons are accelerated without resistance:

mv = eE (601)
With 7 = ne? we obtain
Aj=E, (602)
where A = -7
The Maxwell equation reads:
- - 1o
VxFE=—--B (603)
c
Thus we obtain
— 1 —
— AV -B)=0 604
ot ( I c (604)
But inside the superconductor both B=0and j =0. Thus F. London and H. London
postulated:
— — 1 —
AVxj+-B=0 (605)
c

1.  Time-independent situation

An external magnetic field is applied. We consider magnetization currents explicitly, thus

we use microscopic Maxwell equation:

VxB=—] (606)
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This gives
Vx(VxB)=V-(V-B)—(V)B=—(V)B =
Substituting the London equation we obtain

2E ="
(VB = ¢

One introduces the London penetration depth A\, = 4/ % =4/ 4‘;?7:22.

B. Another form of London equations

B=VxA
With this the London equation
AVxj+-B=0
c

reads
— — ]_—» —
AVXj+-VxA=0
c

=

IfbothV-j=0and V-A=0 (Coulomb gauge) this gives

— 1—»
14
J Ac

(607)

(608)

(609)

(610)

(611)

(612)

In this form the London equation is convenient to connect to the microscopic theory.

C. Microscopic derivation of London equation

with 7’ = —ihV.
In second quantized form
— - 2
(—ihV — £A)

2m

Hign = Y [ v Wi (r)
where

e —
o = - /dvqﬁ Apu,
==X fav el Ape.
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(613)

(614)

(615)



(the order of operators A and P unimportant since VA= 0).

The first order correction to the BCS ground state |0) = |BCS) is
(1] H10)
1) =>_ [1)
140 EO - El

Current. Velocity

Current density

3 |~y

. 7 e d
J = 62‘112(7”)(0)%(7‘) =e) Vl(r)

Vo (r) = AN W)W, (r)

(616)

(617)

(618)

(In jp one has to symmetrize: half p" works to the right and half to the left). The fd

contribution immediately gives the London equation

e’n

Y
mc

Another contribution linear in A could come from jp:

<jp> = <(I)1| jp |0> + <0| jp |cI)1>

To calculate |®1) we need (I| H; |0), where |I) is an excited state.

We assume
A = ae?
and ¢-d, = 0.
: _ 1 ikr .
Using ¥, = 77 >k €™ we obtain
h@ -
_ T
Hy = — ch+q o Ch,o (k)
mc k,o
We use
Cho = UpQ) o + f | [
ko = UkQgo T OV 5 5 Cpo = UpQp , T OUp0 | o

and conclude that

(U] s goCro 10) = onsque (U] @y 0l 10)
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but also

(I e —orgo |0) = —oupvisy (Il aly o, 10)

= OUkVg+q <l| a};+q,o‘aik,70 |0> (625)

Thus in both cases |l) the same, i.e., the same two quasiparticles created.

For this particular |I) we obtain

(U H10) = = ((Ri)oupqus + (=K = D)) ouivs,)
he -
R (kdg)o (Uk+qVk — UkVktq) (626)

For ¢ — 0 we see that the matrix element vanishes. Together with the fact that |Ey— E;| >
2A this gives "rigidity” and
() =0 (627)

D. Pippard vs. London, coherence length.

The matrix element (626) vanishes for ¢ — 0. Let us analyze it more precisely. We have

5k i e |1 kg
_ L SR 628
Uk4qUk — UpVktq = 2Ek+q 2Ek 2 + 2B, \ 2 2By, (628)

For &, < By ~ A we obtain

1 hvgrq
UkqUk — UkVktq ™ 51 (Ek+q — &) = Z (629)
This introduces the coherence length:
h
€= % (630)

(one usually defines & = 22£).

The more general than London relation is called Pippard relation:
JolP) = =3 [ @ QuplF =) A5(7) (631)
B

where the kernel () decays on the distance of order . £ is the size of a Cooper pair.

Two limits: € < Ap - London limit, £ > A - Pippard limit.
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E. Superconducting density

At T = 0 we obtained

2
j= _ﬂA (632)
mc

Here n is the total electron density. Note that transition to pairs does not change the result.
Namely the substitution n — n/2, m — 2m, and e — 2e leaves the result unchanged.
At T > 0 not all the electrons participate in the super current. One introduces the

superconducting density ns(7) and the normal density n,(T"), such that ns + n, = n. Thus

A (633)

Calculations show that near the critical temperature, i.e., for T, — T < T,

n T
21— = 4

(arguments with moving liquid)

The new penetration depth is defined as

o Em A (T=0) T\ 2
Au(T) = dtnge? 2 (1 B TC> (635)

F. Critical field

One applies external magnetic field H. It is known that the field is expelled from the
superconductor (Meissner effect). That is inside the superconductor B = 0. When the field
reaches the critical field H, the superconductivity is destroyed and the field penetrates the
metal.

Naive (but correct) argument: The total (free) energy of a cylindrical superconductor
consists of the bulk free energy F, and the energy of the induced currents screening the

external magnetic field. We have B = 0 = Bey; + Binducea (recall that H = Bey). The energy

2
induced

of the induced currents is given by B (87). Thus the total energy of a superconductor
reads F, + H?/(87). For H = H, the free energy of a superconductor and of a normal metal
should be equal .

Fy + 8—; =F,. (636)

The less naive thermodynamic argument involves the free enthalpy G = F — HB/(4m) (see the book by Abrikosov).
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At zero temperature (F' = U — T'S) we have

l/(]AQ
2

F,—F, =
Thus we find

He(T = 0) = 2y/mnA(T = 0)

In particular also for H. we have the isotope effect, H, oc M~/

For T'— T, — 0 one obtains (no proof)

1%@»:17%H4m(1_;>

c

G. Order parameter, phase

Thus far A was real. We could however introduce a different BCS groundstate:

|BCS(¢)) = H(Uk + 6i¢UkCL,¢CT_k,¢) 0) .
k

Exercise: check that
pos) = [ %2 1esion e
0

gives a state with a fixed number of electrons N.

We obtain for A

<m

gz C kickT Zukvkei‘z’ = |A|€i¢
4 k k

Usual gauge transformation:

A— A+Vy
U — Wehe
We identify
o__¢
2 th
Thus
Ao i-legy
2e
and
2
jo= -0 (A~ 500)
mc 2e

(637)

(638)

(639)

(640)

(641)

(642)

(643)

(644)

(645)

(646)

(647)



H. Ginsburg-Landau Theory

Theory works for T ~ T..

One introduces the order parameter
Ns
U=,/ (648)
2
1.  Landau Theory

One postulates for the free energy
b
/dVF:/dV {Fn+a|\If]2+2]\If|4} (649)

In order to describe the phase transition one postulates a = a7, where

T—T.
r=— (650)
and o > 0, b > 0.
By varying we obtain |¥|?:
a+bv)? =0 (651)
For 7 < 0 this gives
ar a1, —-T
UP=——=—=" 652
o= ST = 2 T (652
For 7 > 0 we have |¥|? = (. Phase transition.
We define
U2 = —% . (653)

2. Ginsburg-Landau Theory, equations

Theory for inhomogeneous situations, currents and magnetic fields. One postulates for

the free energy

b 1 . 2 o
/dVFz/dV Fn+a|\11|2+|\11|4+’(—ihV—6A>\I/
2 4m c

2 gz
— 4
NI

Here, for a while, we consider the superconductor on its own. Thus B is the field induced

by the currents in the superconductor itself. Below we will include the external field.
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Here we have to vary with respect to W regarding ¥* as independent. This gives

1 S 2 \?
— (—iaV — =A) U + a¥ + b|V|?¥ =
4m<@v hc) 4 al 4 b|WPY =0 (655)

Varying with respect to A (using div]a - b] = b - rota — a - rotb) gives

— 477'—3

VxB=—"] (656)

with
2ieh
4m

* v = T, % (26)2 21
(v Ve — oV — o |UPA (657)

<.y

For U = W, we obtain again the London equation

L4 . 2y [~ hee
P - (A— 22%) L (A— 2CV¢> (658)

2me mec e

Thus we obtain the London penetration depth

c2m c2m
N = — . 659
. \/47Tn562 \/871'\11(2)62 (659)

3. Coherence length

Coherence length is obtained by considering small fluctuations of the amplitude of ¥. So

we assume A = 0, and U = ¥, + 6 (both real), and W2 = —a/b. Then we obtain
h2
—Rv%qf +6U(a+3b03) =0 . (660)

In the normal state Wy = 0 and a > 0 we obtain solutions of the type e**/¢, where

P (661)

4dma

In the superconducting state V2 = —a/b, a < 0
h—széqf + 6V (a + 3bV7) = hiv?é\p 2060 = 0 (662)
4m “ 0O am ws=0

We still define the coherence length as in the normal case

- (663)

\/4m|al '

However the solutions look like e*V?27/€,



4. Eaxternal field

If a superconductor is placed in an external magnetic field ]:70 the proper free energy

reads

1 - .
/dVFH:/dVF—ZHO/dVB. (664)
T

Here B is the total magnetic field, B = Hy+ B;. Here B; is the field induced by currents in

the superconductor. Thus

: B _A,-B
8 47

/dVFH - /dv {Fn +al U+ gy\pr* + ;n ‘(—zhﬁ - 266/1) v

(665)

Note, that this gives the same Ginsburg-Landau equations. Indeed B?/(87) — BH,/(4m) =
B? /8w + const. and we vary, actually, the field B;.

In the normal state we have B = Hy and Fg = F,,— HZ/(87). Deep in the superconductor

B=0and Fy = F, +a|0P+ L0 = F, - = F, — % Thus we obtain the critical field

H,, i.e., the value of Hy above which the normal state has a lower free energy. We obtain

H2/(87) = 7 and

H, =2 (666)
b
5. Reduced Ginsburg-Landau equations
We define
V=U/Uy , F=r/\, , B =B/(HN2) , A=A/\H~N2) (667)

We obtain the Ginsburg-Landau equations in the reduced form (omitting the primes)

(~in 'V~ A) ¥ -0+ [UPT =0, (668)
V x (V x A) = —i (T'VT - wVT) — [BPA (669)
where
g 2L (670)
:

Thus, everything depends on k.
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The free energy in these units reads
2

H — — —
+B?*—2H,- B

2

1
c [ av < —|u]? + =|u|*
47T/ \|+2|1+

/dVFH:/dVFn n

(-ij - /T) Y
(671)

Integrating by part, disregarding the boundary, using the Ginsburg-Landau equations,
and adding an unimportant constant we obtain

Hf/dv {—1yxp\4+(§—ﬁ)2} (672)
A 2 oy

/dVFH:/dVFn n

I. Surface energy

Let us estimate the surface energy of an interface between superconducting and normal
phases. We assume Hy = H,, i.e., both phases are possible. In the normal phase we have
the critical magnetic field B = H. (B’ = 1/4/2). In the superconducting phase B = 0 and
U = Uy (U = 1). The order parameter varies on the scale £ (k7!). The magnetic field
varies on the scale Ay, (1).

We consider a quasi-one dimensional situation. All the quantities depend only on . A

is along y (ff = A(z)y) and, thus, B is along z. We can take ¥ to be real. Then
K2VAU 4 (1 — AU — 0P =0, (673)
VZA-U2A=0. (674)

Consider 2 cases:

a) & > A\p (k < 1)(superconductor of the 1-st type). In this case there is a layer on the
interface of thickness £ where the magnetic field vanishes and the order parameter vanishes,
i.e., the state is normal. We see that there is an additional cost of ~ & Ig—f per unit of
area. The logic: the work of expelling the magnetic field has been performed but no energy
reduction through the order parameter appearance. Thus the surface energy is positive in
this case and the system avoids interfaces.

b) ¢ < A (k > 1)(superconductor of the 2-nd type). In this case there is a layer
of thickness A\;, where the magnetic field is present and also the order parameter has its
bulk value. The surface energy is then negative and equal ~ —\ ng—f. The logic: magnetic
field not expelled in the layer, thus no energy cost. The energy is reduced by having the

superconducting order parameter. Thus the system likes to have interfaces.
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The critical value of s at which the surface energy vanishes is given by s, = 1/v/2.

J. Higgs mechanismus

We consider again the GL free energy density (action):

b 1 L 2\ P B?
F = alU?+ o+ — '(—mv _ GA) N
2 4m c 3T
b 1 . 2e o . 2 V x A)?
= QUL+ K—z’hv - eA) qf} Kmv - eA) qf] L VXA 75
2 4m & c 8m
Consider small fluctuations around the real solution ¥y = 4/—a/b.
() = Yo + ¢1(F) + 12(7) (676)

where ¢; and ¢, are real. Considering also /Y(F) to be small we expand the action to second

order in ¢, ¢o and A

sF® — L l(%f U (ff)2 + 1 (%1)2 + B (sz —2h (206) Uy (5%2)1

4m c
— 2a¢? + (VSX) + higher orders . (677)
T
We still have the gauge freedom:
5 e = , 2ie
A=A+Vyxy , V¥ :\Ilexp{hx} . (678)
c

To keep A" small we perform an infinitesimal gauge transformation, which then reduces to
U~ U(1+ix) = (Vo + ¢ + ig)(1 +ix), where ¥ = 2€y. In terms of the deviations we

obtain
Pr=¢1— X , Py =0ds+d1X+ VoX . (679)
It is actually sufficient to keep only the term Wyy. Thus, we can always find a gauge

transformation such that ¢, = 0. Dropping the primes we obtain

SF® — 4; (Vér) — 2a0?

7 % A)2 1 /2¢e\2 -
+ M + (Ce) 5 (A>2 + higher orders . (680)

8 4dm

Thus we obtain two modes. The first mode, ¢, called also Higgs mode, has a characteristic

length, which coincides with the coherence length £. The second mode is described by field
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A. The transversal components of A are characterized by the London penetration depth (cf.

Eq. (659)), i.e.,

2 2
N S (26) g2 = T (681)

dm \ ¢ mc?

This can also be seen as the photon mass. Our theory has no time-dependence, but is
otherwise complete with respect to the transversal components of the field A. This means,

in the relativistic dispersion relation E? = p?c* + ¢?p? we should take F = hiw = 0. Then

p? = —pu?c®. Since p? < 0, we obtain spatial decay, i.e., penetration depth. Identifying
p? = —hz)\EQ, we obtain the photon mass
Ame’ng
(uc®)? = K222 — (huy,)? (682)
m
Here
4me’n
2 s
wr, = 683
i (653)

is the plasma frequency of the superconducting electronic liquid. At T' = 0 it coincides with
the usual plasma frequency.

The variation of (680) with respect to the longitudinal component of A results simply in
/Y” = 0. Thus, unlike in full Higgs case, no longitudinal photon appears at w = 0. In order
to treat the longitudinal modes (plasmons) properly we have to introduce time-dependence

and the scalar potential. This is beyond the scope of this text.

K. Flux quantization

In the bulk of a superconductor, where j’s = (, we obtain

A——=V¢= 4
3-Vo =0 (684)
}{ Adl = 3 74 Vodl = 3-2mn = o0 = ndq (685)

This quantization is very important for, e.g., a ring geometry. If the ring is thick enough

(thicker than Ap) the total magnetic flux threading the ring is quantized.
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L. Josephson effect

We consider now a tunnel junction between two superconductors with different phases

¢r, and ¢r. The Hamiltonian reads
H = Hpcs, + Hpes,r + Hr (686)

where the tunneling Hamiltinoan reads

Z T |:Rk’1 ULk’Q g + Lkz O'Rk1,0':| ‘ (687)

k17k27

Here Ry, = c,(f,? is the annihilation operator of an electron in the left superconductor. Two
important things: 1) microscopically the electrons and not the quasiparticles tunnel; 2)
tunneling conserves spin.

A gauge transformation Ly, — €“t/2L; , and Ry, — €*"*/2R,, , "removes” the phases
from the respective BCS wave functions (making v, ug, and A real) and renders the tun-
neling Hamiltonian

Hy= Y TR} Ly, e+ L}, Ry 7] | (688)

k1,k2,0

where ¢ = ¢r — ¢
Josephson [1] used (688) and calculated the tunneling current. We do so here for a time-
independent phase difference ¢. The current operator is given by time derivative of the

number of particles in the right lead Ngp = 37, , RLUR,W

I:—eNR_—%[HT,NR = TRl Ly, o % = L, Ry €] . (689)
k1,k’2,

The first order time-dependent perturbation theory gives for the density matrix of the system

in the interaction representation
=i [P avHr () i [f av He(t) L /
p(t) =Te "J-o pole - Rpo—i | dt'[Hr(t'), po) - (690)
For the expectation value of the current this gives

(I(t)) = Tr{p(t)[(t)} = —i / dt' Tr {[Hr(t'), pol (1)} = —i / dt' T {[I(t), Hr(¥)] po} -
(691)
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We use

(BCS|cf+(t1) ct (1) |BCS)
= (BCS| (o}, 1(t1) + vea g (1)) (ural | (2) — vkar4(t2) ) |BCS)
= vpupe Ertit2) (692)

and

(BOS| crp(tr) c-p,y(t2) [BCS)
== <BCS| (ukozkﬁ(tl) + UkOéT_k’i(tl)) <uka,k’¢(t2) — ’UkOé};’T(tQ)) |BCS>

= —vpue Brtimt2) (693)

After some algebra we obtain (from the anomalous correlators, the rest gives zero)

t
(I(t)) = — 26T2e’i¢/ dt' > " Uk, Uk, Uk U [e*i(E’“ﬁE’Q)(t*t') — ei(E’“lJrE’“'z)(t’tl)}
- k1,k2
t
+ 2eT2e" / At Vg, g gy g, [ ER) ) iy 4y )11
- k1,ko
= 8eT”sin(¢) > Uk Whs Ok ks _ o2 sin(¢) Y A
k1,k2 By, + B, k1,k2 El, Ex, (Ek1 + Ekg)
= 212 T**e AR sin(¢) = I.sin(¢) , (694)

where the Josephson critical current is given by

greA  TA

-[C - - )
4h 2€RT

(695)

where g7 = 2 x 47*T?1? is the dimensionless conductance of the tunnel junction (factor 2

accounts for spin), while the tunnel resistance is given by Ry = e% giT. This is the famous
Ambegaokar-Baratoff relation [2] (see also erratum [3]).
Thus we have obtained the first Josephson relation I = I.sin ¢. We have introduced the

variable ¢ as the difference of two phases ¢ = ¢r — ¢. The gauge invariant definition reads
2e (R o o
¢:¢R_¢L_hf/ Adl'. (696)
cJL

As a shortest way to the second Josephson relation we assume that an electric field exists

in the junction and that it is only due to the time-dependence of A. Then we obtain

. 2¢ (B0 o - 2e (B 5 - 2e
b=—= /L [ o ]dl = | EBa= v (697)
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where V' is the voltage. Here we all the time treated e as the charge of the electron, i.e.,

e < 0. Usually one uses e as a positive quantity. Then

eV

o== (698)

An alternative way to derive this is to start with a difference of (time-dependent) chemical

potentials
H=Hy+Hp—eVi(t)> L} Ly, — eVa(t) > R} Ry, + Hr , (699)
k,o k,o

where V7, i are the applied electro-chemical potentials (in addition to the constant chemical
potential p, which is included in H; and Hg). A transformation with

t t

U — 6%]\7[‘ fVL(t,)dt, B%NRIVR(t,)dt, (700)
In the new Hamiltonian
H=4iUU+UHU". (701)

the terms with V;, and Vi are cancelled and instead the electronic operators are replaced

bY’ eg7
L - ULU ' = Le't/? (702)

t . . .
where ¢, = const. — 2776 [ VL (t)dt" and, thus, ¢ = ¢ — ¢ = —%V.

M. Macroscopic quantum phenomena
1. Resistively shunted Josephson junction (RSJ) circuit

Consider a circuit of parallelly connected Josephson junction and a shunt resistor R. A
Josephson junction is simultaneously a capacitor. An external current I, is applied. The

Kirchhoff rules lead to the ecquation
. |7
[csm¢—|—ﬁ—|—Q:[ew ) (703)
As@Q=CV and V = 2%¢ Thus we obtain

h . hC -
1.si — — =1, . 4
CSIH¢—|— 2€R¢+ % ¢ ex (70 )
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FIG. 10: RSJ Circuit.

It is very convenient to measure the phase in units of magnetic flux, so that V' = %q) (in ST

units V = ®):

ch (I)O d
p=Lp=20 e
2?00 0=

Then the Kirchhoff equation reads
® Co

d
IC i 2 _I(iI?
sm< 7T<I>0)+CR+ c

or in SI units

d o .
Ic Sin (27{’@()) —|— E + C@ = [ex .

(705)

(706)

(707)

There are two regimes. In case I., < I, there exists a stationary solution ¢ = arcsin(/.,/1.).

All the current flows through the Josephson contact as a super-current. Indeed V' o (b = 0.

At 1., > I. at least part of the current must flow through the resistor. Thus a voltage

develops and the phase starts to "run”.

2. Particle in a washboard potential

The equation of motion (707) can be considered as an equation of motion of a particle

with the coordinate x = ®. We must identify the capacitance with the mass, m = C, the

inverse resistance with the friction coefficient v = R~!. Then we have

mi = — jc—a—U
- P)/ ax7
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FIG. 11: Washboard potential.

AN

FIG. 12: Macroscopic Quantum Tunneling (MQT).

where for the potential we obtain

P
U(®) = —E, cos (%q)()) LD

where
1. hi,.
EJ = 0 =
27 2e

(709)

(710)

is called the Josephson energy. The potential energy U(®) has a form of a washboard and

is called a washboard potential. In Fig. 11 the case I, < I. is shown. In this case the

potential has minima and, thus, classically stationary solutions are possible.

When the external current is close to the critical value a situation shown in Fig. 12

emerges. If we allow ourselves to think of this situation quantum mechanically, then we would

conclude that only a few quantum levels should remain in the potential well. Moreover a

tunneling process out of the well should become possible. This tunneling process was named
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Macroscopic Quantum Tunneling because in the 80-s and the 90-s many researchers doubted
the fact one can apply quantum mechanics to the dynamics of the ”"macroscopic” variable
®. It was also argued that a macroscopic variable is necessarily coupled to a dissipative
bath which would hinder the tunneling. Out these discussions the famous Caldeira-Leggett
model emerged [4, 5].

3. Quantization

We write down the Lagrangian that would give the equation of motion (708 or 707).
Clearly we cannot include the dissipative part in the Lagrange formalism. Thus we start

from the limit R — oo. The Lagrangian reads

L

—U(®) = ——+ Ejcos

092 CP? (
2 2

0]
2w> b 1. . (711)
Py

We transform to the Hamiltonian formalism and introduce the canonical momentum

oL

Q=—=Cd. (712)
0
The Hamiltonian reads
o Q? o Q? (®>
H= ﬁ + U(@) = ﬁ EJ COS 271'50 Iexq) . (713)

The canonical momentum corresponds to the charge on the capacitor (junction). The usual

commutation relations should be applied
(@, Q] =ih . (714)

In the Hamilton formalism it is inconvenient to have an unbounded from below potential.
Thus we try to transform the term —I.,® away. This can be achieved by the following

canonical transformation

R=exp [~ Qu(0®] | (715)

t
where Q. (t) = [ Io.(t')dt’. Indeed the new Hamiltonian reads

(Q B Qea:(t))Q

H=RHR '+ ihRR™' =
RHR™' +ihRR e

P
— Ejcos (2#(1)) : (716)

0
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The price we pay is that the new Hamiltonian is time-dependent. The Hamiltonian (716) is

very interesting. Let us investigate the operator

Cos (27r§i0> = cos (2; @) = ; exp [;L 2e CID] + h.c. (717)
We have
exp [;1 2¢ @} Q) =1Q+2e) , exp {—; 2e @] Q) =|Q — 2¢) . (718)

Thus in this Hamiltonian only the states differing by an integer number of Cooper pairs
get connected. The constant offset charge remains undetermined. This, however, can be

absorbed into the bias charge ).,. Thus, we can restrict ourselves to the Hilbert space

|Q = 2em).

4. Phase and Number of particles (Cooper pairs)

We consider again the states |[BC'S(¢)) and |[BC'S(N)) introduced above (see Eqs. 640
and 641):

|BCS(9)) = [T(wr + €vich it y)) [0) (719)
k
2m d¢
BOS(V)) = [ 52 1BOS(6)) e (720)
J 2m
It is easy to see that the operator AT = ¢~ increases the number of Cooper pairs by one
2 d¢
A BCOS(N)) = / 52 IBOS(6)) e M 0¢ = |BCS(N +1)) . (721)
0

We have seen that the excitations above the BCS ground state have an energy gap A.
Thus, if T" < A no excitations are possible. The only degree of freedom left is the pair of
conjugate variables N, ¢ with commutation relations [N, e~*] = e~. Indeed the ground
state energy is independent of ¢. This degree of freedom is, of course, non-existent if the
number of particles is fixed. Thus a phase of an isolated piece of a superconductor is quantum
mechanically smeared between 0 and 27 and no dynamics of the degree of freedom N, ¢ is
possible. However in a bulk superconductor the phase can be space dependent ¢ (7). One can
still add a constant phase to ¢(7) + ¢¢ without changing the state. More precisely the phase
¢o is smeared if the total number of particles is fixed. However the difference of phases, i.e.,

the phase gradient can be well defined and corresponds to a super-current.
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5. Josephson energy dominated regime

In this regime E; > E¢o, where Eo = ( . Let us first

neglect Eo completely, i.e., put C' = oo. Recall that C' plays the role of the mass. Then the
Hamiltonian reads H = —FE cos (2#%0). On one hand it is clear that the relevant state are
those with a given phase, i.e., |®). On the other hand, in the discrete charge representation
the Hamiltonian reads

Z |m + 1) (m|+ |m) (m+1|) . (722)

m

The eigenstates of this tight-binding Hamiltonian are the Bloch waves |k) = ¥, €™ |m)
with the wave vector k belonging to the first Brillouin zone —7 < k < w. The eigenenergy

reads Ey = —E; cos(k). Thus we identify k = ¢ = 2“‘1’.

6. Charging energy dominated regime

In this regime E; < E¢. The main term in the Hamiltonian is the charging energy term

(Q — Qew(t))2 _ (2€m — Qex>2

He = 2C - 2C

(723)

The eigenenergies corresponding to different values of m form parabolas as functions of
Qex (see Fig. 13). The minima of the parabolas are at ., = 0,2e¢,4e,.... The Josephson
tunneling term serves now as a perturbation H; = —FE cos (2%%0). It lifts the degeneracies,
e.g., at Qe = €,3¢,5e, . . ..

If a small enough external current is applied, Q¢, = I.,t the adiabatic theorem holds and
the system remains in the ground state. Yet, one can see that between the degeneracies
at Q. = e,3e,be,... the capacitance is charged and discharged and oscillating voltage
V = 0FEy/0Q., appears. Here Ey(Q.,) is the energy of the ground state. The Cooper pairs
tunnel only at the degeneracy points. In between the Coulomb blockade prevents the Cooper

pairs from tunneling because this would cost energy.
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FIG. 13: Eigen levels in the coulomb blockade regime. Different parabolas correspond to different
values of (Q = 2em. The red lines represent the eigenlevels with the Josephson energy taken into

account. The Josephson tunneling lifts the degeneracy between the charge states.
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