
Solid State Theory I

Alexander Shnirman

Institute TKM, Karlsruhe Institute of Technology, Karlsruhe, Germany

(Dated: February 13, 2017)

1



Contents

I. General Information 7

II. Born-Oppenheimer approximation 7

III. Bravais and Reciprocal Lattices 9

IV. Bloch Theorem 10

A. 1-st proof 10

B. Born-von Karmann boundary conditions 12

C. 2-nd proof 13

D. Properties of the Bloch states 14

V. Almost free electrons. 16

A. Example in 1D 18

B. Lattice with basis, structure factor 19

VI. Bands, Fermi surface, Isolators, Semiconductors, Metals. 20

VII. Tight binding 20

A. Wannier functions 20

B. Schrödinger equation for Wannier functions 21

C. Linear Combination of Atomic Orbitals (LCAO) 21

D. Single orbital (s states), one band 22

E. Alternative formulation of tight-binding method 23

VIII. Dynamics of Bloch electrons 24

A. Semi-classical equation of motion of Bloch electrons 24

B. Wave packet argument 25

C. Proof for potential perturbation (not for vector potential) 26

D. Effective mass 28

1. Example 28

E. Classical equations of motion 29

F. Only electric field 30

2



G. Concept of holes 31

IX. Bloch electrons in magnetic field 32

A. Closed and open orbits 34

B. Cyclotron frequency 34

C. Semiclassical quantization (Bohr-Sommerfeld) of orbits 35

D. Magnetic susceptibility 37

1. Grand canonical ensemble 37

E. Bohr-van-Leeuven Theorem 38

X. Paramagnetism Pauli and Diamagnetism Landau 38

A. Pauli paramagnetism 38

B. Landau levels 39

C. Degeneracy of the Landau Level 40

D. Landau diamagnetism 40

E. van Alphen - de Haas effect 41

XI. Boltzmann equation, elastic scattering on impurities. 42

A. Kinematics 42

B. Collision integral for scattering on impurities 43

C. Relaxation time approximation 44

D. Condutivity 45

E. Determining the transition rates 46

F. Transport relaxation time 47

G. Local equilibrium, Chapman-Enskog Expansion 49

H. Onsager relations 51

XII. Magneto-conductance, Hall effect 52

A. Hall effect 52

B. Magnetoresistance 54

1. Closed orbits 55

2. Open orbits 55

C. Quantum Hall Effect (QHE) 55

3



XIII. Fermi gas 56

A. One-particle correlation function 57

B. Two-particle correlation function 57

C. Jellium model, energy of the ground state 58

1. Kinetic energy 59

2. Potential energy 59

3. Interaction energy 60

XIV. Fermi liquid 61

A. Spectrum of excitations of the ideal Fermi gas 61

B. Landau hypothesis 62

1. Implications 63

C. Gas model 63

D. Landau function f 65

E. Zero sound 66

XV. Phonons 67

A. Quantization of phonon modes. 69

B. Phonon density of states 71

C. Specific heat 71

1. High temperatures 72

2. Low temperatures 72

D. Debye and Einstein approximations 73

1. Debye 73

2. Einstein 74

E. Neutron scattering 74

F. Results 77

XVI. Plasma oscillations, Thomas-Fermi screening 78

A. Plasma oscillations 78

B. Thomas-Fermi screening 78

C. Dielectric constant of a metal 80

D. Effective electron-electron interaction 81

4



XVII. Electron-Phonon interaction, Frölich-Hamiltonian 82
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I. GENERAL INFORMATION

Literature:

1) G. Czycholl, Theoretische Festkörperphysik.

2) C. Kittel, Quantum Theory of Solids.

3) N.W. Ashcroft and N.D. Mermin, Solid State Physics.

4) A. A. Abrikosov, Fundamentals of the theory of metals.

5) J.M. Ziman, Principles of the Theory of Solids.

Superconductivity:

6) J.R. Schrieffer, Theory of Superconductivity. (Chapters 1-4)

7) M. Tinkham, Introduction to Superconductivity.

II. BORN-OPPENHEIMER APPROXIMATION

If we are interested in not very high energies it is meaningful to split an atom into, on

one hand, an ion, which contains the nucleus and the strongly coupled electrons and, on the

other hand, the weakly coupled electrons. For simplicity we consider a situation when there

is one weakly coupled electron per atom. Then ions have charge +e and the electrons −e.

The Hamiltonian of N ions and N electrons reads:

H = Hel +Hion +Hel−ion , (1)

where

Hel =
∑
i

~p2
i

2m
+
∑
i<j

e2

|~ri − ~rj|
, (2)

Hion =
∑
n

~P 2
n

2M
+
∑
n<m

Vion(~Rn − ~Rm) , (3)

Hel−ion =
∑
i,n

Vel−ion(~ri − ~Rn) . (4)

Here ~pi ≡ −ih̄∂/∂~ri and ~Pn ≡ −ih̄∂/∂ ~Rn.

Rather simple-mindedly we could assume Vion(~Rn− ~Rm) = e2

|~Rn−~Rm|
and Vel−ion(~ri− ~Rn) =

− e2

|~ri−~Rn|
. These interaction potentials are, of course, a bit naive. There will be corrections

due to the fact that ions have structure (are not point-like particles).
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Ions are much heavier than electrons: m/M � 10−3. Thus electrons move much faster.

The Born-Oppenheimer approximation is appropriate.

First one solves the problem for the electrons only considering the positions of ions

fixed. The wave function of the electrons (the coordinates ~Rn are parameters) ψel =

ψel(~r1, . . . , ~rN ; ~R1, . . . , ~RN) satisfies the Schrödinger equation

[Hel +Hel−ion]ψel
α = Eel

αψ
el
α . (5)

α numbers all the eigenstates. We only need the ground state.

The eigenenergies are functions of ions’ coordinates: Eel
α (~R1, . . . , ~RN).

The wave function of the total system is assumed to have a form (this is an ansatz):

ψ =
∑
α φα(~R1, . . . , ~RN)ψel

α (~r1, . . . , ~rN ; ~R1, . . . , ~RN).

The Schrödinger equation reads:

Hψ = [Hel +Hion +Hel−ion]
∑
α

φαψ
el
α = [Hel +Hel−ion]

∑
α

φαψ
el
α +Hion

∑
α

φαψ
el
α (6)

=
∑
α

Eel
αφαψ

el
α +

∑
α

(Hionφα)ψel
α +

∑
α

∑
n

1

2M

[
φα(~P 2

nψ
el
α ) + 2(~Pnφα)(~Pnψ

el
α )
]

(7)

We project (E −H)ψ = 0 upon ψel
β . This gives

ψel,∗
β Hψ = Eφβ = Eel

β φβ +Hionφβ +
∑
α

Aβα , (8)

where

Aβα =
∑
n

1

2M

[
φα(ψel,∗

β
~P 2
nψ

el
α ) + 2(~Pnφα)(ψel,∗

β
~Pnψ

el
α )
]

(9)

Our aim is to argue that the terms Aβ,α can be neglected due to the smallness of the

ratio m/M . Since the interaction between ions and electrons depends only on the distance

between them: Vel−ion(~ri− ~Rn), so does the wave function ψel. Thus |Pψel| ∼ |pψel|. So, for

example, we can estimate the first term of Aβα as

∑
n

P 2
n

2M
ψel ≈ 1

M

∑
i

p2
i

2
ψel ≈ m

M
Eel

kin . (10)

The electronic kinetic energy can be, in turn, estimated from the characteristic atomic energy

ε0 =
e2

2a0

=
me4

h̄2 ≈ 13, 6eV ≈ 0.2 · 10−10erg ,

where a0 = h̄2

me2
≈ 0.5 · 10−8cm is the Bohr radius. The estimate reads Eel

kin/N ∼ ε0. Thus

the first term of (9) is estimated as N(m/M)ε0.
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To estimate the second term of Aβα as well as the energy per ion stored in Eel
β φβ +Hionφβ

we think of each ion as of a harmonic oscillator in a potential well described by the spring

constant, K, of the order K ∼ ε0/a
2
0. This is because shifting an ion by a distance of order

a0, i.e., by a distance of order of the distance between the ions and the electrons should cost

approximately one electronic energy. Then the characteristic energy of an ion is given by

εi ∼ h̄
√
K/M ∼ ε0

√
m/M . Since the potential and the kinetic energy of an oscillator are

equal we obtain an estimate for the momentum of the ion: P 2/M ∼ εi ∼ ε0
√
m/M . Thus

P ∼
√
Mεi ∼

√
ε0
√
Mm ∼ (M/m)1/4√ε0m ∼ (M/m)1/4p, where p is the characteristic

electron momentum p ∼ √ε0m ∼ h̄/a0.

Thus, we can estimate the second term of (9) as NpP/M ∼ N(m/M)3/4ε0. Finally, the

ionic energy stored in Eel
β φβ +Hionφβ is estimated as NP 2/M ∼ N(m/M)1/2ε0. This energy

is larger than both terms of (9).

Neglecting (9) we obtain the approximate Schrödinger equation for the ions:

[Hion + Eel(~R1, . . . , ~RN)]φ = Eφ (11)

Thus the total interaction potential for the ions reads

V total
ion =

∑
n<m

Vion(~Rn − ~Rm) + Eel(~R1, . . . , ~RN) . (12)

This potential should have an absolute minimum when the ions take places in the lattice

of the solid. (We do not even try to prove it). The electrons adjust themselves to the

instantaneous state of the ions.

At low temperatures it is sufficient to consider only small deviations of the ions from the

lattice positions. These are called ”phonons”.

One arrives then for the ion positions at

Hion + Eel(~R1, . . . , ~RN) = H0
ion +Hphonon . (13)

while for the electrons one has

Hel−ion = H0
el−ion +Hel−phonon (14)

III. BRAVAIS AND RECIPROCAL LATTICES

To be written.
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IV. BLOCH THEOREM

Potential of ions are periodic with periods being the vectors of the Bravais lattice.

H = − h̄2

2m
∆ + U(~r) , (15)

with U(~r + ~R) = U(~r) and ~R ∈ Bravais Lattice.

We look for eigenstates:

Hψ = Eψ (16)

Bloch Theorem: eigenstates have the following form:

ψn.~k(~r) = ei
~k~r un,k(~r) , (17)

where un,k(~r) is periodic, i.e., un,~k(~r + ~R) = un,~k(~r). In addition ~k ∈ first Brillouin zone

while n ∈ Z.

A. 1-st proof

We define translation operator T~R so that T~Rf(~r) = f(~r + ~R).

1) T~R is unitary. (Unitary operators satisfy U−1 = U †). We have obviously

T−1
~R

= T−~R (18)

To obtain T †~R we note the following

〈φ1|T~R |φ2〉 =
∫
d3rφ∗1(~r)T~Rφ2(~r)

=
∫
d3rφ∗1(~r)φ2(~r + ~R)

=
∫
d3rφ∗1(~r − ~R)φ2(~r)

=
∫
d3r(T−~Rφ1(~r))∗φ2(~r) (19)

Thus T †~R = T−~R = T−1
~R

.

2) T~R commutes with H, [T~R, H] = 0.

T~RHψ = H(~r + ~R)ψ(~r + ~R) = H(~r)ψ(~r + ~R) = HT~Rψ (20)
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3) All operators T~R form an Abelian group, i.e., commute with each other.

T~R1
T~R2

ψ = T~R2
T~R1

ψ = ψ(~r + ~R1 + ~R2) (21)

T~R1
T~R2

= T~R2
T~R1

= T~R1+~R2
(22)

This means that the set of operators H, T~R (all of them) have common eigenstates (a full

set of them).

Hψ = Eψ (23)

T~Rψ = c~Rψ (24)

From unitarity follows |c~R| = 1. From commutativity of T~R: c~R1
c~R2

= c~R1+~R2
.

~R are the vectors of Bravais lattice. Thus ~R = n1~a1 + n2~a2 + n3~a3. This gives

c~R = (c~a1)n1(c~a2)n2(c~a3)n3 (25)

We define c~aj = e2πixj . Then

c~R = e2πi(n1x1+n2x2+n3x3) (26)

Now we start using the reciprocal lattice. We define ~k =
∑
xj~bj where ~bj are the elemen-

tary vectors of the reciprocal lattice. Then we can rewrite as follows

c~R = ei
~k ~R (27)

Indeed, ~k · ~R =
∑
jl xjnl~bj · ~al = 2π

∑
j xjnj (for reciprocal lattice we have ~bj · ~al = 2πδjl).

Thus we obtain

T~Rψ = ei
~k·~Rψ , (28)

i.e., each eigenvector is characterized by a vector ~k. Thus we have

ψ = ei
~k·~ru(~r) , (29)

where u(~r + ~R) = u(~r). (We can define u as e−i
~k·~rψ).
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Thus all the eigenstates are split into families characterized by different vectors ~k. Actu-

ally only ~k belonging to the first Brillouin zone (Wigner-Seitz unit of the reciprocal lattice)

(or any other primitive unite of the reciprocal lattice) give different families. This follows

from ei(
~k+ ~K)~R = ei

~k ~R. Indeed, if ~k is outside the first Brillouin zone, then we can find ~K in

the reciprocal lattice so that ~q = ~k − ~K is in the first Brillouin zone. Then we use

ψ = ei
~k·~ru(~r) = ei~q·~re−i

~K·~ru(~r) = ei~q·~rũ(~r) , (30)

where ũ(~r) ≡ e−i
~K·~ru(~r) and ũ(~r + ~R) = ũ(~r).

In each family introduce index n counting the states of the family. The functions u

depend, then, on ~k ∈ first B.Z. and on n. Thus, finally

ψ = ei
~k·~run,~k(~r) (31)

B. Born-von Karmann boundary conditions

The B-v-K conditions read:

ψ(~r +Nj~aj) = ψ(~r) , (32)

for j = 1, 2, 3 and N1, N2, N3 � 1. The total number of primitive cells is then N1N2N3.

This limits the possible values of ~k. Namely we must have eiNj
~k·~aj = 1. With ~k =

∑
xj~bj

where ~bj are the elementary vectors of the reciprocal lattice we obtain xj = mj/Nj.

Although it would be better to chose all allowed values of ~k within the first Brillouin zone

it is simpler here to use a different primitive cell in the reciprocal lattice. Namely we can

chose mj = 0, 1, ..., Nj − 1. This gives

~k =
∑
j

mj

Nj

~bj , (33)

for mj = 0, 1, ..., Nj − 1. There are N = N1N2N3 allowed vectors ~k.

The volume in the reciprocal lattice per one vector ~k:

∆k1∆k2∆k3 = ∆~k1 · (∆~k2 ×∆~k3) =
~b1

N1

·

 ~b2

N2

×
~b3

N3


=

1

N

(2π)3

v
, (34)

where v ≡ V
N

= ~a1 · (~a2 × ~a3).
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To calculate a sum over the whole primitive cell (1-st B.Z.) we use

∑
~k

=
∫ d3k

∆k1∆k2∆k3

=
Nv

(2π)3

∫
d3k =

V

(2π)3

∫
d3k (35)

C. 2-nd proof

We expand both the wave function and the potential in the basis of momentum states,

i.e., plane waves. Thus:

ψ(~r) =
∑
~q

c~q e
i~q·~r (36)

The boundary conditions, e.g., those of Born-von Karmann make the set of ~k-vectors dis-

crete:

~k =
∑
j

mj

Nj

~bj , (37)

where mj ∈ Z. The sum is not limited to the first Brillouin zone.

The potential energy is a periodic function (Bravais-lattice). Thus it can be expanded as

U(~r) =
∑
~Q

U ~Qe
i ~Q·r , (38)

where ~Q runs over the reciprocal lattice. We have

U ~Q =
1

v

∫
P.U.

dV U(~r)e−i
~Q·~r , (39)

where the integration is over a primitive unit of the Bravais lattice and v is the volume of

the primitive unit. Since U is real (hermitian) we have U− ~Q = U∗~Q.

The Schrödinger equation now reads

Eψ = E
∑
~q

c~q e
i~q·~r =

(
− h̄2

2m
∇2 + U

)
ψ

=
∑
~q

h̄2q2

2m
c~q e

i~q·~r +
∑
~Q,~q

U ~Qc~q e
i( ~Q+~q)·~r

=
∑
~q

h̄2q2

2m
c~q e

i~q·~r +
∑
~Q,~q

U ~Qc~q− ~Q e
i~q·~r , (40)

where in the last line we substituted ~q → ~q− ~Q. The coefficients in front of each harmonics

must sutisfy this equation. Thus(
E − h̄2q2

2m

)
c~q =

∑
~Q

U ~Qc~q− ~Q . (41)
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We see that only ~q’s related by a vector of the reciprocal lattice influence each other. Each

such family can be characterized by a vector in the 1-st Brillouin zone. Thus, in each family

we introduce ~k and all the ~q’s in the family are given by ~k + ~K, where ~K runs over the

reciprocal lattice. This givesE − h̄2(~k + ~K)2

2m

 c~k+ ~K =
∑
~Q

U ~Qc~k+ ~K− ~Q . (42)

The number of equations for each ~k ∈ 1-st B.Z. is infinite as ~K runs over the whole reciprocal

lattice.

We will use index n to count solutions of Eq. (42). The solution number n is a set cn,~k+ ~K

for all vectors ~K ∈ reciprocal lattice. Since Eq. (42) is a Schrödinger equation and the sets

cn,~k+ ~K are the wave functions, they are orthonormal, i.e.,

∑
~K

c∗
n1,~k+ ~K

cn2,~k+ ~K = δn1,n2 , (43)

and complete ∑
n

c∗
n,~k+ ~K1

cn,~k+ ~K2
= δ ~K1, ~K2

. (44)

(Note that ~K serves here as coordinate of the wave function.)

The eigenstates in the coordinate representation then read

ψn,~k(~r) =
∑
~K

cn,~k+ ~K e
i(~k+ ~K)·~r = ei

~k·~r∑
~K

cn,~k+ ~K e
i ~K·~r = ei

~k·~run,~k(~r) , (45)

where

un,~k(~r) ≡
∑
~K

cn,~k+ ~K e
i ~K·~r . (46)

Now, if we slightly change ~k, only the LHS of the equation (42) slightly changes. One can

expect that in each family n the states and the eigen-energies change smoothly. We obtain

bands.

D. Properties of the Bloch states

• Bloch states are orthonormal.
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We obtain∫
d3r ψ∗

n1,~k1
(~r)ψn2,~k2

(~r) =
∑
~K1, ~K2

c∗
n1,~k1+ ~K1

cn2,~k2+ ~K2

∫
d3r ei(

~k2+ ~K2−~k1− ~K1)

= V
∑
~K1, ~K2

c∗
n1,~k1+ ~K1

cn2,~k2+ ~K2
δ~k2+ ~K2,~k1+ ~K1

, (47)

Since ~k1 and ~k2 both are in the 1-st B.Z. we have δ~k2+ ~K2,~k1+ ~K1
= δ~k1,~k2

δ ~K1, ~K2
. Thus∫

d3r ψ∗n1,k1
(~r)ψn2,k2(~r) = V δ~k1,~k2

∑
~K1

c∗
n1,~k1+ ~K1

cn2,~k1+ ~K1

= V δ~k1,~k2
δn1,n2 . (48)

In the thermodynamic limit V →∞ we have V δ~k1,~k2
→ (2π)3δ(~k1 − ~k2).

• Basis of Bloch states is complete.

∑
n

∑
~k∈1.B.Z

ψ∗
n,~k

(~r1)ψn,~k(~r2)

=
∑
n

∑
~k∈1.B.Z

∑
~K1, ~K2

c∗
n,~k+ ~K1

cn,~k+ ~K2
e−i

~K1·~r1ei
~K2·~r2ei

~k·(~r2−~r1)

=
∑

~k∈1.B.Z

∑
~K

ei(
~k+ ~K)·(~r2−~r1) = V δ(~r2 − ~r1) . (49)

• Crystal momentum

The vector h̄~k is not the momentum and the Bloch states are not eigenstates of the

momentum operator. Indeed

~pψn,~k = −ih̄~∇ψn,~k = h̄~kψn,~k + ei
~k·~r ~∇un,~k . (50)

The vector h̄~k is called ”crystal momentum”.

• Discreetness of states indexed by n.

The Schrödinger equation for a given ~kE − h̄2(~k + ~K)2

2m

 c~k+ ~K =
∑
~Q

U ~Qc~k+ ~K− ~Q (51)

can be rewritten for the function

u~k(~r) ≡
∑
~K

c~k+ ~K e
i ~K·~r . (52)
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as E − h̄2(~k − i~∇)2

2m

u~k(~r) = U(~r)u~k(~r) , (53)

accompanied by the periodic boundary conditions u~k(~r + ~R) = u~k(~r). The problem

thus must be solved in one primitive unit of the Bravais lattice and can give only

discreet spectrum.

• The eigenenergies E~n,~k are continuous (and analytic) functions of ~k. Quite clear from

the Schrödinger equation (53). No proof provided.

• Extension to the whole reciprocal lattice.

One can extend the definition of Bloch states ψn,~k for ~k not necessarily being in the

1-st. B.Z. Then this function is a periodic function of ~k with the periods given by the

reciprocal lattice.

V. ALMOST FREE ELECTRONS.

We start from the Schrödinger equationEn,~k − h̄2(~k + ~K)2

2m

 cn,~k+ ~K =
∑
~Q

U ~Qcn,~k+ ~K− ~Q (54)

for the coefficients of the function

un,~k(~r) ≡
∑
~K

cn,~k+ ~K e
i ~K·~r . (55)

Renaming ~K1 ≡ ~K and ~K2 ≡ ~K − ~Q we obtainEn,~k − h̄2(~k + ~K1)2

2m

 cn,~k+ ~K1
=
∑
~K2

U ~K1− ~K2
cn,~k+ ~K2

(56)

We start from the limit of free electrons U = 0. The solutions of (56) are trivial: for each

n there is ~Kn such that

En,~k = ε
(0)

n,~k
≡ h̄2(~k + ~Kn)2

2m
(57)

and cn,~k+ ~Kl
= δn,l.

Now consider U 6= 0. First, U ~Q=0 gives a total shift of energy. Thus, we take it into

account and put U ~Q=0 = 0. There are two possibilities:
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1) For a given ~k there are no other vectors of the reciprocal lattice ~Kl such that ε
(0)

l,~k
≈ ε

(0)

n,~k

(more precisely the difference of the two energies of order or smaller than U). Then we are

in the situation of the non-degenerate perturbation theory. This gives for l 6= n

cn,~k+ ~Kl
=

U ~Kl− ~Kn

ε
(0)

n,~k
− ε(0)

l,~k

+O(U2) (58)

and for the band energy we obtain

En,~k = ε
(0)

n,~k
+
∑
l 6=n

U ~Kn− ~KlU ~Kl− ~Kn

ε
(0)

n,~k
− ε(0)

l,~k

+O(U3) (59)

The bands repel each other.

2) There are some (at least one in addition to ~Kn) vectors ~Kl 6= ~Kn such that ε
(0)

l,~k
≈ ε

(0)

n,~k
.

We denote all m such vectors (incluing ~Kn) by ~Kl with l = 1, . . . ,m. The degenerate

perturbation theory tells us to solve the following system of m equations (j = 1, . . . ,m):E~k − h̄2(~k + ~Kj)
2

2m

 c~k+ ~Kj
=

m∑
i=1

U ~Kj− ~Kic~k+ ~Ki
(60)

Double degeneracy. Consider a special (but probably the most important) case when

K

q−
q

K

FIG. 1: Bragg plane.

the degeneracy is between two energies corresponding to vectors ~K1 and ~K2. First we note

that the condition on ~k for this to happen coincides with the one for the Bragg scattering

of the X-rays. Namely, the condition of degeneracy reads |~k + ~K1| = |~k + ~K2| = |~k + ~K1 −

( ~K1 − ~K2)|. Introducing ~q ≡ ~k + ~K1 and ~K ≡ ~K1 − ~K2 ( ~K ∈ reciprocal lattice) we see

that the relation between the wave vectors in the expanded band picture ~q = ~k + ~K1 and

~q − ~K = ~k + ~K2 is like between the wave vectors of the incident and the reflected waves in
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the Bragg scattering. Both have to end at the so called ”Bragg plane” as depicted in Fig. 1.

In particular the condition on ~q reads |~q · ~K| = 1
2
| ~K|.

The eigenvalues are determined as zeros of the determinant of the following matrix E~k − ε
(0)
1,k −U ~K

−U− ~K E~k − ε
(0)
2,k

 (61)

The solutions read

E~k =
ε

(0)
1,k + ε

(0)
2,k

2
±

√√√√√ε(0)
1,k − ε

(0)
2,k

2

2

+ |U ~K |2 (62)

In particular, the splitting exactly at the Bragg plain, where ε
(0)
1,k = ε

(0)
2,k is given by

E2,k − E1,k = 2|U ~K |.

A. Example in 1D

FIG. 2: Extended zone scheme in 1D.

Extended, reduced, and periodic zone schemes.
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B. Lattice with basis, structure factor

Assume there are identical ions in positions ~dj (basis) in each primitive cell of the Bravais

lattice characterized by vector ~R. Each ion creates a potential φ(~r − ~R− ~dj), so that

U(~r) =
∑
~R

∑
j

φ(~r − ~R− ~dj) . (63)

The resulting potential U(~r) is still periodic with periods being the vectors of the Bravais

lattice, U(~r + ~R) = U(~r).

We need

U ~K =
1

v

∫
P.U.

dV U(~r)e−i
~K·~r =

1

v

∫
P.U.

dV e−i
~K·~r∑

~R

∑
j

φ(~r − ~R− ~dj)

=
1

v

∫
all space

dV e−i
~K·~r∑

j

φ(~r − ~dj) =
1

v
φ( ~K)S∗~K , (64)

where

φ( ~K) ≡
∫
all space

φ(~r)e−i
~K·~r , (65)

and

S ~K =
∑
j

ei
~K·~dj . (66)

FIG. 3: Only black points are allowed.

The structure factor provides a nice way to recover the proper Bravais lattice. This is

important both in Bragg scattering and in the Bloch theory. Assume we have a ”bcc” lattice
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with basis vectors ~a1 = a~x, ~a2 = a~y, and ~a3 = a
2
(~x + ~y + ~z). We (wrongly) decide to treat

it as a ”cs” lattice with ~a1 = a~x, ~a2 = a~y, and ~a3 = a~z and with two identical ions per

unit cell with ~d1 = 0 and ~d2 = a
2
(~x + ~y + ~z). The (wrong) reciprocal lattice is given by

~K = m1
~b1 +m2

~b2 +m3
~b3, where ~b1 = (2π/a)~x, ~b2 = (2π/a)~y, and ~b3 = (2π/a)~z. We obtain

for the structure factor

S ~K =
∑
j

ei
~K·~dj = 1 + eπ(m1+m2+m3) . (67)

Possible results are either 0 or 2. The correct reciprocal lattice is only those ~K for which

S = 2. It is easy to see that it is an ”fcc” lattice (Fig. 3). Indeed no Bragg scattering

appear for points (vectors ~K) with S = 0. Also no no zone gap appear at Bragg planes

corresponding to such vectors!

VI. BANDS, FERMI SURFACE, ISOLATORS, SEMICONDUCTORS, METALS.

Index n counts bands. Number of state in a band is 2× the number of vectors ~k in the

1-st. B.Z., i.e., 2N .

Bands can overlap in energy.

VII. TIGHT BINDING

A. Wannier functions

One can show that the Bloch states can be presented in a different form:

ψn,~k(~r) =
∑
~R

ei
~k·~Rwn(~r − ~R) , (68)

where

wn(~r) =
1

N

∑
~k∈1. B.Z.

ψn,~k(~r) =
V

N

∫
1. B.Z.

d3k

(2π)3
ψn,~k(~r)

= v
∫

1. B.Z.

d3k

(2π)3
ψn,~k(~r) . (69)

By operation of translation we obtain

wn(~r − ~R) =
1

N

∑
~k∈1. B.Z.

ψn,~k(~r − ~R) =
1

N

∑
~k∈1. B.Z.

e−i
~k·~Rψn,~k(~r) . (70)
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Indeed, substituting Eq.(70) into Eq.(68) we obtain

ψn,~k(~r) =
∑
~R

ei
~k·~R 1

N

∑
~q∈1. B.Z.

e−i~q·
~Rψn,~q(~r) =

∑
~q∈1. B.Z.

δ~k,~q ψn,~q(~r) = ψn,~k(~r) . (71)

It is easy to check that the Wannier functions of different bands n are orthogonal. Also

orthogonal are the Wannier functions of the same band but shifted to different ~R’s.

B. Schrödinger equation for Wannier functions

Assume the total potential is a sum of atomic ones (for a simple Bravais lattice with one

atom per unit):

U(~r) =
∑
~R

Ua(~r − ~R) . (72)

Then from

Hψn,~k =

− h̄2∆

2m
+
∑
~R

Ua(~r − ~R)

ψn,~k = En,~kψn,~k (73)

we obtain

En,~k
∑
~R

ei
~k·~Rwn(~r − ~R) =

− h̄2∆

2m
+
∑
~R1

Ua(~r − ~R1)

∑
~R

ei
~k·~Rwn(~r − ~R) . (74)

In the r.h.s. we separate the terms with ~R1 = ~R from those where ~R1 6= ~R:

En,~k
∑
~R

ei
~k·~Rwn(~r − ~R) =

∑
~R

(
− h̄

2∆

2m
+ Ua(~r − ~R)

)
ei
~k·~Rwn(~r − ~R)

+
∑
~R

∑
~R1 6=~R

Ua(~r − ~R1)ei
~k·~Rwn(~r − ~R)

=
∑
~R

(
− h̄

2∆

2m
+ Ua(~r − ~R)

)
ei
~k·~Rwn(~r − ~R)

+
∑
~R

∆U(~r, ~R)ei
~k·~Rwn(~r − ~R) , (75)

where ∆U(~r, ~R) ≡ ∑~R1 6=~R Ua(~r − ~R1) = U(~r)− Ua(~r − ~R).

C. Linear Combination of Atomic Orbitals (LCAO)

Simplest approximation for the Wannier function w =
∑
m bmφm where φm are the atomic

orbitals, such that Haφm = Ea,mφm. This can be, e.g., a multiplet of the orbital momentum
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L with 2L+ 1 degenerate states (we omit the band index n). This gives

∑
m

bm(E~k − Ea,m)
∑
~R

ei
~k·~Rφm(~r − ~R) =

∑
m

bm
∑
~R

∆U(~r, ~R)ei
~k·~Rφm(~r − ~R) , (76)

We have restricted our Hilbert space to linear combinations of atomic orbitals φm(~r− ~R)

shifted to all vectors of the Bravais lattice. While we cannot guarantee that Eq. (76) holds

exactly (in the whole Hilbert space) we can choose the coefficients bm and the energy E~k

so that Eq. (76) holds in our restricted space. That is we demand that Eq. (76) projected

on all φm(~r − ~R) holds. Due to the periodicity of the l.h.s. and the r.h.s. of Eq. (76) it is

sufficient to project only on φm(~r).

Projecting on φl(~r) we obtain

(E~k − Ea,l)bl +
∑
m

bm(E~k − Ea,m)
∑
~R 6=~0

ei
~k·~R

∫
d3rφ∗l (~r)φm(~r − ~R)

=
∑
m

bm
∑
~R

ei
~k·~R

∫
d3rφ∗l (~r)∆U(~r, ~R)φm(~r − ~R) , (77)

Introducing

Il,m(~R) ≡
∫
d3rφ∗l (~r)φm(~r − ~R) (78)

and

hl,m(~R) ≡
∫
d3rφ∗l (~r)∆U(~r, ~R)φm(~r − ~R) (79)

we obtain

(E~k − Ea,l)bl +
∑
m

bm(E~k − Ea,m)
∑
~R 6=~0

ei
~k·~RIl,m(~R)

=
∑
m

bm
∑
~R

ei
~k·~Rhl,m(~R) , (80)

This is a homogeneous matrix equation on coefficients bm. To have solutions one has to

demand that the determinant of the matrix vanishes, This determines the band energies

En,~k. The number of bands is equal to the number of states in the multiplet.

D. Single orbital (s states), one band

We obtain

E~k = Ea +

∑
~R e

i~k·~Rh(~R)

1 +
∑

~R 6=~0 e
i~k·~RI(~R)

, (81)
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Assume that only nearest neighbors matrix elements, do not vanish (and also h(0)). It

is important to note that I(~R)� 1. Thus

E~k ≈ Ea + h(0) +
∑
~R∈n.n.

(h(~R)− h(0)I(~R))ei
~k·~R , (82)

Then, for different Bravais lattices with one ion per primitive cell we obtain:

1) 1-D lattice with step a.

Ek = Ea + h(0) + 2W cos(ak) , (83)

where W = h(a)− h(0)I(a).

2) sc-lattice, ~a1 = a~x,~a2 = a~y,~a3 = a~z, φ(~r) is rotationally symmetric:

E~k = Ea + h(0) + 2W (cos(akx) + cos(aky) + cos(akz)) , (84)

where W = h(a)− h(0)I(a).

3) bcc-lattice. One of the possible choices of the primitive basis is: ~a1 = a~x,~a2 = a~y,~a3 =

1
2
a(~x + ~y + ~z), however the nearest neighbors are at ~R = a

2
(±x ± y ± z). Altogether 8

neighbors each at distance
√

3a/2. We obtain

E~k = Ea + h(0) + 8W cos(akx/2) cos(aky/2) cos(akz/2) , (85)

where W = h(
√

3a/2)−h(0)I(
√

3a/2). (Interesting exercise: show that the reciprocal lattice

in fcc).

E. Alternative formulation of tight-binding method

Each primitive cell is characterized by states
∣∣∣~R,m〉. Index m can count either states of

the same atom or states of different atoms in the cell. For example in graphen we would

have m = A,B, where A and B denote sub-lattices. The overlaps of different states vanish:

〈R1,m1| |R2,m2〉 = δ~R1, ~R2
δm1,m2 . One postulates a tunneling Hamiltonian

H =
∑
~R1,m1

∑
~R2,m2

tm1,m2(~R1 − ~R2)
∣∣∣~R2,m2

〉 〈
~R1,m1

∣∣∣ (86)

The Hamiltonian is hermitian, i.e., tm1,m2(~R) = t∗m2,m1
(−~R).

The Bloch states:

ψ~k =
∑
~R

ei
~k·~R∑

m

bm
∣∣∣~R,m〉 . (87)
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The Wannier w.f.: w =
∑
m bm

∣∣∣~R,m〉.

The energies and the coefficients bm are determined by substituting the Bloch wave func-

tion into the Schrödinger equation: Hψ~k = E~kψ~k.

We obtain

Hψ~k =
∑
~R1,m1

∑
~R2,m2

tm1,m2(~R1 − ~R2)
∣∣∣~R2,m2

〉 〈
~R1,m1

∣∣∣ ∑
~R

ei
~k·~R∑

m

bm
∣∣∣~R,m〉

=
∑
~R1,m1

∑
~R2,m2

ei
~k·~R1bm1 tm1,m2(~R1 − ~R2)

∣∣∣~R2,m2

〉
= E~k

∑
~R2

ei
~k·~R2

∑
m2

bm2

∣∣∣~R2,m2

〉
(88)

Comparing coefficients in front of
∣∣∣~R2,m2

〉
we obtain

∑
~R1,m1

ei
~k·~R1bm1 tm1,m2(~R1 − ~R2) = E~ke

i~k·~R2bm2 . (89)

With ~R ≡ ~R1 − ~R2 ∑
~R,m1

ei
~k·~Rbm1 tm1,m2(~R) = E~kbm2 . (90)

We again have reduced the problem to a matrix equation.

Examples:

1) 1-D, m=0 (1 state per primitive cell)

E~k =
∑
~R

t~Re
i~k·~R (91)

For nearest neighbors tunneling E~k = 2t(1) cos(ka).

2) Exercise: graphen.

VIII. DYNAMICS OF BLOCH ELECTRONS

A. Semi-classical equation of motion of Bloch electrons

We want to describe the evolution of electron’s wave function when a weak and slowly

changing external field is added. That is the Hamiltonian now reads

H =

(
−ih̄~∇+ e

c
~A(~r)

)2

2m
+ U(~r)− eφ(~r) , (92)
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where (the signs are consistent with negative charge, that is e = |e| > 0, but the charge of

the electron is −e < 0.) The potential U(~r) is periodic while ~A and φ change little on the

scale of primitive cell of the Bravais lattice (slow fields).

Our aim to prove that the electrons in the band n are governed by the following effective

Hamiltonian

Heff,n = εn

(
−i~∇+

e

h̄c
~A
)
− eφ . (93)

B. Wave packet argument

We localize the electron of a certain band n into a wave packet:

Φ(~r) =
∫
d3k g(~k)ψn,~k(~r) =

∫
d3k g(~k)un,~k(~r)e

i~k·~r. (94)

The function g(~k) is centered around a certain quasi-impuls ~k0 and has a width ∆k such

that the width of the wave packet in the real space ∆r is small enough. The two are related

as ∆k∆r ∼ 1.

The time evolution of the wave packet is given by

Φ(~r, t) =
∫
d3k g(~k)un,~k(~r)e

i~k·~r−iε
n,~k

t/h̄. (95)

We expand around ~k0 and εn,~k0
. We assume one can approximate un,~k(~r) ≈ un,~k0

in the

whole interval of ∆k. Then

Φ(~r, t) ≈ un,~k0
(~r)e

i~k0·~r−iεn,~k0
t/h̄
∫
d3δk g(~k)e

iδ~k·
(
~r−

∂ε
n,~k

∂~k
t/h̄

)
. (96)

Thus we conclude that the wave packet propagates with the velocity

~v =
∂~r

∂t
=

1

h̄

∂εn,~k

∂~k
. (97)

Assume now the electron is influenced by an electric field ~E. The work done by the field

pro unit of time is −e ~E · ~v. This work is ”used” to change the energy of the electron. Thus

we obtain
∂ε

∂t
=
∂εn,~k

∂~k

d~k

dt
= h̄~v

d~k

dt
= −e ~E · ~v . (98)

Thus we obtain

h̄
d~k

dt
= −e ~E . (99)

The quasi-momentum h̄k satisfies the same equation as the usual momentum for free elec-

trons!
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C. Proof for potential perturbation (not for vector potential)

We consider the following problem

H =

(
−ih̄~∇

)2

2m
+ U(~r) + Uext(~r) = H0 + Uext(~r) , (100)

Here U is the periodic lattice potential and Uext = −eφ is the external and weak potential.

More precisely what has to be weak is the external electric field, i.e., ∼ ~∇Uext.

We want to solve the time-dependent Schrdinger equation:

ih̄
∂ψ

∂t
= Hψ (101)

We expand ψ(t) in basis of Wannier functions

ψ(t) =
∑
n,~R

an,~R(t)wn(~r − ~R) (102)

Recall the representation of a Bloch wave function

ψn,~k(~r) =
∑
~R

ei
~k·~Rwn(~r − ~R) . (103)

In this case an,~R = ei
~k·~R. Wannier functions are given by

wn(~r) =
1

N

∑
~k∈1. B.Z.

ψn,~k(~r) . (104)

and

wn(~r − ~R) =
1

N

∑
~k∈1. B.Z.

e−i
~k·~Rψn,~k(~r) . (105)

First we investigate how H0 acts on the (shifted) Wannier functions using the fact

H0ψn,~k = εn,kψn,k.

H0wn(~r − ~R) =
1

N

∑
~k∈1. B.Z.

e−i
~k·~RH0ψn,~k(~r) =

1

N

∑
~k∈1. B.Z.

e−i
~k·~Rεn,kψn,~k(~r) . (106)

We use now the Wannier expansion (103) and obtain

H0wn(~r − ~R) =
∑
~R1

1

N

∑
~k∈1. B.Z.

εn,ke
i~k·(~R1−~R)wn(~r − ~R1)

=
∑
~R1

εn(~R1 − ~R)wn(~r − ~R1) , (107)
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where

εn(~R) ≡ 1

N

∑
~k∈1. B.Z.

εn,ke
i~k·~R . (108)

The Schrödinger equation now reads:

ih̄
∂ψ

∂t
= ih̄

∑
n,~R

ȧn,~R(t)wn(~r − ~R)

= Hψ = (H0 + Uext)ψ =
∑
n2, ~R2

an2, ~R2
(t)(H0 + Uext)wn2(~r − ~R2)

=
∑
n2, ~R2

an2, ~R2
(t)
∑
~R1

εn2(~R1 − ~R2)wn2(~r − ~R1) +
∑
n2, ~R2

an2, ~R2
(t)Uextwn2(~r − ~R2) .

(109)

The Wannier functions form a complete orthonormal basis. Thus we just compare the

coefficients:

ih̄ȧn,~R =
∑
~R2

an,~R2
εn(~R− ~R2)

+
∑
n2, ~R2

an2, ~R2

∫
d3r w∗n(~r − ~R)Uext(~r)wn2(~r − ~R2) . (110)

The first term in the r.h.s. of (110) is rewritten as follows

∑
~R2

an,~R2
εn(~R− ~R2) =

∑
~R1

εn(~R1)an,~R−~R1
=
∑
~R1

εn(~R1)e−i
~R1·(−i~∇)an,~R

= εn(~k → −i~∇)an,~R . (111)

Here we have used an,~R−~R1
= e−

~R1·~∇an,~R. That is already here we consider an,~R as a ”good”

function in all the space, i.e., an,~r.

The second term of the r.h.s. of (110) is approximated as

∑
n2, ~R2

an2, ~R2

∫
d3r w∗n(~r − ~R)Uext(~r)wn2(~r − ~R2) ≈ Uext(~R)an,~R . (112)

That is only diagonal matrix elements of Uext are left. Since Uext is slowly changing in space,

i.e,. it changes very little on the scale of promitive cell, while the Wannier functions are

localized on the scale of a cell this approximation is justified.

Thus, the SE for the ”envelope” wave function an,~R reads

ih̄ȧn,~R =
[
εn(−i~∇) + Uext(~R)

]
an,~R . (113)
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If we now ”forget” that an,~R is defined only in the locations ~R and define it in the

whole space, an,~r we obtain a Schrödinger equation with the effective Hamiltonian Heff,n =

εn(−i~∇) + Uext(~r). In presence of vector potential it becomes (with no proof given here)

Heff,n = εn

(
−i~∇+

e

h̄c
~A
)
− eφ . (114)

D. Effective mass

We see that the operator εn(−i~∇) plays the role of the kinetic energy. The free kinetic

energy reads εfree = h̄2(~k)2

2m
. In many cases the relevant values of crystal momenta lay around

an extremum of εn(~k) at ~k = ~k0. Then one can expand to the second order

εn(~k) ≈ ε(~k0) +
1

2

(
∂2εn

∂kα∂kβ

)
~k=~k0

(kα − k0,α)(kβ − k0,β) . (115)

In analogy to the free case the tensor

(
m∗−1

)
α,β

=
1

h̄2

(
∂2εn

∂kα∂kβ

)
~k=~k0

(116)

is called the effective mass tensor. In the simplest case when the tensor is proportional to

the unity matrix, i.e.,
(
m∗−1

)
α,β

= (1/m∗)δα,β one cane introduce the effective (band) mass

m∗.

For example in a simple cubic lattice we have

ε(~k) = const.− 2W (cos(akx) + cos(aky) + cos(akz)) , (117)

where in comparison to what we did earlier we change the definition of W so that W > 0.

The energy has a minimum at ~k0 = 0 and the effective mass is obtained from Wa2k2 =

h̄2k2/(2m∗) and is given by

m∗ =
h̄2

2Wa2
. (118)

1. Example

Consider a semiconductor with fully occupied valance band and an empty conductance

band. The conductance band is characterized by an effective mass m∗ ≈ 0.1m. That is
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Econd(~k) = Econd + h̄2k2/(2m∗), where Econd is the bottom of the conduction band. An

impurity (dopant ion) creates a potential

Uext = − e2

ε|r|
, (119)

where ε ≈ 10 is the dielectric constant. The dynamics of an extra electron added to the

conduction band will be governed by an effective Hamiltonian which has the form of the

Hydrogen atom one, but with different parameters:

Heff = Econd −
h̄2~∇2

2m∗
− e2

ε|r|
. (120)

The energy levels are known

En = Econd −
m∗e4

2ε2h̄2

1

n2
(121)

The binding energy
m∗e4

2ε2h̄2 =
m∗

m

1

ε2
Ry , (122)

where Ry ≈ 13eV. Thus we obtain a binding energy of order 10−3Ry. The size of he bound

state, i.e., the new Bohr radius is given by εh̄2

e2m∗
≈ 102a0. Thus we obtain Hydrogen-like

bound states in the energy gap.

E. Classical equations of motion

Considering now the effective Hamiltonian classically, i.e., replacing −ih̄~∇ with ~p we

obtain

H = εn

(
~p

h̄
+

e

ch̄
~A

)
− eφ(~r) (123)

This Hamiltonian is useful for description of dynamics of wave packets.

The equations of motion read

d

dt
~r = ~∇pH

d

dt
~p = −~∇rH (124)

The first equation gives

vj =
d

dt
rj =

∂H

∂pj
=

1

h̄

∂εn(~k)

∂kj


~k= ~p

h̄
+ e
ch̄
~A

. (125)
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The second equation reads

d

dt
pj = −e

c

∑
i

vi
∂Ai
∂rj

+ e∇jφ

= −e
c

∑
i

vi

(
∂Ai
∂rj
− ∂Aj

∂ri
+
∂Aj
∂ri

)
+ e∇jφ

= −e
c

(
~v × ~B

)
j
− e

c

∑
i

vi
∂Aj
∂ri

+ e∇jφ (126)

Using
d

dt
Aj =

∂Aj
∂t

+
∑
i

∂Aj
∂ri

vi (127)

we obtain
d

dt

(
pj +

e

c
Aj

)
= −e

c

(
~v × ~B

)
j

+
e

c

∂Aj
∂t

+ e∇jφ . (128)

Introducing ~pkin = ~p+ e
c
~A and recalling that ~E = −1

c
∂ ~A
∂t
− ~∇φ we obtain

d

dt
~pkin = −e

c

(
~v × ~B

)
− e ~E . (129)

F. Only electric field

The equations of motion read

vj =
1

h̄

∂εn(~k)

∂kj


~k= ~p

h̄

. (130)

d

dt
~p = −e ~E . (131)

This gives

dvj
dt

=
1

h̄

d

dt

∂εn(~k)

∂kj

 =
1

h̄

∑
i

∂2εn(~k)

∂kj∂ki

 dki
dt

=
1

h̄2

∑
i

∂2εn(~k)

∂kj∂ki

 (−eEi) =
∑
i

(m∗−1)ji(−eEi) . (132)

Or, one can invert the effective mass tensor and obtain∑
j

(m∗)ij v̇j = −eEi = Fi . (133)

These relations once again show the role of the effective mass. The mass tensor can have

negative eigenvalues. Then, the acceleration of the electron has an opposite to the force

(~F = −e ~E) direction.

Bloch oscillations!!
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G. Concept of holes

Consider an almost full band. As an example take the sc lattice.

ε(~k) = const.− 2W (cos(akx) + cos(aky) + cos(akz)) , (134)

Near the top of the band, where the unoccupied states are, at ~k0 = π
a
(1, 1, 1) the effective

mass is negative

m∗ = − h̄2

2Wa2
. (135)

Instead one can introduce holes. The unoccupied states are now called occupied by holes,

while occupied states are unoccupied by holes. So a hole is an absence of an electron.

This is useful since the fully occupied by electrons band does not contribute to the current.

The current provided by the band n (we do not use the band index as we limit ourselves

here to a single band) is given by

~j = − e
V

∑
s

∑
~k∈1.B.Z

n(~k, s)~v(~k, s) = −e
∑
s

∫
1.B.Z

d3k

(2π)3
n(~k, s)~v(~k, s) , (136)

where n(~k, s) is the occupation number of the state with crystal momentum ~k and spin

s = ±1/2 (in the band n). The velocity’s components are given by

vα(~k, s) =
1

h̄

∂ε(~k, s)

∂kα
. (137)

Here we generalized the band energy ε(~k) to depend on the spin index ε(~k, s). We did not

yet consider spin-orbit coupling. Thus ε(~k) does not depend on the spin s. In general case,

when the SO coupling is present, it does. The time reversal symmetry requires in general

case ε(~k, s) = ε(−~k,−s). Thus v(−~k,−s) = −v(~k, s). In the absence of spin-orbit coupling

ε(~k) = ε(−~k) and v(−~k) = −v(~k).

The occupation numbers are between 0 and 1. For the fully occupied band n(~k, s) = 1.

Thus we have

jα = −e
∑
s

∫
1.B.Z

d3k

(2π)3
vα(~k, s) = − e

h̄

∑
s

∫
1.B.Z

d3k

(2π)3

∂ε(~k, s)

∂kα
= 0 . (138)

The integral vanishes since ε(~k, s) is periodic with the period given by the vectors of the

reciprocal lattice.
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For the holes we have the occupation numbers nh(~k, s) = 1−n(~k, s). A hole characterized

by ~k, s moves with the same velocity as the electron with ~k, s. This follows just from the

fact that Schrödinger equation for the state do not depend on whether the state is occupied.

Then we obtain for the current density

~j = −e
∑
s

∫
1.B.Z

d3k

(2π)3
n(~k, s)~v(~k, s) = e

∑
s

∫
1.B.Z

d3k

(2π)3

[
1− n(~k, s)

]
~v(~k, s)

= e
∑
s

∫
1.B.Z

d3k

(2π)3
nh(~k, s)~v(~k, s) . (139)

Thus we can say that the charge of the hole is +e.

Finally we recall the equation of motion

∑
j

(m∗)ij v̇j = −eEi . (140)

Defining the hall effective mass as m∗h ≡ −m∗ we obtain

∑
j

(m∗h)ij v̇j = eEi . (141)

Thus if the electronic effective mass is negative it is more convenient to use the picture of

holes. They have positive charge and positive mass.

Thus far we characterized holes by the crystal momentum and the spin of the absent electron

~k, s. It is more logical to say that the hole has a crystal momentum ~kh = −~k and spin sh = −s. We

also define the energy of the hole as εh(~kh, sh) = const.− ε(~k, s). For the constant it is convenient

to chose the upper edge of the band. Then we can have the usual relation

~vh(~kh, sh) =
1

h̄

∂εh(~kh, sh)

∂~kh
=

1

h̄

∂ε(~k, s)

∂~k
= ~v(~k, s) . (142)

It is now easy to check that the usual relation is satisfied for the hole effective mass m∗h.

IX. BLOCH ELECTRONS IN MAGNETIC FIELD

For ~pkin = ~p+ e
c
~A we obtained

d

dt
~pkin = −e

c

(
~v × ~B

)
− e ~E . (143)

Recalling also that the effective Hamiltonian reads

H = εn

(
~p

h̄
+

e

ch̄
~A

)
− eφ(~r) (144)
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we conclude that the Bloch wave vector is related to ~pkin, i.e., h̄~k = ~pkin.

This gives for the case ~E = 0

d

dt
~k = − e

h̄c

(
~v(~k)× ~B

)
, (145)

where
drj
dt

= vj(~k) =
1

h̄

∂εn(~k)

∂kj
. (146)

First, we observe that the energy is conserved:

dε

dt
= h̄~v · d

~k

dt
= 0 . (147)

Second, the vector d~k/dt is perpendicular to ~B, i.e. kz = const. if z is the direction of

~B. Thus, in the k−space the motion is along lines of equal energy which belong to planes

perpendicular to ~B. One obtains these lines by cutting the equal-energy surfaces (e.g., the

Fermi surface) by planes ⊥ ~B.

B

FIG. 4: Fermi surface cut by a plane perpendicular to ~B.

Next we consider the trajectory in the real space. We obtain

~B × ~̇k = − e

h̄c
~B ×

(
~v(~k)× ~B

)
= − e

h̄c

(
~v(~k)( ~B)2 − ~B( ~B · ~v(~k))

)
= −eB

2

h̄c
~v⊥ , (148)

where ~v⊥ is the component of the velocity perpendicular to ~B. Dividing by | ~B| we obtain

~b× ~̇k = −eB
h̄c

~v⊥ , (149)

where ~b ≡ ~B/| ~B|. Integrating over time from 0 to t we obtain

~b× (~k⊥(t)− ~k⊥(0)) = −Be
h̄c

(~r⊥(t)− ~r⊥(0)) , (150)

Thus the trajectory in the ~r−space is obtained from the trajectory in ~k−space by a π/2

rotation around the axis of the magnetic field and a rescaling by a factor −h̄c/(eB).
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A. Closed and open orbits

If the orbit in the k-space is closed, then also the orbit in the r-space is closed (see

Fig. 5a). However, there exist situations when the orbit in the k-space is open (see Fig. 5b).

B

k(t)

r(t)
B

r(t)

k(t)

FIG. 5: a) Closed trajectories;b) Open trajectories.

This happens when the Fermi surface reaches the border of the Brillouin zone.

B. Cyclotron frequency

Assume the direction of the magnetic field is z, i.e., ~b = ~z. Also assume that all the orbits

are closed. We write the equations of motion

~z × ~̇k = −eB
h̄c

~v⊥ (151)

in components:

k̇x = −eB
h̄c
vy , k̇y =

eB

h̄c
vx . (152)

From here we obtain

(dkx)
2 + (dky)

2 =
e2B2

h̄2c2
(v2
x + v2

y)(dt)
2 (153)

Introducing the length element along the trajectory in the reciprocal space dk ≡√
(dkx)2 + (dky)2 we obtain

dk

dt
=
|e|B
h̄c

v⊥ , (154)

where v⊥ ≡
√
v2
x + v2

y . The inverted relation reads

dt =
h̄c

|e|B
dk

v⊥
, (155)
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For the period of the orbit we obtain

T =
h̄c

|e|B

∮ dk

v⊥
=

h̄2c

|e|B

∮ dk∣∣∣∂ε
dq

∣∣∣ , (156)

where dq is the differential of the wave vector perpendicular to the trajectory (and laying in

the plane of the trajectory, i.e., kz = const.). This gives

T =
h̄2c

|e|B

∮
dk

dq∣∣∣∂ε
dq

∣∣∣ dq =
h̄2c

|e|B

∮
dk
dq

dε
. (157)

We choose the differential dq so that at any point of the trajectory k(t) we have dε = const.,

i.e., dε is independent of k(t). We identify the integral along the trajectory in the k−space

∫
dkdq = dS , (158)

where S is the area of the closed orbit. Thus

T =
h̄2c

|e|B
∂S

∂ε

∣∣∣
kz=const

. (159)

One can also define the ”cyclotron mass”

m∗ ≡ h̄2

2π

∂S(ε, kz)

∂ε
, (160)

so that the cyclotron frequency is equal to

ωc =
2π

T
=

|e|B
m∗(ε, kz)c

(161)

For a simple parabolic band the cyclotron mass is equal to the effective mass. In more

complicated cases they are different (exercise).

C. Semiclassical quantization (Bohr-Sommerfeld) of orbits

We have seen that the effective Hamiltonian

H = εn

(
~p

h̄
+

e

ch̄
~A

)
(162)

is obtained by substitution

h̄~k → ~p+
e

c
~A . (163)
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We obtain ∮
~p · d~r =

∮ (
h̄~k − e

c
~A
)
· d~r (164)

From

~z × (~k⊥(t)− ~k⊥(0)) = −Be
h̄c

(~r⊥(t)− ~r⊥(0)) , (165)

multiplying both sides from the left with ~z× we obtain

h̄~k⊥ = −e
c
~r⊥ × ~B + const. . (166)

Thus ∮
~p · d~r = −e

c

∮ (
~r⊥ × ~B + ~A

)
· d~r

=
e

c
~B ·

∮
~r⊥ × d~r −

e

c

∮
~A · d~r

=
e

c
(2Φ− Φ) =

e

c
Φ , (167)

where Φ is the magnetic flux through the closed orbit (in ~r-space). The quantization condi-

tion reads
∮
~p · d~r = 2πh̄

(
n+ 1

2

)
. This means

Φ =
hc

e

(
n+

1

2

)
= Φ0

(
n+

1

2

)
, (168)

where Φ0 ≡ hc/|e| is the flux quantum. The allowed areas of the orbits in the ~r-space read

An =
Φ0

B

(
n+

1

2

)
. (169)

and in the ~k−space

Sn =
B2e2

h̄2c2
An =

B2e2

h̄2c2

Φ0

B

(
n+

1

2

)
=

2πB|e|
h̄c

(
n+

1

2

)
. (170)

Comparing now with

m∗ ≡ h̄2

2π

∂S(ε, kz)

∂ε
, (171)

and

ωc =
2π

T
=

|e|B
m∗(ε, kz)c

. (172)

We see that the energy difference between the levels n and n+ 1 is

ε(n+ 1, kz)− ε(n, kz) =
1

∂S(ε,kz)
∂ε

(Sn+1 − Sn) =
h̄2

2πm∗
2πB|e|
h̄c

= h̄ωc (173)

Thus we obtain the Landau levels quasi-classically. In what follows we will obtain Landau

levels for a parabolic band exactly.
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D. Magnetic susceptibility

Magnetization: ~M

~B = ~H + 4π ~M (174)

Susceptibility

χ =

(
∂M

∂H

)
~H=0

(175)

For small ~H we have ~M = χ ~H. Then ~B = (1 + 4πχ) ~H = µ ~H. Finally

~M =
χ

µ
~B =

χ

1 + 4πχ
~B . (176)

If χ� 1 we have ~M ≈ χB.

Internal energy

dU = dQ+ dA = TdS − ~Md ~H (177)

Free energy

F = U − TS , dF = −SdT − ~Md ~H (178)

From here

M = −
(
∂F

∂H

)
T

(179)

and

χ = −
(
∂2F

∂H2

)
T,H=0

(180)

Thus we need the free energy F = −kBT lnZ, where Z =
∑
i e
−Ei/(kBT ).

1. Grand canonical ensemble

In the grand canonical ensemble we have instead Ω = −kBT lnZΩ, where ZΩ =∑
N

[
eµN

∑
i e
−Ei,N/(kBT )

]
. For free Fermions this gives

Ω = −kBT
∑
k

ln
[
1 + exp

(
µ− εk
kBT

)]
. (181)
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E. Bohr-van-Leeuven Theorem

No magnetization due to classical motion of electrons.

Classical partition function:

Z =
[∫

d3rd3p exp
(
− H

kBT

)]N
(182)

and

H =

(
~p+ e

c
~A(~r)

)2

2m
+ U(~r) (183)

Integration over ~p eliminates the effect of ~A.

X. PARAMAGNETISM PAULI AND DIAMAGNETISM LANDAU

A. Pauli paramagnetism

H = H0 +HZeeman . (184)

HZeeman = −gµB
~B~σ

2
, (185)

where g = 2, µB = eh̄
2mc

.

The energy enters into the expression for Ω as µ− ε. Thus for spin ”up” we can say that

the chemical potential is µ+ µBB while for spin ”down” it is µ− µBB.

For the potential Ω we thus obtain

Ω =
1

2
(Ω0(µ+ µBH) + Ω0(µ+ µBH)) = Ω0 +

1

2
µ2

BH
2∂

2Ω0

∂µ2
. (186)

We obtain

χpara = − 1

V

(
∂2Ω

∂H2

)
T,H=0,µ

= − 1

V
µ2

B

∂2Ω0

∂µ2
. (187)

(Ω should be divided by the volume to get the magnetization as density).

At T = 0 all states up to E = EF are occupied where E = ε±µBB. In other words for electrons

with σz = +1 we have all states up to ε = EF + µBB occupied. For σz = −1 we have all states up

to ε = EF − µBB occupied. The difference of total densities is given by

n+ − n− =

∫ EF+µBB

0
ν(ε)dε−

∫ EF−µBB

0
ν(ε)dε ≈ 2µBBν(EF ) , (188)
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where ν(ε) is the density of states (pro spin). The magnetization is given by

M = µB(n+ − n−) = 2µ2
BBν . (189)

Finally

χ = 2µ2
Bν = µ2

Bνs , (190)

where νs ≡ 2ν is the total density of states at the Fermi energy (including spin).

B. Landau levels

Consider now free electrons or equivalently a parabolic band. The magnetic field ~B ‖ ~z.

The vector potential is, e.g., ~A = (0, Bx, 0). The Hamiltonian reads

H = − h̄2

2m

 ∂2

∂x2
+

(
∂

∂y
+
ieB

h̄c
x

)2

+
∂2

∂z2

 (191)

Ansatz

ψ = φ(x)eikyyeikzz (192)

This gives

Hψ = − h̄2

2m

[
∂2φ

∂x2
+
(
iky +

ieB

h̄c
x
)2

φ− k2
z φ

]
eikyyeikzz = Eφ eikyyeikzz (193)

Thus

− h̄2

2m

[
∂2φ

∂x2
+
(
iky +

ieB

h̄c
x
)2

φ

]
=

(
E − h̄2k2

z

2m

)
φ (194)

− h̄2

2m

∂2φ

∂x2
+
h̄2

2m

(
ky +

eB

h̄c
x
)2

φ =

(
E − h̄2k2

z

2m

)
φ (195)

− h̄2

2m

∂2φ

∂x2
+
e2B2

2mc2

(
x+

h̄c

eB
ky

)2

φ =

(
E − h̄2k2

z

2m

)
φ (196)

− h̄2

2m

∂2φ

∂x2
+
mω2

c

2
(x− x0)2 φ =

(
E − h̄2k2

z

2m

)
φ , (197)

where x0 ≡ − h̄c
eB
ky and ωc = |e|B

mc
. We can also introduce l2B ≡ h̄c

|e|B . Thus x0 = l2Bky.

The energy levels

E =
h̄2k2

z

2m
+ h̄ωc

(
n+

1

2

)
. (198)
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C. Degeneracy of the Landau Level

The degeneracy is obtained by introducing the volume V = LxLyLz and introducing the

periodic boundary conditions in the y and z directions. Then kz = 2πnz
Lz

and ky = 2πny
Ly

. The

ky values are also limited by the fact that x0 ≡ − h̄c
eB
ky ∈ [0, Lx]. Thus the number of states

for a given kz is given by Ly
2π

(kmax
y − kmin

y ) = LxLy
2π

eB
h̄c

. The number of states in an interval

dkz for each Landau level is thus given by

dnn =
LxLy

2π

eB

h̄c

Lz
2π
dkz =

eBV

(2π)2h̄c
dkz (199)

D. Landau diamagnetism

The energy levels

E =
h̄2k2

z

2m∗
+ h̄ωc

(
n+

1

2

)
. (200)

with ωc = eB
m∗c

(it is now important to differentiate m∗ from m).

The number of states for a given kz is given by LxLy
2π

eB
h̄c

. The number of states in dkz at

the level n

dnn =
LxLy

2π

eB

h̄c

Lz
2π
dkz =

eBV

(2π)2h̄c
dkz . (201)

We obtain

Ω = −kBT
LxLy

2π

eB

h̄c

∑
n,kz

ln

1 + exp

µ− h̄2k2
z

2m∗
− h̄ωc

(
n+ 1

2

)
kBT


= −kBT

eBV

(2π)2h̄c

∑
n

∞∫
−∞

dkz ln

1 + exp

µ− h̄2k2
z

2m∗
− h̄ωc

(
n+ 1

2

)
kBT


= −kBTeBV

(2π)2h̄c

∑
n=0

F
(
n+

1

2

)
(202)

where

F (x) ≡
∞∫
−∞

dkz ln

1 + exp

µ− h̄2k2
z

2m∗
− h̄ωcx

kBT

 (203)

We also introduce

f(y) ≡
∞∫
−∞

dkz ln

1 + exp

y − h̄2k2
z

2m∗

kBT

 . (204)

We use the variant of the Euler-Maclaurin formula

∞∑
n=0

F
(
n+

1

2

)
=

∞∫
0

dxF (x) +
1

24
F ′(0) + . . . , (205)
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We obtain ∞∫
0

dxF (x) =
1

h̄ωc

∫ µ

−∞
dyf(y) . (206)

Thus the integral contribution to Ω reads

Ωint = −kBTeBV

(2π)2h̄c

1

h̄ωc

∫ µ

−∞
dyf(y) = −kBTm

∗V

(2πh̄)2

∫ µ

−∞
dyf(y) = Ω0 . (207)

We also obtain

F ′(0) = −h̄ωcf ′(y = µ) (208)

and the correction

δΩ =
1

24

kBTeBV

(2π)2h̄c
h̄ωcf

′(µ) =
1

24

kBTeBV

(2π)2h̄c
h̄ωc

∂2

∂µ2

µ∫
−∞

f(y)dy

= − 1

24
(h̄ωc)

2 ∂2

∂µ2
Ω0(µ) = − 1

24

(
h̄eH

m∗c

)2
∂2

∂µ2
Ω0(µ) . (209)

Thus

χdia = − 1

V

(
∂2Ω

∂H2

)
T,H=0,µ

=
1

V

e

12m∗c

∂2

∂µ2
Ω0(µ) . (210)

Comparing with

χpara = − 1

V
µ2

B

∂2Ω0

∂µ2
. (211)

and with µB = eh̄
2mc

we obtain

χdia = −1

3

(
m

m∗

)2

χpara (212)

E. van Alphen - de Haas effect

The correction to δΩ in Eq. (209) is proportional to H2. The next correction is an

oscillating function of H with amplitude ∝ H5/2. The magnetization M = −∂Ω/∂H is

also oscillating and the amplitude of oscillations at low temperatures may become bigger

than the non-oscillating contribution. This is the van Alphen - de Haas effect (predicted

theoretically by Landau).

Qualitative explanation of oscillations due to changing occupation of Landau levels as

function of H.
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XI. BOLTZMANN EQUATION, ELASTIC SCATTERING ON IMPURITIES.

A. Kinematics

For quasiclassical description of electrons we introduce the Boltzmann distribution func-

tion fn(~k, ~r, t). This is the probability to find an electron in state n,~k at point ~r at time

t. More precisely is f/V the probability density to find an electron in state n,~k in point ~r.

This means the probability to find it in a volume element dV is given by fdV/V .

We consider both ~k and ~r defined. This means that we consider wave packets with both

~k and ~r (approximately) defined. The uncertainty relation ∆k∆r ∼ 1 allows us to choose

both ∆k and ∆r small enough.

The electron density and the current density are given by

n(~r, t) =
1

V

∑
n,~k,σ

fn(~k, ~r, t) (213)

~j(~r, t) = − e
V

∑
n,~k,σ

~v~kfn(~k, ~r, t) (214)

The equations of motion

d

dt
~r = ~v~k =

1

h̄

∂εn(~k)

∂~k

 , (215)

h̄
d~k

dt
= −e ~E − e

c

(
~v × ~B

)
. (216)

determine the evolution of the individual ~k(t) and ~r(t) of each wave packet.

If the electrons would only obey the equations of motion the distribution function would

satisfy

fn(~k(t), ~r(t), t) = fn(~k(0), ~r(0), 0) (217)

Thus, the full time derivative would vanish

df

dt
=
∂f

∂t
+ ~̇k · ~∇kf + ~̇r · ~∇rf = 0 (218)

However, there are processes which change the distribution function. These are collisions

with impurities, phonons, other electrons The new equation reads

df

dt
=
∂f

∂t
+ ~̇k · ~∇kf + ~̇r · ~∇rf =

(
∂f

∂t

)
Coll

, (219)

where
(
∂f
∂t

)
Coll

= I[f ] is called the collision integral.
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Using the equations of motion we obtain the celebrated Boltzmann equation

∂f

∂t
− e

h̄

(
~E +

1

c

(
~v × ~B

))
· ~∇kf + ~vk · ~∇rf = I[f ] . (220)

B. Collision integral for scattering on impurities

The collision integral describes processes that bring about change of the state of the

electrons, i.e., transitions. There are several reasons for the transitions: phonons, electron-

electron collisions, impurities. Here we consider only one: scattering on impurities.

Scattering in general causes transitions in which electron which was in the state n1, ~k1

is transferred to the state n2, ~k2. We will suppress the band index as in most cases we

consider scattering within a band. The collision integral has two contribution: ”in” and

”out”: I = Iin + Iout.

The ”in” part describes transitions from all the states to the state ~k:

Iin[f ] =
∑
~k1

W (~k1, ~k)f(~k1, ~r)[1− f(~k, ~r)] , (221)

where W (~k1, ~k) is the transition probability per unit of time (rate) from state ~k1 to state ~k

given the state ~k1 is initially occupied and the state ~k is initially empty. The factors f(~k1)

and 1− f(~k) take care for the Pauli principle.

The ”out” part describes transitions from the state ~k to all other states:

Iout[f ] = −
∑
~k1

W (~k,~k1)f(~k, ~r)[1− f(~k1, ~r)] , (222)

The collision integral should vanish for the equilibrium state in which

f(~k) = f0 =
1

exp
[
ε(~k)−µ
kBT

]
+ 1

. (223)

This can be rewritten as

exp

ε(~k)− µ
kBT

 f0 = 1− f0 . (224)

The requirement Iin[f0] + Iout[f0] is satisfied if

W (~k,~k1) exp

ε(~k1)

kBT

 = W (~k1, ~k) exp

 ε(~k)

kBT

 . (225)
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We only show here that this is sufficient but not necessary. The principle that it is always so is

called ”detailed balance principle”. In particular, for elastic processes, in which ε(~k) = ε(~k1),

we have

W (~k,~k1) = W (~k1, ~k) . (226)

In this case (when only elastic processes are present we obtain)

I[f ] =
∑
~k1

W (~k1, ~k)f(~k1)[1− f(~k)]−
∑
~k1

W (~k,~k1)f(~k)[1− f(~k1)]

=
∑
~k1

W (~k1, ~k)
(
f(~k1)− f(~k)

)
. (227)

Thus, Pauli principle does not play a role in this case.

C. Relaxation time approximation

We introduce f = f0 + δf . Since I[f0] = 0 we obtain

I[f ] =
∑
~k1

W (~k1, ~k)
(
δf(~k1)− δf(~k)

)
. (228)

Assume the rates W are all equal and
∑
~k1
δf(~k1) = 0 (no change in total density), then

I[f ] ∼ −δf(~k). We introduce the relaxation time τ such that

I[f ] = −δf
τ
. (229)

This form of the collision integral is more general. That is it can hold not only for the case

assumed above. Even if this form does not hold exactly, it serves as a simple tool to make

estimates.

More generally, one can assume τ is ~k-dependent, τ~k. Then

I[f(~k)] = −δf(~k)

τ~k
. (230)

We will keep writing τ even if we mean that it is actually τ~k.
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D. Condutivity

Within τ -approximation we determine the electrical conductivity. Assume oscillating

electric field is applied ~E(t) = ~Ee−iωt. The Boltzmann equation reads

∂f

∂t
− e

h̄
~E · ~∇kf + ~vk · ~∇rf = −f − f0

τ
. (231)

Since the field is homogeneous we expect homogeneous response δf(t) = δfe−iωt. This gives

− e
h̄
~E · ~∇kf =

(
iω − 1

τ

)
δf . (232)

In the l.h.s. we replace f with f0. This gives

− e
h̄

∂f0

∂ε
h̄~vk · ~E =

(
iω − 1

τ

)
δf . (233)

Thus we obtain

δf =
eτ

1− iωτ
∂f0

∂ε
~v~k · ~E (234)

For the current density we obtain ~j(t) = ~je−iωt, where

~j = − e
V

∑
~k,σ

~vkδf(~k)

= −2e2

V

∑
~k

τ

1− iωτ
∂f0

∂ε
(~v~k · ~E)~v~k

= −2e2
∫ d3k

(2π)3

τ

1− iωτ
∂f0

∂ε
(~v~k · ~E)~v~k . (235)

We define the conductivity tensor σ via jα =
∑
α σα,βEβ. Thus

σα,β = −2e2
∫ d3k

(2π)3

τ

1− iωτ
∂f0

∂ε
vαvβ . (236)

At low enough temperatures, i.e., for kBT � µ,

∂f0

∂ε
≈ −δ(ε− µ)− π2

6
(kBT )2δ′′(ε− µ) , (237)

Assuming τ is constant and the band energy is isotropic (effective mass is simple) we

obtain

σα,β = − 2e2τ

1− iωτ

∫
ν(ε)dε

dΩ

4π

∂f0

∂ε
vαvβ

=
2e2τν(µ)

1− iωτ

∫ dΩ

4π
vαvβ =

2e2τν(µ)

(1− iωτ)

v2
F

3
δα,β . (238)

For dc-conductivity, i.e., for ω = 0 we obtain

σα,β =
2e2τν(µ)v2

F

3
δα,β =

e2τνs(µ)v2
F

3
δα,β , (239)

where νs = 2ν is the total density of states.
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E. Determining the transition rates

Impurities are described by an extra potential acting on electrons

Uimp(~r) =
∑
j

v(~r − ~aj) , (240)

where ~aj are locations of the impurities.

In the Born approximation (Golden Rule) the rates are given by

W (~k1, ~k) =
2π

h̄

∣∣∣Uimp,~k1,~k

∣∣∣2 δ(ε(~k1)− ε(~k)) , (241)

where the delta function is meaningful since we use W in a sum over ~k1. Thus far we

normalized the Bloch wave function to the volume V . That is 〈ψ∗k|ψk〉 = V (this also means

that the Wannier functions were not normalized to unity but to v = V/N). For the matrix

element in the Golden Rule we need state normalized to 1. Thus we have

Uimp,~k1,~k
=

1

V

∑
j

∫
dV v(~r − ~aj)u∗~k1

(~r)u~k(~r)e
i(~k−~k1)~r (242)

We assume all impurities are equivalent. Moreover we assume that they all have the same

position within the primitive cell. That is the only random thing is in which cell there is

an impurity. Then ~aj = ~Rj + δ~a. Shifting by ~Rj in each term of the sum and using the

periodicity of the functions u we obtain

Uimp,~k1,~k
=

1

V

∑
j

ei(
~k−~k1)~Rj

∫
dV v(~r − δ~a)u∗~k1

(~r)u~k(~r)e
i(~k−~k1)~r

=
1

V
v~k1,~k

∑
j

ei(
~k−~k1)~Rj (243)

This gives ∣∣∣Uimp,~k1,~k

∣∣∣2 =
1

V 2
|v~k1,~k

|2
∑
j,l

ei(
~k−~k1)(~Rj−~Rl) . (244)

This result will be put into the sum over ~k1 in the expression for the collision integral I.

The locations ~Rj are random. Thus the exponents will average out. What remains are only

diagonal terms. Thus we replace

∣∣∣Uimp,~k1,~k

∣∣∣2 → 1

V 2
|v~k1,~k

|2Nimp , (245)

where Nimp is the total number of impurities. In other terms what we perform is the

averaging over positions of the impurities.
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This gives for the collision integral

I[f ] =
∑
~k1

W (~k1, ~k)
(
f(~k1)− f(~k)

)

=
2π

h̄

Nimp

V 2

∑
~k1

|v~k1,~k
|2 δ(ε(~k1)− ε(~k))

(
f(~k1)− f(~k)

)

=
2π

h̄
nimp

∫ d3k1

(2π)3
|v~k1,~k

|2 δ(ε(~k1)− ε(~k))
(
f(~k1)− f(~k)

)
, (246)

where nimp ≡ Nimp/V .

We introduce the surface S defined by ε(~k1) = ε(~k) and then

d3k

(2π)3
=
dSdk⊥
(2π)3

=
dSdε

(2π)3
∣∣∣ ∂ε
∂k⊥

∣∣∣ (247)

Now we can integrate over energy and we obtain

I[f(~k)] =
2π

h̄
nimp

∫ dS(~k1)

(2π)3

∣∣∣∣∂ε(~k1)
∂k⊥

∣∣∣∣ |v~k1,~k
|2
(
f(~k1)− f(~k)

)
. (248)

Note that the density of states is given by

ν =
∫ dS

(2π)3
∣∣∣ ∂ε
∂k⊥

∣∣∣ (249)

F. Transport relaxation time

As we have seen the correction to the distribution function due to application of the

electric field was of the form δf ∼ ~E · ~vk. In a parabolic band (isotropic spectrum) this

would be δf ∼ ~E · ~k. So we make an ansatz

δf = −~nk · ~g(ε) , (250)

where ~nk ≡ ~k/|~k|. For isotropic spectrum conservation of energy means |~k| = |~k1|, the

matrix element v~k1,~k
depends on the angle between ~k1 and ~k only, the surface S is a sphere.

Then we obtain

ν =
∫ dS

(2π)3
∣∣∣ ∂ε
∂k⊥

∣∣∣ = ν
∫ dΩ

4π
. (251)

Thus
dS

(2π)3
∣∣∣ ∂ε
∂k⊥

∣∣∣ = ν
dΩ

4π
(252)
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and

I[δf ] =
2π

h̄
nimp

∫
ν
dΩ1

4π
|v~k1,~k

|2
(
δf(~k1)− δf(~k)

)
=

2π

h̄
nimpν|~g|

∫ dΩ1

4π
|v(θ~k,~k1

)|2
(
cos θ~k,~g − cos θ~k1,~g

)
. (253)

We choose direction ~k as z. Then the vector ~k1 is described in spherical coordinates by

θ~k1
≡ θ~k,~k1

and φ~k1
. Analogously the vector ~g is described by θ~g = θ~k,~g and φ~g. Then

dΩ1 = sin θ~k1
dθ~k1

dφ~k1
.

From simple vector analysis we obtain

cosθ~g,~k1
= cos θ~g cos θ~k1

+ sin θ~g sin θ~k1
cos(φ~g − φ~k1

) . (254)

The integration then gives

I[δf ] =
nimpν

2h̄
|~g|

∫
sin θ~k1

dθ~k1
dφ~k1
|v(θ~k1

)|2 ×

×
(
cos θ~g − cos θ~g cos θ~k1

− sin θ~g sin θ~k1
cos(φ~g − φ~k1

)
)

=
πnimpν

h̄
|~g| cos θ~g

∫
sin θ~k1

dθ~k1
|v(θ~k1

)|2(1− cosθ~k1
) . (255)

Noting that |~g| cos θ~g = ~g · ~nk = −δf we obtain

I[δf ] = −δf
τtr

, (256)

where
1

τtr

=
πnimpν

h̄

∫
dθ |v(θ)|2 sin θ(1− cosθ) (257)

Note that our previous ”relaxation time approximation” was based on total omission of

the ”in” term. That is in the τ -approximation we had

I[f ] =
∑
~k1

W (~k1, ~k)
(
δf(~k1)− δf(~k)

)
≈ −δf(~k)

∑
~k1

W (~k1, ~k) . (258)

Thus

1

τ
=
∑
~k1

W (~k1, ~k) =
πnimpν

h̄

∫
dθ |v(θ)|2 sin θ . (259)

The difference between τtr (transport time) and τ (momentum relaxation time) is the

factor (1− cosθ) which emphasizes backscattering. If |v(θ)|2 = const. we obtain τtr = τ .
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G. Local equilibrium, Chapman-Enskog Expansion

Instead of global equilibrium with given temperature T and chemical potential µ in the

whole sample, consider a distribution function f(~r,~k) corresponding to space dependent

T (~r) and µ(~r):

f0 =
1

exp
[
εk−µ(~r)
kBT (~r)

]
+ 1

. (260)

This state is called local equilibrium because also for this distribution function the collision

integral vanishes: I[f0] = 0. However this state is not static. Due to the kinematic terms in

the Bolzmann equation (in particular ~vk · ~∇rf) the state will change. Thus we consider the

state f = f0 + δf and substitute it into the Bolzmann equation. This gives (we drop the

magnetic field)

∂δf

∂t
− e

h̄
~E · ~∇k(f0 + δf) + ~vk · ~∇r(f0 + δf) = I[δf ] . (261)

We collect all the δf terms in the r.h.s.:

− e
h̄
~E · ~∇kf0 + ~vk · ~∇rf0 = I[δf ] +

∂δf

∂t
+
e

h̄
~E · ~∇kδf − ~vk · ~∇rδf . (262)

We obtain

~∇rf0 = −∂f0

∂εk

(
~∇rµ+

(εk − µ)

T
~∇rT

)
(263)

and

−∂f0

∂εk
~vk

(
(~∇rµ+ e ~E) +

εk − µ
T

~∇rT
)

= I[δf ] +
∂δf

∂t
+
e

h̄
~E · ~∇kδf − ~vk · ~∇rδf . (264)

In the stationary state, relaxation time approximation, and neglecting the last two terms

(they are small) we obtain

−∂f0

∂εk
~vk

(
(~∇rµ+ e ~E) +

εk − µ
T

~∇rT
)

= −δf
τtr

, (265)

δf =
∂f0

∂εk
~vk τtr

(
(~∇rµ+ e ~E) +

εk − µ
T

~∇rT
)
. (266)

Thus we see that there are two ”forces” getting the system out of equilibrium: the

electrochemical field: ~Eel.ch. ≡ ~E + (1/e)~∇µ and the gradient of the temperature ~∇T . More

precisely one introduces the electrochemical potential φel.ch. such that ~Eel.ch. = ~E+(1/e)~∇µ =

−~∇φel.ch. = −~∇φ+ (1/e)~∇µ. Thus φel.ch. = φ− (1/e)µ.
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On top of the electric current

~jE(~r, t) = − e
V

∑
~k,σ

~v~kδf(~k, ~r, t) (267)

we define the heat current

~jQ(~r, t) =
1

V

∑
~k,σ

(εk − µ)~v~kδf(~k, ~r, t) (268)

This expression for the heat current follows from the definition of heat dQ = dU − µdN .

This gives  ~jE
~jQ

 =

 K11 K12

K21 K22


 ~Eel.ch.

~∇T/T

 (269)

For the electrical current density we obtain

~jE = − e
V

∑
~k,σ

~vkδf(~k)

= − e
V

∑
~k,σ

τtr
∂f0

∂ε

[
~v~k ·

(
e ~Eel.ch. +

εk − µ
T

~∇T
)]

~v~k . (270)

Thus for K11 we obtain

K11αβ = −e
2

V

∑
~k,σ

τtr
∂f0

∂ε
vk,αvk,β . (271)

For K12 this gives

K12αβ = − e
V

∑
~k,σ

τtr
∂f0

∂ε
(εk − µ)vk,αvk,β . (272)

For the heat current density we obtain

~jQ =
1

V

∑
~k,σ

(εk − µ)~vkδf(~k)

=
1

V

∑
~k,σ

τtr (εk − µ)
∂f0

∂ε

[
~v~k ·

(
e ~Eel.ch. +

εk − µ
T

~∇T
)]

~v~k . (273)

Thus for K21 we obtain

K21αβ =
e

V

∑
~k,σ

τtr (εk − µ)
∂f0

∂ε
vk,αvk,β . (274)

For K22 this gives

K22αβ =
1

V

∑
~k,σ

τtr
∂f0

∂ε
(εk − µ)2 vk,αvk,β . (275)
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1) K11 is just the conductivity calculated earlier.

2) K12 = −K21. This is one of the consequences of Onsager relations. Thermo-power

etc. K12 6= 0 only if density of states asymmetric around µ (no particle-hole symmetry).

3) For K22 we use
∂f0

∂ε
≈ −δ(ε− µ)− π2

6
(kBT )2δ′′(ε− µ) , (276)

This gives

K22αβ =
1

V

∑
~k,σ

τtr
∂f0

∂ε
(εk − µ)2 vk,αvk,β

= 2τtr

∫
ν(ε)dε

dΩ

4π

∂f0

∂ε
(ε− µ)2vαvβ

= −2τtr
π2

3
(kBT )2ν

∫ dΩ

4π
vαvβ = −2π2

9
(kBT )2νv2

F τtrδα,β . (277)

Thus, for thermal conductivity κ defined via ~jQ = −κ~∇T we obtain

κ = −K22

kBT
=

2π2

9
k2

BTνv
2
F τtr (278)

Comparing with the electrical conductivity

σ =
2

3
νv2

F τtr (279)

We obtain the Wiedemann-Franz law:

κ

σ
=
k2

BT

e2

π2

3
. (280)

H. Onsager relations

The relation  ~jE
~jQ

 =

 K11 K12

K21 K22


 ~Eel.ch.

~∇T/T

 (281)

can be slightly rewritten to fit Onsager’s logic.

The entropy production is given by

Ṡ =
∫
dV

~jE · ~E
T
−
∫
dV

~∇ ·~jQ
T

(282)

The last term expresses the heat brought to dV by the heat currents. We perform partial

integration in the last term and obtain

Ṡ =
∫
dV

~jE · ~E
T

+
∫
dV ~jQ · ~∇

1

T
(283)
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Thus

Ṡ =
∫
dV

(
~jE · ~XE +~jQ · ~XQ

)
(284)

with ~XE =
~E
T

and ~XQ = − ~∇T
T 2 .

The linear response relations read ~jE
~jQ

 =

 Q11 Q12

Q21 Q22


 ~XE

~XQ

 =

 Q11 Q12

Q21 Q22


 ~E

T

− ~∇T
T 2

 (285)

The Onsager theorem states that the matrix Qij is symmetric.

XII. MAGNETO-CONDUCTANCE, HALL EFFECT

A. Hall effect

We consider a situation when a relatively strong magnetic field ~B is applied and, on top

of that, a weak electric field ~E. For simplicity we consider ε = h̄2k2/(2m), where m can be

the band mass.

The Boltzmann equation reads

∂f

∂t
− e

h̄

(
~E +

1

c

(
~v × ~B

))
· ~∇kf + ~vk · ~∇rf = I[f ] . (286)

We assume I[f ] = − δf
τ

(by τ we mean τtr). As long as we do not consider very high

magnetic fields where Landau quantization is important we still have the Fermi distribution

function f0 for ~E = 0. However we no longer can neglect the magnetic force (Lorentz) acting

on the δf function. Thus the stationary Boltzmann equation for δf reads:

− e
h̄
~E · ~∇kf0 = I[δf ] +

e

h̄c

(
~vk × ~B

)
· ~∇kδf , (287)

or

−e ~E · ~vk
(
∂f0

∂ε

)
= −δf

τ
+

e

h̄c

(
~vk × ~B

)
· ~∇kδf , (288)

We look for a solution in the form (in analogy to the calculation of conductivity)

δf = τe ~X · ~vk
(
∂f0

∂ε

)
(289)

We obtain (using ~v = h̄~k/m)

~∇kδf =
h̄τe

m

(
∂f0

∂ε

)
~X + τe ( ~X · ~vk)

(
∂2f0

∂ε2

)
h̄~vk (290)
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The second term multiplied in the Boltzmann equation by ~v × ~B gives zero. Thus we

obtain

−e ~E · ~vk
(
∂f0

∂ε

)
= −e ~X · ~vk

(
∂f0

∂ε

)
+

e

h̄c

(
~vk × ~B

)
· h̄τe
m

(
∂f0

∂ε

)
~X , (291)

or

~E · ~vk = ~X · ~vk −
τe

mc

(
~vk × ~B

)
· ~X , (292)

or

~E · ~vk = ~X · ~vk − ωcτ
(
~vk ×~b

)
· ~X , (293)

where ~b ≡ ~B/|B|. Note that now we assumed both e and m positive. However we should

also be ready to change the sign of one of them if we have holes. We make an ansatz for ~X:

~X = | ~E|(α~e+ β~b+ γ(~e×~b)) , (294)

where ~e ≡ ~E/|E|.

This gives

~e · ~vk = α~e · ~vk + β~b · ~vk + γ(~e×~b) · ~vk

− ωcτ(~vk ×~b)(α~e+ β~b+ γ(~e×~b))

= α~e · ~vk + β~b · ~vk + γ(~e×~b) · ~vk

− ωcτ
[
α(~b× ~e) · ~vk + γ(~e×~b) · (~vk ×~b)

]
= α~e · ~vk + β~b · ~vk + γ(~e×~b) · ~vk

− ωcτ
[
−α(~e×~b) · ~vk + γ~vk~e− γ(~b~e)(~vk~b)

]
. (295)

We collect coefficients in front of ~e · ~vk, ~b · ~vk, and (~e×~b) · ~vk. This gives

α− 1− ωcτγ = 0

β + ωcτγ(~e ·~b) = 0

γ + ωcτα = 0 (296)

We thus obtain

α =
1

1 + ω2
cτ

2

γ = − ωcτ

1 + ω2
cτ

2

β =
ω2
cτ

2

1 + ω2
cτ

2
(~e ·~b) (297)
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Thus

~X =
1

1 + ω2
cτ

2

(
~E − ωcτ( ~E ×~b) + ω2

cτ
2( ~E ·~b)~b

)
(298)

The current density is given by

~j = σ0
~X , (299)

where σ0 = 2
3
e2νF τv

2
F (with ν being density of states per spin). With ν(ε) ∝

√
ε we obtain

n = 2(2/3)εFνF we obtain

σ0 =
ne2τv2

F

2ε2F
=
ne2τ

m∗
. (300)

This gives for the conductivity tensor (choosing ~b = ~z)

σ =
σ0

1 + ω2
cτ

2


1 −ωcτ 0

ωcτ 1 0

0 0 1 + ω2
cτ

2

 . (301)

The inverse tensor of resistivity reads

ρ = σ−1 = ρ0


1 ωcτ 0

−ωcτ 1 0

0 0 1

 , (302)

where ρ0 ≡ 1
σ0

.

Thus from Eα =
∑
β ραβjβ follows

~E = ρ0(~j − ωcτ~b×~j) (303)

Hall effect. Hall coefficient

R =
E⊥
Bj

= ρ0
ωcτ

B
(304)

With ωc = eB
m∗c

we obtain

R =
m∗

e2nτ

eB

m∗c

τ

B
=

1

enc
. (305)

Note that for the hall coefficient R the sign of the charge is important.

B. Magnetoresistance

We obtained ρxx = ρyy = ρzz = ρ0 = const.. Thus no magnetoresistance.

In general one should distinguish two cases
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1. Closed orbits

We have obtained for the parabolic band (with only closed orbits)

σ =
σ0

1 + ω2
cτ

2


1 −ωcτ 0

ωcτ 1 0

0 0 1 + ω2
cτ

2

 . (306)

At high magnetic fields ωcτ � 1 we obtain

σ ∼ σ0


1

ω2
cτ

2 − 1
ωcτ

0

1
ωcτ

1
ω2
cτ

2 0

0 0 1

 . (307)

2. Open orbits

For open orbits the situation is different. Imagine the open orbit is in direction ky, Then

there is a finite average velocity vx. Thus change of vx is possible exactly as in the case of

no magnetic field. This gives

σ ∼ σ0


1 − 1

ωcτ
0

1
ωcτ

1
ω2
cτ

2 0

0 0 1

 . (308)

For the resistivity tensor we obtain

ρ ∼ ρ0


1/2 ωcτ/2 0

−ωcτ/2 ω2
cτ

2/2 0

0 0 1

 . (309)

Thus strong magnetoresistance. Namely 1) The Hall coefficient R is 2 times smaller; 2)

ρyy is greatly enhanced. Since open orbits appear usually only for certain directions of the

magnetic field, one can expect strong dependence of ρ̂ or R on the direction of ~B.

C. Quantum Hall Effect (QHE)

Qualitative discussion: Fig. 6.
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FIG. 6: Quantum Hall Effect.

XIII. FERMI GAS

We consider a collection (gas) of N free electrons (fermions with spin 1/2). The ground

state is given by

|φ0〉 =
∏

|k|<kF ,σ
a†k,σ |0〉 (310)

(some order of states should be chosen).

The value of kF is determined by the number of particles N . Namely

N =

 ∑
|k|<kF ,σ

1

 = 2

 ∑
|k|<kF

1

 =
2V

(2π)3

∫
d3k = V · k

3
F

3π2
(311)

Thus kF = (3π2n)1/3, where n ≡ N/V is the density of electrons.

〈φ0| ρ̂(r) |φ0〉 =
∑
σ

〈φ0| Ψ̂†σ(r)Ψ̂σ(r) |φ0〉

=
∑
σ

∑
k,k′

e−ik
′r

√
V
· e

ikr

√
V
〈φ0| â†k,σâk′,σ |φ0〉

=
∑
σ

∑
k,k′

e−ik
′r

√
V
· e

ikr

√
V
δk,k′ θ(kF − |k|) = n (312)
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A. One-particle correlation function

Gσ(r − r′) = 〈φ0| Ψ̂†σ(r)Ψ̂σ(r′) |φ0〉 (313)

Meaning: amplitude to remove an electron with spin σ at r′ and insert it back at r.

Clearly Gσ(0) = n/2. So we define gσ(r − r′) such that Gσ(r − r′) = (n/2)gσ(r − r′) and

gσ(0) = 1.

Gσ(r − r′) =
1

V

∑
k,k′

e−ikr+ik
′r′ 〈φ0| â†k,σâk′,σ |φ0〉

=
∫
|k|<kF

d3k

(2π)3
e−ik(r−r′) =

n

2
· 3(sinx− x cosx)

x3
, (314)

where x ≡ kF |r − r′|.

B. Two-particle correlation function

Probability to find a particle at r′ with spin σ′ if at r there is already a particle with spin

σ.

gσ,σ′(r − r′) =
(

2

n

)2

〈φ0| Ψ̂†σ(r)Ψ̂†σ′(r
′)Ψ̂σ′(r

′)Ψ̂σ(r) |φ0〉

=
(

2

n

)2

[〈φ0| ρ̂σ(r)ρ̂σ′(r
′) |φ0〉 − δ(r − r′)δσ,σ′ · n)] (315)

We obtain

gσ,σ′(r − r′) =
(

2

n

)2 1

V 2

∑
k,k′,q,q′

e−i(k−k
′)r · e−i(q−q′)r′ 〈φ0| â†k,σâ

†
q,σ′ âq′,σ′ âk′,σ |φ0〉 (316)

If σ 6= σ′ the calculation is simple

gσ,σ′(r − r′) =
(

2

V n

)2∑
k,q

〈φ0| n̂k,σn̂q,σ′ |φ0〉 = 1 (317)

If, however, σ = σ′, then we use Wick’s theorem (in this case it is not difficult to prove)

〈φ0| â†k,σâ†q,σâq′,σâk′,σ |φ0〉 = (δk,k′δq,q′ − δk,q′δq,k′)nk,σnq,σ (318)
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Thus

gσ,σ(r − r′) =
(

2

V n

)2 ∑
|k|<kF ,|q|<kF

(
1− e−i(k−q)(r−r′)

)
= 1− 9(sinx− x cosx)2

x6

= 1− g2
σ(r − r′) = 1− 4

n2
G2
σ(r − r′) , (319)

where again x = kF |r − r′|.
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FIG. 7: Function gσ,σ(x).

There is a ”hole” due to the Pauli principle. One can check that

n
∫
d3r(gσ,σ(r)− 1) = −1 (320)

Exactly one electron is missing. The radius of the hole ∼ k−1
F . From the density we obtain

the volume taken by one electron δV = 1/n. Radius of a sphere corresponding to δV is

obtained from 1/n = δV = (4π/3)r3
F . Thus, indeed, rF =

(
3

4πn

)1/3
=
(

9π
4

)1/3
k−1
F . In what

follows it will be useful to introduce a dimensionless parameter by dividing rF by the Bohr

radius a0 = h̄2/(mee
2) and obtain

rs ≡
rF
a0

=
(

9π

4

)1/3 mee
2

h̄2kF
(321)

C. Jellium model, energy of the ground state

We consider now the gas of interacting electrons. There are N electrons in volume V . The

positively charged N ions are distributed homogeneously over the volume V . One neglects

the crystalline structure and considers ions as an absolutely homogeneous charge density
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n = N/V . Thus the Hamiltonian of the electrons reads

Ĥ =
∑
σ

∫
d3r

{
− h̄2

2m
Ψ̂†σ(r)∆Ψ̂σ(r) + Ψ̂†σ(r)U (1)(r)Ψ̂σ(r)

}

+
∑
σ1,σ2

1

2

∫ ∫
d3r1d

3r2 Ψ̂†σ1
(r1)Ψ̂†σ2

(r2)U (2)(r1 − r2)Ψ̂σ2
(r2)Ψ̂σ1

(r1) , (322)

where

U (2)(r1 − r2) =
e2

|r1 − r2|
and U (1)(r) = −

∫
d3r′n(r′)

e2

|r − r′|
(323)

Since the density of ions n(r′) does not depend on r′, we obtain, that U (1)(r) is also r-

independent (except for boundary effects) and is given by U (1)(r) = −nU0, where U0 =∫
d3r e

2

|r| . This integral would diverge if V →∞.

We want to calculate the average value of the Hamiltonian in the free electrons’ ground

state

E = 〈φ0|H |φ0〉 . (324)

That is we do not look for the real ground state of H, but take the simple one (|φ0〉) and

calculate the expectation value of the energy.

1. Kinetic energy

Ekin = 〈φ0|
∑
σ

∫
d3r

{
− h̄2

2m
Ψ̂†σ(r)∆Ψ̂σ(r)

}
|φ0〉

=
∑

|k|<kF ,σ

h̄2k2

2m
=

3

5
NEF =

3

5
N
h̄2k2

F

2m
= Nεkin , (325)

where εkin = (3/5)EF is the kinetic energy per electron.

2. Potential energy

Epot = 〈φ0|
∑
σ

∫
d3r

{
Ψ̂†σ(r)U (1)(r)Ψ̂σ(r)

}
|φ0〉 = −n2V U0 = −nNU0 . (326)
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3. Interaction energy

Eint = 〈φ0|
∑
σ1,σ2

1

2

∫ ∫
d3r1d

3r2 Ψ̂†σ1
(r1)Ψ̂†σ2

(r2)U (2)(r1 − r2)Ψ̂σ2
(r2)Ψ̂σ1

(r1) |φ0〉

=
∑
σ1,σ2

1

2

∫ ∫
d3r1d

3r2 U
(2)(r1 − r2) 〈φ0| Ψ̂†σ1

(r1)Ψ̂†σ2
(r2)Ψ̂σ2

(r2)Ψ̂σ1
(r1) |φ0〉

=
1

2

∫ ∫
d3r1d

3r2 U
(2)(r1 − r2)

∑
σ1,σ2

n2

4
gσ1,σ2(r1 − r2)

=
1

2

∫ ∫
d3r1d

3r2 U
(2)(r1 − r2)

(
n2 −

∑
σ

Gσ(r1 − r2)2

)
(327)

The first term in called the Hartree term. It gives

EHartree = n2V U0/2 = nNU0/2 = N2U0/(2V ) . (328)

It does not exactly cancel Epot as sometimes (wrongly) stated. To get a full cancellation one

has to consider the energy of the ion charges interacting with themselves (not included in

the model). This one is also given by Eion−ion = n2V U0/2. More logical within the current

model would be to say that Epot + EHartree = −nelnionV U0 + n2
elV U0/2 is minimized by

nel = nion = n. The minimal value of Epot + EHartree is given by −n2V U0/2.

The second term is called Fock or exchange contribution

EFock = −1

2

∫ ∫
d3r1d

3r2 U
(2)(r1 − r2)

∑
σ

Gσ(r1 − r2)2

= −V
2

∫
d3r U (2)(r)

∑
σ

Gσ(r)2

= −N 9n

4

∫
d3r

e2

|r|

[
sin kF |r| − kF |r| cos kF |r|

(kF |r|)3

]2

= −Nεexch , (329)

where

εexch = −9πne2

k2
F

∞∫
0

dx
(sinx− x cosx)2

x5
= −3e2

4π
kF . (330)

Thus the total energy balance reads

E

N
= εkin + εexch =

[
2.21

r2
s

− 0.916

rs

]
e2

2a0

(331)

Minimum is reached for rs ≈ 4.83. This value corresponds to Alkali metals. Around

these values of rs the ground state of the Fermi see type is a good approximation.
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For much bigger values, rs → ∞, which corresponds to a dilute limit, the energy per

electron approaches zero. It turns out one can find a better ground state with a smaller

energy per electron: the Wigner crystal. In this state the electron avoid each other and.

thus, minimize the interaction energy.

For rs → 0 the energy per electron becomes positive, thus it seems the system is unstable,

i.e., the electrons would be ”better off” out of the system. This is however not so. In this limit

the Fermi gas is a very good approximation. The positive kinetic energy is still compensated

by the (infinite) negative energy (work function) [Epot + EHartree]/nV = −nU0/2.

XIV. FERMI LIQUID

A. Spectrum of excitations of the ideal Fermi gas

We begin again with the ideal Fermi gas (no interactions). The Fermi distribution func-

tion (the average occupation of a level with energy εk) reads

nF =
1

e
εk−µ
kBT + 1

(332)

Here εk = h̄2k2

2m
. In general the density n = N/V is fixed. Thus the chemical potential is

temperature dependent, µ(T ). We define εF =
h̄2k2

F

2m
= µ(0). One can obtain kF = (3π2n)1/3.

At T = 0 the Fermi function is a step function nF = θ(εF − εk). At T > 0 the step

gets smeared. This can be thought of as a result of excitation of ”quasiparticles”. Namely,

assume we transfer one electron with energy ε1 < εF to a state with energy ε2 > εF . The

energy we have to pay is equal to ε2−ε1. We say that we create two quasiparticles: 1) one of

the particle (electron) type with energy ξ1 = ε2− εF and the other of the antiparticle (hole)

type with energy ξ2 = εF − ε1. (One uses here the name ”hole” again, although these holes

have little to do with the holes introduced earlier for band electrons with negative effective

mass and/or almost filled bands). If both ε1 and ε2 are close to εF we obtain

ξ1 =
p2

1

2m
− p2

F

2m
≈ (p1 − pF )pF/m = vF (p1 − pF )

ξ2 =
p2
F

2m
− p2

2

2m
≈ (pF − p2)pF/m = vF (pF − p2) (333)

It is instructive to study the dependence of the total energy h̄ω ≡ ξ1 + ξ2 on the total
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momentum h̄~q ≡ ~p1 − ~p2. It is easy to show that

for q < 2kF 0 < h̄ω <
h̄2q(q + 2kF )

2m

for q > 2kF
h̄2q(q − 2kF )

2m
< h̄ω <

h̄2q(q + 2kF )

2m
. (334)

Provide picture. Exercise: structure factor, reveals the spectrum of quasiparticle - hole

continuum.

B. Landau hypothesis

Fermi liquid is a state (one of the possible states) of fermions (electrons or He3 par-

ticles) with interactions. The interactions can be strong. Nevertheless Landau proposed

the following: At low temperatures (when there are not many excitations) the

excitation spectrum of the Fermi liquid has the same form as that of the free

Fermi gas. Namely, the excitations are characterized by their momentum. There exists

a special momentum pF related to the density of the liquid. The energy of quasiparticles

reads ξ1 = vF (p1 − pF ) and of quasiholes ξ2 = vF (pF − p2). Now vF is just a parameter

with dimensions of velocity. One can also introduce an effective mass via m∗vF = pF . This

effective mass has nothing to do with the band effective mass.

The Landau Hypothesis can be proved by the diagrammatic technique (course TKM 2).

Here we just provide a motivating argument about weakness of relaxation in a Fermi gas

with weak interaction. We consider an initial state with a filled Fermi see and in addition

we have an electron (quasiparticle) with momentum ~p1 and energy ε1 (ξ1 = ε1− εF > 0). We

assume p1 ∼ pF and ξ1 → 0. More precisely ξ1 � εF . The only possible scattering process

should take an electron below the Fermi level with energy ε2 < εF . Two ”new” electrons will

be created with energies ε′1 > εF and ε′2 > εF . We have ε1 + ε2 = ε′1 + ε′2 or ξ1 + ξ2 = ξ′1 + ξ′2

with ξ1 > 0, ξ2 < 0, ξ′1 > 0, and ξ′2 > 0. The energy ξ′2 is given by the energy conservation.

Two energies ξ2 and ξ′1 are ”free”. We obtain |ξ2| < ξ1 and ξ′1 < ξ1. Thus, the volume of the

phase space available for the scattering process can be estimated from above to be smaller

than ν2ξ2
1 , where ν is the density of states at the Fermi level. Of course one also has to take

into account the conservation of momentum. In 3D this does not change the result and one

arrives at the scattering rate: γ ∼ ξ2
1/εF � ξ1. Thus, it is the filled Fermi sphere which

prevents particle from scattering. This is why quasiparticles with a given momentum have
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long lifetimes. In a Fermi liquid the quasiparticles will have energies of order kBT . Thus

they are ”good” quasiparticles and the Fermi liquid description holds as long as kBT � εF .

1. Implications

One of the important implications of the Landau hypothesis is the fact that the specific

heat is still given by the formula similar to that of the free gas:

CV =
π2

3
k2

BTνs(µ) , (335)

where νs is the (total including spin) density of states at the Fermi energy. However in a

Fermi liquid it is given by

νs =
pFm

∗

π2h̄3 . (336)

Here instead of the free mass we have the effective mass.

C. Gas model

Once having postulated the quasiparticles near the Fermi momentum pF with the effective

mass m∗ we can ”go back” and postulate a gas of (quasi) particles with mass m∗ which fill

the whole Fermi see. We describe it by the distribution function n~p,σ such that at T = 0

all states with p < pF are occupied. At low temperatures this description is equivalent to

the one with quasiparticles. We postulate that the energy eigenstates are product states

characterized just by the occupation numbers n̂p,σ = 0, 1, with np,σ ≡ 〈n̂p,σ〉. Then the

entropy of the system is given by

S = −kB

∑
p,σ

[np,σ lnnp,σ + (1− np,σ) ln(1− np,σ)] . (337)

This expression follows from the definition S = −kB
∑
sws lnws, where s denote the mi-

croscopic states characterized by which one-particle states are occupied and which are not.

The probability of a particular microscopic state ws is given by the product of occupation

probabilities np for occupied one-particle states and 1− np for unoccupied ones.

Proof: Assume we have already computed the entropy S{p} for a set of momenta {p} =

(p1, p2, . . . , pN). That is only the states from {p} can be occupied by particles. We have

S{p} = −kB
∑
sws lnws, where s is restricted to the appropriate occupation states of {p}.
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We want to add to the set another momentum q. The new macroscopic states have the

probabilities wsnq if the state q is occupied and ws(1− nq) if it is not. Then

S{p},q = −kB

∑
s

[wsnq ln [wsnq] + ws(1− nq) ln [ws(1− nq)] ]

= S{p} − kB [nq lnnq + (1− nq) ln(1− nq)] . (338)

Thus, the expression for the entropy follows from the combinatorics and has nothing to do

with the energy of the states characterized by the occupation numbers.

In a free Fermi gas the (average) energy would read E =
∑
p,σ εpnp,σ. From this follows

the variation of energy for a variation of the occupation probabilities δn, namely δE =∑
p,σ εpδnp,σ.

In the Fermi liquid theory one uses a slightly more general relation. One considers the

distribution function as a matrix in the spin space n̂p = np,αβ. While in the free gas it was

sufficient to fix a spin quantization axis and to consider only diagonal matrices np,σ ≡ np,σσ,

in the Fermi liquid theory the spin-spin interaction between the quasiparticles makes a more

general consideration necessary. Thus the basic relation reads

δE =
∑
p,αβ

εp,αβ δnp,βα = Tr
∑
p

ε̂p δ̂np . (339)

The trace is over spin variables. The relation (339) serves in the Fermi liquid theory as the

definition of quasiparticle energy ε̂p. That is creating a particle with momentum p would

cause δn̂p and a respective change in E. However in the Fermi liquid the energy is not

given by a sum of single particle energies: E 6= Tr
∑
p ε̂pn̂p. Rather ε̂p is a functional of the

occupation numbers for all momenta {p}: ε̂p = ε̂p(δn̂p1 , δn̂p2 , . . .). Here by δn̂p we mean the

deviation from the T = 0 step function.

We rewrite the entropy in the matrix form

S = −kBTr
∑
p

[n̂p ln n̂p + (1− n̂p) ln(1− n̂p)] . (340)

Using δN = Tr
∑
p δn̂p we look for a maximum of entropy for a given average energy and

average number of particles. Thus we maximize S ′ = S + αE + βN . From the condition

δS ′ = 0 we obtain

n̂(p) =

[
exp

(
ε̂p − µ
kBT

)
+ 1

]−1

, (341)

where µ and T are related to α and β. (To prove it is better to diagonalize n̂p for each p.)
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Have we obtained the usual Fermi occupation probability? Not really. Since ε̂p depends

on occupation numbers of all other states, we cannot independently determine n̂p.

At T = 0 we can define εF ≡ µ(T = 0). Note: It is a remarkable fact that the relation

kF = (3π2n)1/3 holds also in the Fermi liquid, i.e., the value of pF = h̄kF is unchanged (proof

of this is not simple).

D. Landau function f

If one varies the occupation probabilities one obtains for the energy functional εp,σ

δε̂p =
1

V

∑
p′
f̂(p, p′) δn̂p′ . (342)

The same with indexes reads

δεp,αβ =
1

V

∑
p′
f(p, p′)αβ;γδ δnp′,γδ . (343)

In the Landau theory one postulates the function f̂(p, p′) to be independent of δn̂p. Thus

one postulates that the ”quasiparticle energy” ε̂p is a linear functional, while the total energy

E is the quadratic functional of δn̂p. Here, again, δn̂p are the deviations from the T = 0

step function. Thus we obtain

ε̂p − εF = vF (p− pF ) 1̂ +
1

V

∑
p′
f̂(p, p′)δn̂p′ . (344)

Obviously the function f̂(p, p′) is symmetric: f(p, p′)αβ,γδ = f(p′, p)γδ,αβ.

Only the momenta at the Fermi surface are important. Thus it is convenient to use the

function νF f̂(p, p′). Then in an integration over p′ only the angular dependence will remain.

Usually the function f̂(p, p′) has spin-independent part and a spin-dependent part:

νF f̂ = F (θ)1̂ +G(θ)~σ~σ′ . (345)

Here θ is the angle between p and p′. The form with explicit spin indexes reads

νF fαβ,γδ = F (θ)δαβδγδ +G(θ)~σαβ~σγδ . (346)

The second term has the usual form of exchange interaction.
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E. Zero sound

Here we disregard the spin degree of freedom. The Landau function f modifies the

Boltzmann equation. Namely, assume we have an r-dependent deviation from equilibrium:

n(p, r, t) = n0(p) + δn(p, r, t) . (347)

We use εp as a Hamilton function of the particle and conclude that the equation of motion

(with the external force ~Fext, e.g., −e ~E) reads

d

dt
~p = ~Fext −

∂εp
∂~r

. (348)

We obtain
∂εp
∂~r

=
∂δεp
∂~r

=
1

V

∑
p′
f(p, p′)

∂δnp′

∂~r
(349)

(we omit the spin indexes). Analogously

d

dt
~r =

∂εp
∂~p

. (350)

The Boltzmann equation reads

∂n

∂t
+ ~̇r

∂n

∂~r
+ ~̇p

∂n

∂~p
= I[n] (351)

We retain only first order terms (omitting thus a correction to ~̇r ≈ vF~n) and we assume

Fext = 0:
∂δn

∂t
+ vF~n

∂δn

∂~r
− ∂δεp

∂~r

∂n0

∂~p
= I[n] (352)

Here ~n is a unity vector in the direction of ~p.

We consider oscillations with high frequency ωτ � 1. Then one can neglect the collision

integral. Taking into account that ∂n0/∂~p = −vF~nδ(ε0p − εF ) we obtain

∂δn

∂t
+ vF~n

∂δn

∂~r
+ vF~nδ(ε− εF )

1

V

∑
p′
f(p, p′)

∂δnp′

∂~r
= 0 . (353)

We look for a solution of the type δn = x(~n)δ(ε0p − εF )ei(
~k~r−ωt), where x(~n) is an unknown

function of the direction ~n. We obtain

(ω − vF~n~k)x(~n) = vF~n~k
∫ dΩn′

4π
νF f(θ~n,~n′)x(~n′) . (354)
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We chose direction of ~k as ~z and introduce s ≡ ω/(kvF ). This gives

(s− cos θ)x(θ, φ) = cos θ
∫
F (θ~n,~n′)x(θ′, φ′)

dΩn′

4π
. (355)

Simplest case: F = F0 = const. If s > 1, i.e., the sound velocity ω/k bigger than vF we

have a solution of the form

x(θ) = const · cos θ

s− cos θ
. (356)

Discuss: shape of the deformation.

To find s substitute (356) into (355). The condition reads

F0

π∫
0

2π sin θdθ

4π

cos θ

s− cos θ
= 1 . (357)

With y = −cosθ we obtain

−F0

1∫
−1

dy

2

y

s+ y
= −F0 + F0

s

2
ln
s+ 1

s− 1
= 1 . (358)

Solutions exist for F0 > 0. Discuss the case F0 → 0, s→ 1. The deviation from equilibrium

only for small θ.

XV. PHONONS

We come back to the potential energy Vion (see Eq. (12)) describing the interaction energy

of slow ions due to their direct Coulomb repulsion and due to the electronic ground state

energy.

The positions of ions are given by

~rkn = ~Rn + ~ak , (359)

where ~Rn are the Bravais lattice vectors. The superscript k stands for the ion number k in

the unit cell. The deviations are denoted by ~ukn or in components by ukn,α, where α = x, y, z.

As ukn,α = 0 is the absolute minimum of the potential energy we can expand and obtain

Vion = V0 +
1

2

∑
n,n′,α,β,k,k′

Φk,k′

n,n′;α,β u
k
n,α u

k′

n′,β (360)

The equations of motion:

mkü
k
n,α = −

∑
n′,β,k′

Φk,k′

n,n′;α,βu
k′

n′,β (361)
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The coefficients Φk,k′

n,n′;α,β have certain symmetries:

1) Translational symmetry

Φk,k′

n,n′;α,β = Φ(~Rn − ~Rn′)
k,k′

α,β (362)

2) Symmetry (partial derivatives are symmetric)

Φk,k′

n,n′;α,β = Φk′,k
n′,n;β,α (363)

3) Homogeneous shift should not produce any force

∑
n′,k′

Φk,k′

n,n′;α,β = 0 (364)

It is very useful to introduce amplitudes Akn,α ≡
√
mk u

k
n,α. We look for solutions of the

following form

Akn,α = Akα(q) ei(~q
~Rn−ωt) (365)

or equivalently

ukn,α =
Akα(q)
√
mk

ei(~q
~Rn−ωt) (366)

The eigenmodes are found from

det(ω2 1̂− D̂) = 0 , (367)

where the matrix D̂ is given by

Dk,k′

α,β (~q) =
∑
n′
Dk,k′

n,n′;α,β e
−i~q(~Rn−~Rn′)

=
∑
n′

1
√
mkmk′

Φk,k′

n,n′;α,β e
−i~q(~Rn−~Rn′) =

1
√
mkmk′

Φ(~q)k,k
′

α,β . (368)

We have introduced the Fourier transform, which is defined via B(q) =
∑
nBne

−iqRn and

Bn = (1/N)
∑
q B(q)eiqRn . Here N is the total number of the Bravais cells in the lattice

(N = N1N2N3). The wave vector q belongs to the first Brillouin zone. It is quantized due

to the finite size of the crystal.

Easy to show that Dk,k′

α,β (~q) = [Dk′,k
β,α (~q)]∗. This means that the matrix D̂ is hermitian and

that 3M solutions exist, where M is the number of ions in a unit cell. We denote solutions

by the subscript j: ωj(~q) and ekj,α. The eigenvectors ekj,α should be normalized (see below).
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Also easy to show that Dk,k′

α,β (−~q) = [Dk,k′

α,β (~q)]∗. This means that

ωj(−~q) = ωj(~q) and ekj,α(−~q) = [ekj,α(~q)]∗ . (369)

Now consider the limit ~q → 0. From the property
∑
n′,k′ Φ

k,k′

n,n′;α,β = 0 follows that there

are 3 modes for which ωj(0) = 0. In this modes ekj,α(0)/
√
mk is independent of k. That is

all ions are shifted exactly the same, i.g., ukn,α is independent of k.

All other 3(M − 1) modes are optical. We obtain from the equation of motion for ~q = 0:

ω2(0)mk
Akα(0)
√
mk

=
∑
n′,β,k′

Φk,k′

n,n′;α,β

Ak
′
β (0)
√
mk′

. (370)

Using again
∑
n,k Φk,k′

n,n′;α,β = 0 and assuming ω(0) 6= 0 we sum over n, k and obtain

∑
k

mk
Akα(0)
√
mk

=
∑
k

mk u
k
α(0) = 0 (371)

Thus in optical modes the center of mass is constant.

Acoustic modes are divided into 1 longitudinal and 2 transversal.

A. Quantization of phonon modes.

The kinetic energy of vibrations reads

T =
1

2

∑
n,k,α

mk(u̇
k
n,α)2 =

1

2

∑
n,k,α

(Ȧkn,α)2 . (372)

The potential energy reads

U =
1

2

∑
n,n′,α,β,k,k′

Φk,k′

n,n′;α,β u
k
n,α u

k′

n′,β =
1

2

∑
n,n′,α,β,k,k′

Dk,k′

n,n′;α,β A
k
n,αA

k′

n′,β . (373)

The Fourier transform of the D matrix Dk,k′

α,β (~q) is a Hermitian matrix. Thus, it has 3M

orthonormal eigenvectors ekj,α(~q) with real eigenvalues ω2
j (~q):∑

α,k

ekj,α[ekj′,α]∗ = δj,j′ . (374)

Another property is

ekj,α(−~q) = [ekj,α(~q)]∗ (375)

We expand the amplitudes Akn,α(~q) using the eigenvectors ekj,α(~q):

Akα(~q, t) =
∑
j

√
NQj(~q, t)e

k
j,α(~q) . (376)
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The normalizing factor
√
N is chosen to simplify the later expressions. We obtain

Akn,α(t) =
1

N

∑
~q

Akα(~q, t) ei~q
~Rn =

1√
N

∑
j,~q

ekj,α(~q)Qj(~q, t) e
i~q ~Rn , (377)

where N is the total number of unit cells (N = N1N2N3). Since Akn,α(t) is real we must have

Qj(−~q, t) = [Qj(~q, t)]
∗.

Using othonormality of the vectors ekj,α(~q) we obtain

T =
1

2

∑
j,~q

∣∣∣Q̇j(~q, t)
∣∣∣2 =

1

2

∑
j,~q

Q̇j(~q)Q̇j(−~q) , (378)

and for the potential energy we obtain

U =
1

2

∑
j,~q

ω2
j (~q) |Qj(~q, t)|2 =

1

2

∑
j,~q

ω2
j (~q)Qj(~q)Qj(−~q) . (379)

To formulate a Lagrangian theory it would be better to have real coordinates instead of

complex Qj(~q). Alternatively one can use Qj(~q) and Qj(−~q) as independent variables.

To simplify we will suppress the index j and use Q(~q) = Qq.

The conjugated variables:

Pq =
∂T

∂Q̇q

= Q̇−q . (380)

The Hamiltonian:

H =
1

2

∑
q

PqP−q +
1

2

∑
j,~q

ω2
q QqQ−q . (381)

We introduce the creation and annihilation operators:

a†q =
1√
2ωq

(ωqQ−q − iPq) ,

aq =
1√
2ωq

(ωqQq + iP−q) . (382)

The inverse relations

Qq =
aq + a†−q√

2ωq
,

Pq = i

√
ωq
2

(a†q − a−q) . (383)

This gives

H =
∑
q

ωq

(
a†qaq +

1

2

)
. (384)

It is important to express the physical field ukn,α
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ukn,α =
Akn,α√
mk

=
1√
Nmk

∑
j,~q

ekj,α(~q)Qj(~q) e
i~q ~Rn

=
1

2
√
Nmk

∑
j,~q

[
Qj(~q) e

k
j,α(~q) ei~q

~Rn +Qj(−~q) ekj,α(−~q) e−i~q ~Rn
]

=
1√

2Nmk

∑
j,~q

1
√
ωq

[
aj,~q e

k
j,α(~q) ei~q

~Rn + a†j,~q [ekj,α(~q)]∗ e−i~q
~Rn
]
. (385)

B. Phonon density of states

D(ω) =
∑
j

∫ d3q

(2π)3
δ(ω − ωj(q)) =

∑
j

∫ dS

(2π)3

1

|~∇q ωj|
(386)

Van-Hove singularities: ~∇q ωj = 0.

For ~q → 0 we consider only acoustic phonons. We obtain

ωs = cs(~nq)|~q| , (387)

where s = 1, 2, 3 counts the acoustic modes.

Then

D(ω) =
∑
s

∫ dΩq

(2π)3

q2(ω)

cs(~nq)
= ω2

∑
s

∫ dΩq

(2π)3

1

c3
s(~nq)

=
3ω2

2π2

〈
1

c3
s

〉
, (388)

where 〈
1

c3
s

〉
≡ 1

3

∑
s

∫ dΩq

4π

1

c3
s(~nq)

. (389)

C. Specific heat

Bose function:

nj,q =
1

eβh̄ωj,q − 1
, (390)

where β ≡ (kBT )−1. The chemical potential µ = 0 since the number of phonons is not fixed

and in the ground state there are no phonons.

The internal energy

U =
∑
j,q

h̄ωj,q

(
nj,k +

1

2

)
= U0 +

∑
j,q

h̄ωj,q nj,k . (391)
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Specific heat

CV =
1

V

∂U

∂T

∣∣∣
V
. (392)

Two universal properties:

1) Maximal frequency of phonons

2) Linear dependence of ω(q) at small q and ω (sound waves)

allow for high- and low-temperature expansions.

1. High temperatures

kBT � h̄ωmax (only for acoustic phonons).

1

ex − 1
=

1

x

(
1− x

2
+
x2

12
+ . . .

)
, x� 1 . (393)

CV =
1

V

∂

∂T

∑
s,q

h̄ωs,q
kBT

h̄ωs,q

1− 1

2

h̄ωs,q
kBT

+
1

12

(
h̄ωs,q
kBT

)2

+ . . .


= 3kB

N

V

(
1− 1

12

h̄2〈ω2
s,q〉

(kBT )2
+ . . .

)
, (394)

(the first term is Dulong-Petit law) where

〈ω2
s,q〉 =

1

3N

∑
s,q

ω2
s,q (395)

If the temperature is also higher than the maximum frequency of he optical phonons,

then 3→ 3M . All phonons contribute.

2. Low temperatures

kBT � h̄ωmax (only acoustic phonons relevant).

1

ex − 1
≈ e−x , x� 1 . (396)

CV =
1

V

∂

∂T

∑
s,q

h̄ωs,qns,q =
∂

∂T

∑
s

∞∫
0

dωD(ω)h̄ω
1

eβh̄ω − 1
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=
3

2π2

〈
1

c3
s

〉
∂

∂T

∑
s

∞∫
0

dω
h̄ω3

eβh̄ω − 1
=

3

2π2

〈
1

c3
s

〉
∂

∂T

∑
s

1

h̄3β4

∞∫
0

dx
x3

ex − 1

=
3

2π2

〈
1

c3
s

〉
4k4

BT
3

h̄3

∞∫
0

dx
x3

ex − 1
=

3

2π2

〈
1

c3
s

〉
4k4

BT
3

h̄3

π4

15
. (397)

D. Debye and Einstein approximations

How to interpolate between low and high temperatures.

Simplified model.

For acoustic phonons - Debye model. For optical phonons - Einstein model.

1. Debye

The dispersion law ω = cq postulated for all q. Instead of the first Brillouin zone one

takes a sphere so that the number of q’s in this sphere is equal to N . That is the radius of

the sphere qD is given by
4π

3
q3
D ·

V

(2π)3
= N (398)

Debye frequency ωD = cqD

Debye temperature kBΘD = h̄ωD

This gives

CV =
1

V

∂

∂T

∑
s,q

h̄ωs,qns,q = 3
∂

∂T

qD∫
0

4πq2dq

(2π)3

h̄cq

eβh̄cq − 1

= 3

qD∫
0

4πq2dq

(2π)3

(h̄cq)2eβh̄cq

(eβh̄cq − 1)2

(
−∂β
∂T

)

= 3
1

kBT 2

4π(h̄c)2

(2π)3

1

(βh̄c)5

ΘD/T∫
0

dx
x4ex

(ex − 1)2

= 9kB
N

V

(
T

ΘD

)3

f(T/ΘD) , (399)

where

f(y) =

1/y∫
0

dx
x4ex

(ex − 1)2
. (400)
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FIG. 8: Function f .

2. Einstein

Optical phonons. Neglect dispersion

ω(~q) = ω0 . (401)

U = U0 + (3M − 3)N
h̄ω0

e
h̄ω0
kBT − 1

. (402)

CV =
1

V

∂U

∂T
= (3M − 3)

N

V
kB

(
h̄ω0

kBT

)2
e
h̄ω0
kBT(

e
h̄ω0
kBT − 1

)2 . (403)

E. Neutron scattering

The spectrum of phonons can be measured by scattering of neutrons on the material.

One measures the differential cross-section:

d2σ

dΩdω
=

1

dΩdω

δNf (Ω, ω)

Ni

, (404)

where Ni is the flux density of the incident neutrons (number of particles per area and time),

δNf (Ω, ω) is the flux (number per time) of neutrons scattered into the solid angle interval
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dΩ around Ω with energy transfer in the interval h̄dω around h̄ω. The energy transfer is

given by

h̄ω =
h̄2

2Mn

(k2
f − k2

i ) = Ei − Ef , (405)

where ki and kf are the initial and final wave vectors of the neutrons. Ei and Ef are the

initial and final energies of the crystal.

Golden rule:

δN(Ω, ω) = δN(~ki → ~kf ) =
∑
i,f

e−βEi

Z
W (~ki, i→ ~kf , f)V ni

V

(2π)3
d3kf , (406)

where ni is the density of incident neutrons, Ni = nivi = ni
h̄ki
Mn

. With

d3kf = k2
fdkfdΩ = kf

Mn

h̄2 (h̄dω)dΩ (407)

we obtain
d2σ

dΩdω
=
(
Mn

2πh̄

)2 V 2

2π

kf
ki

∑
i,f

e−βEi

Z
W (~ki, i→ ~kf , f) (408)

To calculate the rate W we take the interaction potential of the neutrons with the ions

to be u0δ(~rneutron − ~rion) (neutrons interact mostly with nuclei). With ~r = ~rneutron and

~rion = ~rn = ~Rn +~un (for simplicity we assume one ion per elementary cell, i.e., only acoustic

phonons)

U(~r) =
∑
n,k

u0δ(~r − ~rn) . (409)

Here u0 has dimensions E · L3, u0 =
∫
d3rU .

Golden rule:

W (~ki, i→ ~kf , f) =
2π

h̄
|〈i, ki|U |f, kf〉|2 δ(Ef − Ei + h̄ω) (410)

〈i, ki|U |f, kf〉 =
1

V

∫
d3r 〈i|ei(~kf−~ki)·~r

∑
n,k

u0δ(~r − ~rn)|f〉

=
u0

V

∑
n

〈i|ei(~kf−~ki)·~rn|f〉 =
u0

V

∑
n

〈i|ei~q·~rn|f〉 , (411)

where ~q ≡ ~kf − ~ki.

This gives

d2σ

dΩdω
=
(
Mn

2πh̄

)2 V 2

2π

kf
ki

∑
i,f

e−βEi

Z

2π

h̄

u2
0

V 2

∑
n,n′
〈i|ei~q·~rn|f〉〈f |e−i~q·~rn′ |i〉 δ(Ef − Ei + h̄ω)
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=
(
Mn

2πh̄

)2 u2
0

h̄

kf
ki

∑
i,f

e−βEi

Z

∑
n,n′

∫ dt

2πh̄
〈i|ei~q·~rn|f〉〈f |e−i~q·~rn′ |i〉ei

(Ef−Ei+h̄ω)t

h̄

=
(
Mn

2πh̄

)2 u2
0

h̄

kf
ki

∑
i,f

e−βEi

Z

∑
n,n′

∫ dt

2πh̄
〈i|ei~q·~rn|f〉〈f |e−i~q·~rn′ (t)|i〉eiωt

=
(
Mn

2πh̄

)2 u2
0

h̄2

kf
ki

∑
i

e−βEi

Z

∑
n,n′

∫ dt

2π
〈i|ei~q·~rn e−i~q·~rn′ (t)|i〉eiωt

=
(
Mn

2πh̄

)2 u2
0

h̄2

kf
ki

∑
n,n′

∫ dt

2π
〈ei~q·~rn e−i~q·~rn′ (t)〉eiωt

(412)

Using ρ(~r) =
∑
n,k δ(~r − ~rn) we obtain

∑
n,k e

i~q·~rn =
∫
d3r ρ(~r)ei~q·~r = ρ−~q.

Thus

d2σ

dΩdω
=
(
Mn

2πh̄

)2 u2
0

2πh̄2

kf
ki

∫ dt

2π
〈ρ−~q(0)ρ~q(t)〉eiωt

=
(
Mn

2πh̄

)2 u2
0

2πh̄2

kf
ki
S(~q, ω) , (413)

where

S(~q, ω) ≡
∫ dt

2π
〈ρ−~q(0)ρ~q(t)〉eiωt =

∑
n,n′

∫ dt

2π
〈ei~q·~rn e−i~q·~rn′ (t)〉eiωt . (414)

We obtain

S(~q, ω) =
∑
n,n′

∫ dt

2π
〈ei~q·(~Rn+~un) e−i~q·(

~Rn′+~un′ (t))〉eiωt

=
∑
n,n′

ei~q·(
~Rn−~Rn′ )

∫ dt

2π
〈ei~q·~un e−i~q·~un′ (t)〉eiωt

= N
∑
n

e−i~q·
~Rn

∫ dt

2π
〈ei~q·~u0 e−i~q·~un(t)〉eiωt . (415)

Next we consider the average

〈ei~q·~u0 e−i~q·~un(t)〉 , (416)

We use the formula obtained earlier

un,α =

√
h̄√

2Nm

∑
j,~q

1
√
ωq

[
aj,~q ej,α(~q) ei~q

~Rn + a†j,~q [ej,α(~q)]∗ e−i~q
~Rn
]
. (417)

We also use a relation

〈eiφ1 e−iφ2〉 = e−2W e〈φ1φ2〉 , (418)

where 4W = 〈φ1φ1 + φ2φ2〉. This relation holds if the operators φ1 and φ2 satisfy the Wick

theorem. They do if φ1/2 is linear in a and a†.
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Proof

Thus we obtain

〈ei~q·~u0 e−i~q·~un(t)〉 = e−2W e〈[~q·~u0(0)][~q·~un(t)]〉 , (419)

where 2W = 〈[~q · ~u0(0)]2〉 = 〈[~q · ~un(t)]2〉. The last equation follows from stationarity and

translational symmetry.

Thus we obtain

S(~q, ω) = Ne−2W
∑
n

e−i~q·
~Rn

∫ dt

2π
e〈[~q·~u0(0)][~q·~un(t)]〉 eiωt (420)

F. Results

One can expand the exponent

e〈[~q·~u0(0)][~q·~un(t)]〉 = 1 + 〈[~q · ~u0(0)][~q · ~un(t)]〉+
1

2
〈[~q · ~u0(0)][~q · ~un(t)]〉2 + . . . (421)

and obtain

S = S0 + S1 + . . . , (422)

where

S0 = N2e−2W δ(ω)
∑
~K

δ~q, ~K , (423)

where ~K are the vectors of the reciprocal lattice. Physical meaning: 1) ω = 0 elastic

processes, no energy transfer. 2) ~q = ~K - von Laue condition. Indeed ~q = ~kf − ~ki. 3) The

factor e−2W is called Debye-Waller factor. It shows that the motion of ions reduces (smears)

the scattering probability. Also zero point motion contributes: W 6= 0 for T = 0. One

obtains

W =
1

2
〈[~q · ~u0(0)]2〉 =

h̄

4Nm

∑
j,~k

|~q · ~ej(~k)|2

ωk
[2nB(ωk) + 1] (424)

where nB(ω) = (eβh̄ω − 1)−1 is the Bose function.

Consider now 1-Phonon processes. We obtain

S1(~q, ω) = Ne−2W
∑
s

h̄|~q · ~es(~q)|2

2mωs(~q)
[n~q,sδ(ω − ωs(~q)) + (n−~q,s + 1)δ(ω + ωs(~q))] (425)

The two terms correspond to emission and absorption of phonons by a neutron.
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XVI. PLASMA OSCILLATIONS, THOMAS-FERMI SCREENING

A. Plasma oscillations

Consider a gas of charged particles (charge e, density n0) in an oppositely charged static

background. The Maxwell equation that governs the dynamics reads

~∇ · ~E = 4πρ . (426)

It is equivalent to

~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~j (427)

for ~B = 0 together with the continuity equation: ρ̇+ ~∇ ·~j = 0.

In Fourier space this gives i~q · ~E(~q, ω) = 4πρ and, with the continuity equation ~q ·~j = ωρ

this gives (all fields are longitudinal) iω ~E(~q, ω) = 4π~j(~q, ω).

Equation of motion

m
d2~r

dt2
= e ~E (428)

and ~j = en0~v lead to −iωm~j = n0e
2 ~E. This gives

ω2
p =

4πn0e
2

m
(429)

One can also associate the dielectric constant via ρ = −~∇· ~P = −i~q · ~P . Thus (everything

longitudinal)

P =
iρ

q
= i

j

ω
= −n0e

2

ω2m
E = − 1

4π

ω2
p

ω2
E (430)

Thus

D = εE = E + 4πP = E

(
1−

ω2
p

ω2

)
(431)

and

ε(ω) =

(
1−

ω2
p

ω2

)
. (432)

B. Thomas-Fermi screening

One studies reaction of the electrons on an external charge/potential. The Poisson equa-

tion for the external charge/potential reads

q2φext(~q) = 4πρext(~q) (433)
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For the full charge/potential

q2φ = 4πρ (434)

The dielectric constant is defined by

4πρext = ~∇ · ~D = i~q · ~D = i~qε(q) ~E = i~qε(q)(−i~qφ) = ε(q)q2φ (435)

Thus

ε(q)φ = φext (436)

We introduce susceptibility χ(q) by

ρind = ρ− ρext = χ(q)φ(q) (437)

That is the charge density is induced by the full potential. Then

q2

4π
(φ− φext) = χφ and ε = 1− 4π

q2
χ (438)

The idea how to calculate χ is as follows. If the potential φ is a slowly changing function of

coordinate, then it adds to the local chemical potential and locally one has an electrochemical

potential µ+eφ (charge of electron is −e). The electron density is then n(~r) = n0(µ+eφ(~r)),

where

n0(µ) =
2

V

∑
k

1

eβ(εk−µ) − 1
= 2

∫
dε ν(ε)

1

eβ(ε−µ) − 1
(439)

In linear response

ρind = −e(n0(µ+ eφ)− n0(µ)) = −e2φ
∂n0

∂µ
≈ −e2φ[2ν(µ)] (440)

Thus we obtain

χ = −e2∂n0

∂µ
and ε = 1 +

4πe2

q2

∂n0

∂µ
(441)

We define

k2
TF ≡ 4πe2 ∂n0

∂µ
= 4πe2[2ν] = 4πe2νs (442)

Thus

ε = 1 +
k2
TF

q2
(443)

In real space this means the following. If a point charge Q is introduces as an external

charge. Then

φext(~r) =
Q

r
→ φext(q) =

4πQ

q2
(444)
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and

φ =
φext

ε
=

4πQ

q2 + k2
TF

(445)

The inverse Fourier transform gives

φ(~r) =
Q

r
e−r kTF (446)

It is important to notice (although we did not prove it) that ε is independent of ω up to

h̄ω ∼ EF = µ. Thus, electrons screen instantaneously.

C. Dielectric constant of a metal

We have now ions and electrons and want to calculate their total dielectric constant

defined via

ε(ω, ~q)φtotal(ω, ~q) = φext(ω, ~q) (447)

One can apply the following logic. Consider the potential/charge of ions as part of the

external one. Then

εelφtotal = φext + φion (448)

Another logic is to consider electrons as external. Then

εion0 φtotal = φext + φel (449)

Since φtotal = φext + φion + φel we add the two equations and obtain

(εel + εion0 )φtotal = φtotal + φext (450)

or

(εel + εion0 − 1)φtotal = φext (451)

or

ε = εel + εion0 − 1 . (452)

For electrons one takes Thomas-Fermi

εel(ω, q) = 1 +
k2
TF

q2
(453)

For ions - dielectric constant of plasma oscillations

εion0 (ω, q) = 1−
Ω2
p

ω2
, (454)
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where Ω2
p = 4πnion(Ze)2

M ion . Thus

ε = 1−
Ω2
p

ω2
+
k2
TF

q2
. (455)

This way we took into account the bare ions. Thus the notation εion0 . Alternatively we

can obtain the same if we consider ions ”dressed” by screening electrons. That is ”dressed”

ions respond to a potential already screened by electrons:

φtotal =
1

εiondr
φextscreened =

1

εiondr

1

εel
φext (456)

Thus we obtain

ε = εiondr ε
el = εel + εion0 − 1 (457)

This gives

εiondr =
1− Ω2

p

ω2 +
k2
TF

q2

1 +
k2
TF

q2

= 1−
Ω2
p

ω2

(
1 +

k2
TF

q2

) = 1− ω2(q)

ω2
, (458)

where

ω2(q) ≡
Ω2
p

1 +
k2
TF

q2

=
Ω2
p

k2
TF + q2

q2 (459)

For q � k2
TF this gives sound with

c =
Ωp

kTF
(460)

We return back to the total dielectric constant and obtain

ε = εiondr ε
el =

(
1 +

k2
TF

q2

) (
1− ω2(q)

ω2

)
(461)

or
1

ε(ω, q)
=

q2

(q2 + k2
TF )

ω2

(ω2 − ω2(q))
(462)

D. Effective electron-electron interaction

Unscreened Coulomb interaction gets screened

4πe2

q2
→ 4πe2

εq2
=

4πe2

(q2 + k2
TF )

(
1 +

ω2(q)

ω2 − ω2(q)

)
(463)

Effective interaction between electrons V eff
~k,~k′

is obtained by the following substitution

~q = ~k − ~k′ h̄ω = εk − εk′ (464)

At ω � ω(q) - overscreening, attraction with retardation.
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XVII. ELECTRON-PHONON INTERACTION, FRÖLICH-HAMILTONIAN

A. Derivation without taking into account screening

For simplicity we consider one ion per Primitive Unit (Primitive Cell) of the Bravais

Lattice. Thus only acoustic phonons. The potential felt by an electron (neglecting screening

by other electrons) is given by

U(~r) =
∑
n

V ion(~r − ~Rn − ~un) ≈
∑
n

V ion(~r − ~Rn)−
∑
n

~∇V ion(r − ~Rn)~un , (465)

where ~un is the deviation of the ion with the equilibrium position ~Rn. In the second quan-

tization this becomes

δH = −
∑
σ

∫
dVΨ†σ(~r)

∑
n

[
~∇V ion(r − ~Rn)

]
~unΨσ(~r) (466)

With Ψσ(~r) = 1√
V

∑
k ψk,σ(~r)cσ and Ψ†σ(~r) = 1√

V

∑
k ψ
∗
k,σ(~r)c†σ and assuming the Bloch

functions are spin independent we obtain

δH = −
∑

k1,k2,σ

〈k1| el.ph. |k2〉 c†k1,σ
ck2,σ (467)

with

〈k1| el.ph. |k2〉 =
∑
n

~un
1

V

∫
dV ψ∗k2

(~r)
[
~∇V ion(~r − ~Rn)

]
ψk1(~r) (468)

We expand

~∇V ion(~r − ~Rn) =
1

V

∑
~p

(i~p)V ion
p ei(~r−

~Rn)~p (469)

Then

〈k1| el.ph. |k2〉 =
1

V

∑
n

∑
p

(i~p~un)V ion
p e−i~p

~Rn
1

V

∫
dV ψ∗k1

(~r)ψk2(~r)ei~p~r (470)

We now use the second quantized form for ~un:

~un =
∑
j,~q

√
h̄√

2NMωj,q

[
aj,~q + a†j,−~q

]
~ej(~q) e

i~q ~Rn . (471)

Substituting and using ∑
n

ei(~q−~p)
~Rn = N

∑
~G

δ~p,~q+ ~G , (472)
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where ~q ∈ 1.B.Z and ~G are vectors of the reciprocal lattice, we obtain

〈k1| el.ph. |k2〉 =
1

V

∑
j,q,G

V ion
q+G

i
√
Nh̄

[
(~q + ~G)~ej,q

]
√

2Mωj,q

[
aj,~q + a†j,−~q

]

× 1

V

∫
dV ψ∗k1

(~r)ψk2(~r)ei(~q+
~G)~r (473)

For the matrix element we obtain

1

V

∫
dV ψ∗k1

(~r)ψk2(~r)ei(~q+
~G)~r =

1

V

∫
dV u∗k1

(~r)uk2(~r)ei(
~k2−~k1+~q+ ~G)~r

=
1

N

∑
n

ei(
~k2−~k1+~q+ ~G)~Rn

1

VP.U.

∫
P.U.

dV u∗k1
(~r)uk2(~r)ei(

~k2−~k1+~q+ ~G)~r (474)

We use again the relation (472) which can be written as

1

N

∑
n

ei(
~k2−~k1+~q+ ~G)~Rn =

∑
~G′

δ~k1,~k2+~q+ ~G− ~G′ (475)

Here, however, the possible choices for ~G′ are severely limited. For each ~G only one term in

the sum remains (one value of ~G′) such that ~k2, ~k1, ~q ∈ 1.B.Z. It is more convenient, thus,

to write
1

N

∑
n

ei(
~k2−~k1+~q+ ~G)~Rn = δq,k1−k2+K , (476)

where ~K~k1,~k2
∈ R.L. is chosen so that ~q = ~k1 − ~k2 + ~K ∈ 1.B.Z. Obviously, this choice is

unique. This gives

1

V

∫
dV ψ∗k1

(~r)ψk2(~r)ei(~q+
~G)~r = δq,k1−k2+K

1

VP.U.

∫
P.U.

dV u∗k1
(~r)uk2(~r)ei[

~G+ ~K]·~r . (477)

Thus we obtain

δH =
∑

k1,k2,q,j,σ

M(~k1, ~k2, ~q, j) c
†
k1,σ

ck2,σ

[
aj,~q + a†j,−~q

]
, (478)

where

M(~k1, ~k2, ~q, j) = − 1

V

∑
~G

V ion
q+G

i
√
Nh̄

[
(~q + ~G)~ej,q

]
√

2Mωj,q
δq,k1−k2+K

× 1

VP.U.

∫
P.U.

dV u∗k1
(~r)uk2(~r)ei(

~G+ ~K)·~r . (479)

Once again, ~K is uniquely chosen so that ~q ∈ 1.B.Z.
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B. Including screening

Our naive derivation assumed no screaning and thus V ion
p = 4πe2

p2 . Less naively we

should include screening by substituting V ion
p = 4πe2

(p2+k2
TF )
≈ 4πe2

k2
TF

. This means V ion(~r) =

4πe2a2
TF δ

3(~r).

C. Direct derivation with screening

The polarization ~P (~r) = en~u(~r) (assume Z = 1) creates a charge density ρion = −~∇ · ~P .

The interaction of an electron with this charge density is given by

U(~r) = −e
∫
d3r1Q(~r − ~r1)ρion(~r1) = e2n

∫
d3r1Q(~r − ~r1)~∇~u(~r1) , (480)

where

Q(~k) =
4π

k2
TF

. (481)

In the continuous limit

~u(~r) =
∑
j,~q

√
h̄√

2NMωj,q

[
aj,~q + a†j,−~q

]
~ej(~q) e

i~q~r . (482)

Thus

δH =
∑

k1,k2,σ

〈k1| el.ph. |k2〉 c†k1,σ
ck2,σ

(483)

with

〈k1| el.ph. |k2〉 =
1

V
e2n

∫
d3r

∫
d3r1ψ

∗
k2

(~r)Q(~r − ~r1)~∇~u(~r1)ψk1(~r) (484)

〈k1| el.ph. |k2〉 =
1

V
e2n

∑
j,q

Q(q)
i
√
h̄ [~q · ~ej,q]√
2NMωj,q

[
aj,~q + a†j,−~q

]
×
∫
dV ψ∗k1

(~r)ψk2(~r)ei~q·~r . (485)

With n = N/V we reproduce the previous result. We only lost the ”umklapp” processes

due to the continuous approximation for ~u(~r).

84



D. Phonon induced interaction between electrons

We simplify somewhat. We ”forget” about ”umklapp” processes, and also use plane waves

instead of Bloch functions. For each ~q only one phonon mode (longitudinal with ~ej,q ‖ ~q)

contributes. Then

Hel−ph =
∑
k,q,σ

M(~q) c†k+q,σck,σ
[
a~q + a†−~q

]
, (486)

where

M(~q) = −iV ion
q

1

V

√
Nh̄√

2Mωq
q . (487)

with V ion
q = 4πe2a2

TF .

Consider a process in which an electron with momentum ~k1 emits virtually a phonon

with momentum ~q, so that its new momentum is ~k1 − ~q. Then an electron with momentum

~k2 absorbs the photon and its momentum becomes ~k2 + ~q.

In the initial state the energy is E0 = ε~k1
+ ε~k2

. In the virtual state the energy is

E1 = ε~k1−~q + ε~k2
+ h̄ωq.

The second order amplitude of this process reads

|M(~q)|2

E0 − E1

=
|M(~q)|2

ε~k1
− ε~k1−~q − h̄ωq

(488)

Another process which interferes with the first one is as follows. Electron with momentum

~k2 emits a phonon with momentum −~q. Then electron with momentum ~k1 absorbs the

phonon. The amplitude reads
|M(~q)|2

ε~k2
− ε~k2+~q − h̄ωq

(489)

Conservation of energy requires ε~k1
+ ε~k2

= ε~k1−~q + ε~k2+~q.

The total amplitude reads

|M(~q)|2

ε~k1
− ε~k1−~q − h̄ωq

+
|M(~q)|2

ε~k2
− ε~k2+~q − h̄ωq

=
2|M(~q)|2h̄ωq

(ε~k1
− ε~k1−~q)

2 − (h̄ωq)2
(490)

We observe that if |ε~k1
−ε~k1−~q| � ωq the sign of the interaction matrix element is negative,

i.e., we obtain attraction.
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1. Comparison

We should compare the phonon mediated interaction

2|M(~q)|2h̄ωq
(ε~k1
− ε~k1−~q)

2 − (h̄ωq)2
(491)

where

M(~q) = −iV ion
q

1

V

√
Nh̄√

2Mωq
q . (492)

with V ion
q = 4πe2a2

TF , with the one obtained earlier (a factor 1/V needed)

1

V

4πe2

q2
→ 1

V

4πe2

εq2
=

1

V

4πe2

(q2 + k2
TF )

(
1 +

ω2(q)

ω2 − ω2(q)

)
(493)

Neglecting q2 in comparison with k2
TF we see that we have to compare

∗ = 2|M(~q)|2 ωq
h̄

=
1

V 2
2(4πe2a2

TF )2 Nh̄

2Mωq
q2 ωq

h̄
(494)

with

∗∗ =
1

V
4πe2a2

TFω
2
q (495)

We obtain

∗ =
1

V 2
(4πe2a2

TF )2 N

M
q2 =

1

V 2
(4πe2a2

TF )2 N

M

ω2
q

c2
s

=
1

V 2
(4πe2a2

TF )2 N

M

ω2
q

Ω2
pa

2
TF

=
1

V 2
(4πe2a2

TF )2 N

M

ω2
q

a2
TF

M

4πnie2
= ∗∗ (496)

XVIII. BCS THEORY OF SUPERCONDUCTIVITY

A. Phonon induced interaction between electrons

Hel−ph =
∑
k,q,σ

M(~q) c†k+q,σck,σ
[
a~q + a†−~q

]
, (497)

where

M(~q) = −iV ion
q

1

V

√
Nh̄√

2Mωq
q . (498)

with V ion
q = 4πe2a2

TF .
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The total interaction amplitude reads

Vk1,k2,q =
2|M(~q)|2h̄ωq

(ε~k1
− ε~k1−~q)

2 − (h̄ωq)2
=
gk1,k2,q

V
(499)

(Introduction of g is convenient since g does not contain extensive quantities like V or N -

check this. g has dimensions energy × volume). This amplitude is only taken on-shell as

far as electrons are concerned. Thus

(ε~k1
− ε~k1−~q)

2 = (ε~k2
− ε~k2+~q)

2

.

That is the effective second quantized interaction between electrons due to phonons reads

Hel−el−ph =
1

2V

∑
k1,σ1,k2,σ2,q

gk1,k2,q c
†
k1+q,σ1

c†k2−q,σ2
ck2,σ2 ck1,σ1 (500)

The noninteracting Hamiltonian reads

H0 =
∑
k,σ

εkc
†
k,σ ck,σ (501)

B. Cooper problem (L. Cooper 1955)

The interaction is attractive and considerable as long as the energy transfer |ε~k1
−ε~k1−~q| �

h̄ωq ≤ h̄ωD. We simplify the model as follows:

gk1,k2,q =

 −g if |ε~k1
− ε~k1−~q| ≤ h̄ωD

0 if |ε~k1
− ε~k1−~q| > h̄ωD

(502)

Cooper considered a pair of electrons above the filled Fermi sphere. That is the Fermi

sphere is given by

|Φ0〉 =
∏

k≤kF ,σ
c†k,σ |0〉 , (503)

Cooper explored the following state

|Φ〉 =
∑

k1>kF ,σ1,k2>kF ,σ2

ψ(k1, σ1, k2, σ2)c†k1,σ1
c†k2,σ2

|Φ0〉 (504)

The wave function ψ(k1, σ1, k2, σ2) is antisymmetric, i.e, ψ(k1, σ1, k2, σ2) = −ψ(k2, σ2, k1, σ1)

(indeed the second quantization is organized so that even if we use here not an antisym-

metric function, only the antisymmetric part will be important). We use ψ(k1, σ1, k2, σ2) =
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α(k1, k2)χ(σ1, σ2). Further we restrict ourselves to the states with zero total momentum,

~k1 + ~k2 = 0. We also restrict ourselves to the layer of states with energies [EF , EF + h̄ωD].

Any pair out of this layer interacts with any other pair. Thus

|Φ〉 =
∑

EF<εk<EF+h̄ωD,σ1,σ2

α(~k)χ(σ1, σ2)c†k,σ1
c†−k,σ2

|Φ0〉 (505)

The Schrödinger equation reads

E |Φ〉 = (H0 +Hel−el−ph) |Φ〉 (506)

We count the energy from the energy of the filled Fermi sphere. Then

E |Φ〉 =
∑

k,σ1,σ2

2εkα(~k)χ(σ1, σ2)c†k,σ1
c†−k,σ2

|Φ0〉

− g

V

∑
k,σ1,σ2,q

α(~k)χ(σ1, σ2)c†k+q,σ1
c†−k−q,σ2

|Φ0〉 (507)

This gives

(2εk − E)α(k) =
g

V

∑
EF<εk1

<EF+h̄ωD

α(k1) (508)

We denote

C ≡ 1

V

∑
EF<εk1

<EF+h̄ωD

α(k1) (509)

and obtain

α(k) =
gC

(2εk − E)
(510)

Summing this equation we obtain

C =
1

V

∑
EF<εk1

<EF+h̄ωD

gC

(2εk − E)
(511)

We obtain equation for E

1 =

EF+h̄ωD∫
EF

dε
ν(ε)g

(2ε− E)
(512)

Approximating the density of states by a constant ν(ε) = ν0 (this is density of states per

spin) we obtain
1

gν0

=
1

2
ln
EF + h̄ωD − E/2

EF − E/2
(513)

Thus
2EF + 2h̄ωD − E

2EF − E
= e

2
gν0 (514)
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(2EF − E)(e
2
gν0 − 1) = 2h̄ωD (515)

For weak coupling gν0 � 1 we obtain

2EF − E = 2h̄ωDe
− 2
gν0 (516)

E = 2EF − 2h̄ωDe
− 2
gν0 (517)

The binding energy per electron is then found from E = 2EF − 2∆

∆ = h̄ωDe
− 2
gν0 (518)

1. Symmetry

Since α(k) = α(−k), i.e, symmetric, the spin part of the wave function χ must be

antisymmetric - singlet.

C. BCS state (J. Bardeen, L. Cooper, and R. Schrieffer (BCS), 1957)

1) Everything done in the grand canonical ensemble. The grand canonical partition

function

ZΩ =
∑
n,N

e−β(En,N−µN) (519)

shows that at T = 0 one has to minimize HG = H − µN .

We obtain

HG =
∑
k,σ

(εk − µ)c†k,σ ck,σ −
1

2

g

V

∑
k1,σ1,k2,σ2,q

c†k1+q,σ1
c†k2−q,σ2

ck2,σ2 ck1,σ2 (520)

where the interaction term works only if the energy transfer εk1+q − εk1 is smaller than the

Debye energy h̄ωD.

Although the Hamiltonian conserves the number of particles, BCS constructed a trial

wave function which is a superposition of different numbers of particles:

|BCS〉 =
∏
k

(uk + vkc
†
k,↑c
†
−k,↓) |0〉 . (521)

with the purpose to use uk and vk as variational parameters and minimize 〈BCS|HG |BCS〉.
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For this purpose one can introduce a reduced BSC Hamiltonian. Only terms of this

Hamiltonian will contribute to the average with BCS trial functions. The reduced Hamilto-

nian is the one in which k1 = −k2 and σ1 = −σ2:

HBCS =
∑
k,σ

(εk − µ)c†k,σ ck,σ −
1

2

g

V

∑
k,q,σ

c†k+q,σ c
†
−k−q,−σ c−k,−σ ck,σ . (522)

Renaming k′ = k + q we obtain

HBCS =
∑
k,σ

(εk − µ)c†k,σ ck,σ −
1

2

g

V

∑
k,k′,σ

c†k′,σ c
†
−k′,−σ c−k,−σ ck,σ , (523)

or

HBCS =
∑
k,σ

(εk − µ)c†k,σ ck,σ −
g

V

∑
k,k′

c†k′,↑ c
†
−k′,↓ c−k,↓ ck,↑ , (524)

Also the condition on k and k′ gets simplified. We just demand that

µ− h̄ωD < εk, εk′ < µ+ h̄ωD . (525)

1. Averages

Normalization:

1 = 〈BCS| |BCS〉 = 〈0|
∏
k2

(u∗k2
+ v∗k2

c−k2,↓ck2,↑)
∏
k1

(uk1 + vk1c
†
k1,↑c

†
−k1,↓) |0〉

=
∏
k

(|uk|2 + |vk|2) . (526)

We further restrict ourselves to real uk and vk such that u2
k + v2

k = 1. Thus only one of

them is independent. The following parametrization is helpful: uk = cosφk, vk = sinφk.

We obtain

〈BCS| c†k,↑ ck,↑ |BCS〉

= 〈0|
∏
k2

(uk2 + vk2c−k2,↓ck2,↑)c
†
k,↑ ck,↑

∏
k1

(uk1 + vk1c
†
k1,↑c

†
−k1,↓) |0〉

= v2
k (527)

〈BCS| c†k,↓ ck,↓ |BCS〉

= 〈0|
∏
k2

(uk2 + vk2c−k2,↓ck2,↑)c
†
k,↓ ck,↓

∏
k1

(uk1 + vk1c
†
k1,↑c

†
−k1,↓) |0〉

= v2
−k (528)
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〈BCS| c†k′,↑ c
†
−k′,↓ c−k,↓ ck,↑ |BCS〉

= 〈0|
∏
k2

(uk2 + vk2c−k2,↓ck2,↑) c
†
k′,↑ c

†
−k′,↓ c−k,↓ ck,↑

∏
k1

(uk1 + vk1c
†
k1,↑c

†
−k1,↓) |0〉

= ukvkuk′vk′ (529)

This gives

〈BCS|HBCS |BCS〉 = 2
∑
k

(εk − µ)v2
k −

g

V

∑
k,k′

ukvkuk′vk′ (530)

We vary with respect to φk

∂

∂φk
〈BCS|HBCS |BCS〉 = 4(εk − µ)vkuk − 2

g

V
(u2

k − v2
k)
∑
k′
uk′vk′ = 0 . (531)

We introduce ∆ = g
V

∑
k′ uk′vk′ and obtain

2(εk − µ)vkuk = ∆(u2
k − v2

k) . (532)

Trivial solution: ∆ = 0. E.g., the Fermi sea: uk = 0 and vk = 1 for εk < µ and uk = 1

and vk = 0 for εk > µ.

We look for nontrivial solutions: ∆ 6= 0. Then from

(εk − µ) sin 2φk = ∆ cos 2φk (533)

we obtain

sin 2φk = 2ukvk =
∆√

∆2 + (εk − µ)2
(534)

cos 2φk = u2
k − v2

k =
εk − µ√

∆2 + (εk − µ)2
(535)

Then from definition of ∆ = g
V

∑
k ukvk we obtain the self-consistency equation

∆ =
g

2V

∑
k

∆√
∆2 + (εk − µ)2

(536)

or

1 =
g

2V

∑
k

1√
∆2 + (εk − µ)2

=
gν0

2

h̄ωD∫
−h̄ωD

dξ
1√

∆2 + ξ2

= gν0

h̄ωD/∆∫
0

dx
1√

1 + x2
= gν0 ln(

√
1 + x2 + x)

∣∣∣h̄ωD/∆
0

≈ gν0 ln
2h̄ωD

∆
(537)

We have assumed ∆� h̄ωD.

This gives

∆ = 2h̄ωDe
− 1
ν0g (538)
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2. Total energy

We want to convince ourselves that the total energy of the new state is smaller that the

energy of the trivial solution (fully filled Fermi sphere).

EBCS = 〈BCS|HBCS |BCS〉 = 2
∑
k

(εk − µ)v2
k −

g

V

∑
k,k′

ukvkuk′vk′

= 2
∑
k

(εk − µ)v2
k −∆

∑
k

ukvk , (539)

whereas

ENorm = 〈Norm|HBCS |Norm〉 = 2
∑
k

(εk − µ)θ(µ− εk) . (540)

We obtain

∆E = EBCS − ENorm = 2
∑
k

(εk − µ)(v2
k − θ(µ− εk))−∆

∑
k

ukvk , (541)

With ξk = εk − µ,

v2
k = sin2 φk =

1− cos 2φk
2

=
1

2
− ξk

2
√

∆2 + ξ2
k

(542)

and

ukvk =
∆

2
√

∆2 + ξ2
k

(543)

we obtain

∆E =
∑
k

2ξk

1

2
− ξk

2
√

∆2 + ξ2
k

− θ(−ξk)

− ∆2

2
√

∆2 + ξ2
k

 (544)

∆E = 2V

h̄ωD∫
0

ν0dξ

(
ξ

[
1

2
− ξ

2
√

∆2 + ξ2
− θ(−ξ)

]
− ∆2

2
√

∆2 + ξ2

)

= 2V

h̄ωD∫
0

ν0dξ

ξ − ξ2

√
∆2 + ξ2

− ∆2

2
√

∆2 + ξ2
k



= 2V ν0∆2

h̄ωD/∆∫
0

dx

(
x−
√

1 + x2 +
1

2
√

1 + x2

)
(545)

The last integral is convergent and for h̄ωD � ∆ can be taken to ∞. The integral gives

−1/4. Thus

∆E = −V ν0∆2

2
. (546)

Roughly energy ∆ per electron in window of energies of order ∆.
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D. Excitations

We want to consider the BCS ground state as vacuum and find the quasiparticle excita-

tions above it. Let us start with the normal state, i.e., vk = θ(−ξk) and uk = θ(ξk). For

ξk > 0 we have

ck,σ |Norm〉 = 0 (547)

while for ξk < 0

c†k,σ |Norm〉 = 0 (548)

we introduce

αk,σ ≡

 ck,σ if ξk < 0

±c†−k,−σ if ξk > 0
(549)

or equivalently

αk,σ = ukck,σ ± vkc†−k,−σ (550)

(the sign to be chosen).

We see, thus, that αk,σ |Norm〉 = 0, whereas

α†k,σ = ukc
†
k,σ ± vkc−k,−σ (551)

creates an excitation of energy |ξk|.

For the BCS state we obtain

αk,σ |BCS〉 = (ukck,σ ± vkc†−k,−σ)
∏
q

(uq + vqc
†
q,↑c
†
−q,↓) |0〉 (552)

We see that the proper choice of sign is

αk,σ = ukck,σ − σvkc†−k,−σ (553)

and

αk,σ |BCS〉 = 0 . (554)

The conjugated (creation) operator reads

α†k,σ = ukc
†
k,σ − σvkc−k,−σ (555)

One can check the commutation relations

{
αk,σ, α

†
k′,σ′

}
+

= δk,k′δσ,σ′ (556)
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{αk,σ, αk′,σ′}+ = 0
{
α†k,σ, α

†
k′,σ′

}
+

= 0 (557)

The inverse relations read:

ck,σ = ukαk,σ + σvkα
†
−k,−σ , c†k,σ = ukα

†
k,σ + σvkα−k,−σ (558)

1. Mean field

We adopt the mean field approximation for the BCS Hamiltonian.

HBCS =
∑
k,σ

(εk − µ)c†k,σ ck,σ −
g

V

∑
k,k′

c†k′,↑ c
†
−k′,↓ c−k,↓ ck,↑

(559)

Note that in the interaction the terms with k = k′ are absent, since the matrix element of

the electron-phonon interaction is proportional to the momentum transfer q = k− k′. Thus

the only averages we can extract in the interaction term are 〈c−k,↓ ck,↑〉 and 〈c†k,↑ c
†
−k,↓〉.

We use

1)

c†k,↑ c
†
−k,↓ = (ukα

†
k,↑ + vkα−k,↓)(ukα

†
−k,↓ − vkαk,↑)

= u2
kα
†
k,↑α

†
−k,↓ − v2

kα−k,↓αk,↑ + ukvk(1− α†k,↑αk,↑ − α
†
−k,↓α−k,↓) (560)

2)

c−k,↓ck,↑ = u2
kα−k,↓αk,↑ − v2

kα
†
k,↑α

†
−k,↓ + ukvk(1− α†k,↑αk,↑ − α

†
−k,↓α−k,↓) (561)

In the BCS ground state we obtain 〈c−k,↓ ck,↑〉 = vkuk and 〈c†k,↑ c
†
−k,↓〉 = vkuk. We use

AB = 〈A〉 〈B〉+ 〈A〉 (B − 〈B〉) + (A− 〈A〉) 〈B〉+ (A− 〈A〉)(B − 〈A〉)

and neglect the last term. The mean field Hamiltonian reads

HMF
BCS =

∑
k,σ

(εk − µ)c†k,σ ck,σ +
g

V

∑
k,k′
〈c†k′,↑ c

†
−k′,↓〉 〈c−k,↓ ck,↑〉

− g

V

∑
k,k′
〈c†k′,↑ c

†
−k′,↓〉 c−k,↓ ck,↑ −

g

V

∑
k,k′

c†k′,↑ c
†
−k′,↓ 〈c−k,↓ ck,↑〉

=
∑
k,σ

ξkc
†
k,σ ck,σ −

∑
k

∆c−k,↓ ck,↑ −
∑
k

∆c†k,↑ c
†
−k,↓ + V

∆2

g
(562)
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Substituting the expressions for c operators in terms of α operators we obtain a diagonal

Hamiltonian (exercise)

H =
∑
k,σ

Ekα
†
k,σ αk,σ + const. , (563)

where Ek =
√

∆2 + ξ2
k.

For proof one needs

3)

c†k,↑ ck,↑ + c†−k,↓ c−k,↓ = (ukα
†
k,↑ + vkα−k,↓)(ukαk,↑ + vkα

†
−k,↓)

+(ukα
†
−k,↓ − vkαk,↑)(ukα−k,↓ − vkα

†
k,↑)

= (u2
k − v2

k)(α
†
k,↑αk,↑ + α†−k,↓α−k,↓) + 2v2

k + 2ukvk(α
†
k,↑α

†
−k,↓ + α−k,↓αk,↑) (564)

2. Nambu formalism

Another way to get the same is to use the Nambu spinors. First we obtain

HMF
BCS =

∑
k

(
c†k,↑ c−k,↓

) ξk −∆

−∆ 0


 ck,↑

c†−k,↓

+
∑
k

ξkc
†
k,↓ ck,↓ + V

∆2

g
(565)

Next we rewrite
∑
k ξkc

†
k,↓ ck,↓ =

∑
k ξk(1− ck,↓ c†k,↓) =

∑
k ξk(1− c−k,↓ c†−k,↓). This gives

HMF
BCS =

∑
k

(
c†k,↑ c−k,↓

) ξk −∆

−∆ −ξk


 ck,↑

c†−k,↓

+
∑
k

ξk + V
∆2

g
(566)

The eigenvalues of the matrix

 ξk −∆

−∆ −ξk

 read ±Ek, where Ek =
√

∆2 + ξ2
k. For the

eigenvectors we get  ξk −∆

−∆ −ξk


 uk

−vk

 = Ek

 uk

−vk

 (567)

and  ξk −∆

−∆ −ξk


 vk

uk

 = −Ek

 vk

uk

 (568)

Thus

U †

 ξk −∆

−∆ −ξk

U =

 Ek 0

0 −Ek

 , (569)
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where

U ≡

 uk vk

−vk uk

 (570)

We obtain

HMF
BCS =

∑
k

(
c†k,↑ c−k,↓

)
UU †

 ξk −∆

−∆ −ξk

UU †
 ck,↑

c†−k,↓

+
∑
k

ξk + V
∆2

g
(571)

Diagonalizing the 2× 2 matrix for each k we obtain

HMF
BCS =

∑
k

(
α†k,↑ α−k,↓

) Ek 0

0 −Ek


 αk,↑

α†−k,↓

+
∑
k

ξk + V
∆2

g
(572)

Using again the commutation relations for the α operators we obtain

HMF
BCS =

∑
k,σ

Ekα
†
k,σ αk,σ +

∑
k

(ξk − Ek) + V
∆2

g
. (573)

E. Finite temperature

We obtained the energy spectrum Ek =
√

∆2 + ξ2
k in the mean-field approximation as-

suming that 〈c−k,↓ck,↑ 〉 = vkuk, where the averaging is in the ground state, i.e., there are

no quasi-particles excited. For T > 0 some quasi-particles get excited and the value of

〈c−k,↓ck,↑ 〉 changes. Namely, we obtain

〈c−k,↓ck,↑ 〉 = vkuk(1− 2nk) , (574)

where nk = f(Ek) = 1
eβEk+1

.

If we still want to have the Hamiltonian diagonalized by the Bogolyubov transformation,

we have to redefine ∆ as

∆ =
g

V

∑
k

〈c−k,↓ck,↑ 〉 =
g

V

∑
k

ukvk(1− 2nk) (575)

Then, however, ∆ is temperature dependent and thus Ek =
√

∆2 + ξ2
k is also temperature

dependent. We must do everything self-consistently.

From

ukvk =
∆

2
√

∆2 + ξ2
k

(576)
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we obtain the new self-consistency equation

∆ =
g

2V

∑
k

∆√
∆2 + ξ2

k

tanh
βEk

2
(577)

To find the critical temperature Tc we assume that ∆(Tc) = 0. This gives

1 =
g

2V

∑
k

1

|ξk|
tanh

β|ξk|
2

= gν0

h̄ωD∫
0

dξ
tanh βξ

2

ξ
= gν0

βh̄ωD/2∫
0

dx
tanhx

x
(578)

Assuming h̄ωD/(2kBTc)� 1 we obtain

1 ≈ gν0 ln
h̄ωD
kBTc

(579)

or

kBTc = h̄ωDe
− 1
gν0 =

∆(T = 0)

2
(580)

More precise calculation gives

kBTc = 1.14h̄ωDe
− 1
gν0 =

∆(T = 0)

1.76
(581)

For T ∼ Tc and T < Tc one can obtain

∆(T ) ≈ 3.06kBTc

√
1− T

Tc
(582)

1. More precise derivation

We have to minimize the grand canonical potential Ω = U − µN − TS = 〈HBCS〉 − TS.

For the density matrix we take (the variational ansatz)

ρ =
1

Z
e−β

∑
k,σ

Eknk,σ , (583)

where nk,σ = α†k,σαk,σ are the occupation number operators of the quasi-particles while Ek

are the energies of the quasiparticles (to be determined). Here

αk,σ = ukck,σ − σvkc†−k,−σ (584)

with vk = sinφk and uk = cosφk and φk is another variational parameter.

We thus obtain

〈HMF
BCS〉 =

∑
k,σ

ξkc
†
k,σ ck,σ −

g

V

∑
k,k′
〈c†k′,↑ c

†
−k′,↓〉 〈c−k,↓ ck,↑〉

=
∑
k

2ξk
[
(u2

k − v2
k)f(Ek) + v2

k

]
− g

V

(∑
k

ukvk(1− 2f(Ek))

)2

(585)
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For the entropy we have

S = −2kB

∑
k

[f(Ek) ln f(Ek) + (1− f(Ek)) ln(1− f(Ek))] (586)

We vary with respect to φk and with respect to Ek independently. This gives

∂Ω

∂φk
= 4ξkukvk(1− 2f(Ek))

− 2g

V

(∑
k

ukvk(1− 2f(Ek))

)
(1− 2f(Ek)) (u2

k − v2
k) = 0 (587)

Introducing

∆ =
g

V

∑
k

〈c−k,↓ck,↑ 〉 =
g

V

∑
k

ukvk(1− 2nk) (588)

we obtain the old equation

ξk sin 2φk = ∆ cos 2φk (589)

Thus all the formula remain but with new ∆.

∂Ω

∂Ek
=

∂〈HMF
BCS〉

∂Ek
− T ∂S

∂Ek

= 2ξk(u
2
k − v2

k)
∂f

∂Ek
+ 4∆ukvk

∂f

∂Ek
− T ∂S

∂Ek

= 2
√
ξ2
k + ∆2

∂f

∂Ek
− 2Ek

∂f

∂Ek
= 0. (590)

Thus we obtain

Ek =
√
ξ2
k + ∆2 (591)

F. Heat capacity

CV = T

(
∂S

∂T

)
V

. (592)

Using for S Eq. (586) we obtain

CV = −2kBT
∑
k

(−βEk)
∂f

∂T
= 2

∑
k

Ek
∂f

∂T
(593)

Let’s introduce g(x) = 1
ex+1

. Then f(Ek) = g(βEk).

∂f

∂Ek
= βg′ (594)
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∂f

∂T
= g′ ·

(
Ek

∂β

∂T
+ β

∂Ek
∂T

)
= g′ ·

(
−Ek

β

T
+ β

∂Ek
∂T

)
=

∂f

∂Ek

(
−Ek
T

+
∆

Ek

∂∆

∂T

)
(595)

Thus

CV = 2
∑
k

Ek

(
−Ek
T

+
∆

Ek

∂∆

∂T

)
∂f

∂Ek
(596)

First, we analyze at T → Tc. There Ek ≈ ξk.

With
∂f

∂E
≈ −δ(E)− π2

6
(kBT )2δ′′(E) , (597)

and

∆(T ) ≈ 3.06kBTc

√
1− T

Tc
(598)

We obtain for T = Tc − 0

CV (Tc − 0) = 2ν0

∫
dξ

(
−ξ

2

T

)
∂f

∂ξ
+ ν0

∫
dξ
∂∆2

∂T

∂f

∂ξ

=
2π2ν0k

2
B

3
Tc + (3.06)2ν0k

2
BTc = CV (Tc + 0) + ∆CV (599)

Thus one obtains
∆CV

CV (Tc + 0)
≈ 1.43 (600)

Jump in ∂∆
∂T

leads to jump in CV (see Fig. 9).

FIG. 9: Heat capacitance of vanadium.

For kBT � kBTc ∼ ∆(0) one obtains CV ∝ e
− ∆
kBT .
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G. Isotope effect.

We see that Tc ∝ ∆(T = 0) ∝ ωD ∝ M−1/2, where M is the ion mass. This dependence

can be observed by using materials with different isotope content. It was one of the major

motivations for the phonon mechanism of attraction.

XIX. ELECTRODYNAMICS OF SUPERCONDUCTORS.

A. London equations

The zero resistivity and the Meissner effect are closely related.

Assume the electrons are accelerated without resistance:

m~̇v = e ~E (601)

With ~j = ne~v we obtain

Λ~̇j = ~E , (602)

where Λ = m
ne2

.

The Maxwell equation reads:

~∇× ~E = −1

c
~̇B (603)

Thus we obtain
∂

∂t

(
Λ~∇×~j +

1

c
~B
)

= 0 (604)

But inside the superconductor both ~B = 0 and ~j = 0. Thus F. London and H. London

postulated:

Λ~∇×~j +
1

c
~B = 0 (605)

1. Time-independent situation

An external magnetic field is applied. We consider magnetization currents explicitly, thus

we use microscopic Maxwell equation:

~∇× ~B =
4π

c
~j (606)
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This gives

~∇× (~∇× ~B) = ~∇ · (~∇ · ~B)− (~∇2) ~B = −(~∇2) ~B =
4π

c
~∇×~j (607)

Substituting the London equation we obtain

(~∇2) ~B =
4π

c2Λ
~B (608)

One introduces the London penetration depth λL =
√

c2Λ
4π

=
√

c2m
4πne2

.

B. Another form of London equations

~B = ~∇× ~A (609)

With this the London equation

Λ~∇×~j +
1

c
~B = 0 (610)

reads

Λ~∇×~j +
1

c
~∇× ~A = 0 (611)

If both ~∇ ·~j = 0 and ~∇ · ~A = 0 (Coulomb gauge) this gives

~j = − 1

Λc
~A (612)

In this form the London equation is convenient to connect to the microscopic theory.

C. Microscopic derivation of London equation

Hkin =

(
~p− e

c
~A
)2

2m
(613)

with ~p = −ih̄~∇.

In second quantized form

Hkin =
∑
σ

∫
dV Ψ†σ(r)

(
−ih̄~∇− e

c
~A
)2

2m
Ψσ(r) = H0,kin +H1 +O(A2) , (614)

where

H1 = − e

mc

∑
σ

∫
dV Ψ†σ(r) ~A ~pΨσ(r) (615)
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(the order of operators ~A and ~p unimportant since ~∇ · ~A = 0).

The first order correction to the BCS ground state |0〉 = |BCS〉 is

|Φ1〉 =
∑
l 6=0

|l〉 〈l|H1 |0〉
E0 − El

(616)

Current. Velocity

~v =

(
~p− e

c
~A
)

m
(617)

Current density

~j = e
∑
σ

Ψ†σ(r)

(
~p− e

c
~A
)

m
Ψσ(r) = e

∑
σ

Ψ†σ(r)
~p

m
Ψσ(r)− e2

cm
~A
∑
σ

Ψ†σ(r)Ψσ(r)

= ~jp +~jd (618)

(In ~jp one has to symmetrize: half ~p works to the right and half to the left). The ~jd

contribution immediately gives the London equation

~jd = −e
2n

mc
~A (619)

Another contribution linear in ~A could come from ~jp:

〈~jp〉 = 〈Φ1|~jp |0〉+ 〈0|~jp |Φ1〉 (620)

To calculate |Φ1〉 we need 〈l|H1 |0〉, where |l〉 is an excited state.

We assume

A = ~aqe
i~q~r (621)

and ~q · ~aq = 0.

Using Ψσ = 1√
V

∑
k cke

ikr we obtain

H1 = − h̄e
mc

∑
k,σ

c†k+q,σck,σ(~k~aq) (622)

We use

ck,σ = ukαk,σ + σvkα
†
−k,−σ , c†k,σ = ukα

†
k,σ + σvkα−k,−σ (623)

and conclude that

〈l| c†k+q,σck,σ |0〉 = σuk+qvk 〈l|α†k+q,σα
†
−k,−σ |0〉 (624)
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but also

〈l| c†−k,−σc−k−q,−σ |0〉 = −σukvk+q 〈l|α†−k,−σα
†
k+q,σ |0〉

= σukvk+q 〈l|α†k+q,σα
†
−k,−σ |0〉 (625)

Thus in both cases |l〉 the same, i.e., the same two quasiparticles created.

For this particular |l〉 we obtain

〈l|H1 |0〉 = − h̄e
mc

(
(~k~aq)σuk+qvk + ((−~k − ~q)~aq)σukvk+q

)
= − h̄e

mc
(~k~aq)σ (uk+qvk − ukvk+q) (626)

For ~q → 0 we see that the matrix element vanishes. Together with the fact that |E0−El| >

2∆ this gives ”rigidity” and

〈~jp〉 = 0 (627)

D. Pippard vs. London, coherence length.

The matrix element (626) vanishes for q → 0. Let us analyze it more precisely. We have

uk+qvk − ukvk+q =

√√√√1

2
+

ξk+q

2Ek+q

√
1

2
− ξk

2Ek
−
√

1

2
+

ξk
2Ek

√√√√1

2
− ξk+q

2Ek+q

(628)

For ξk � Ek ∼ ∆ we obtain

uk+qvk − ukvk+q ≈
1

2∆
(ξk+q − ξk) ≈

h̄vF q

2∆
(629)

This introduces the coherence length:

ξ ≡ h̄vF
∆

(630)

(one usually defines ξ0 = h̄vF
π∆

).

The more general than London relation is called Pippard relation:

jα(~r) = −
∑
β

∫
d3r′Qα,β(~r − ~r′)Aβ(~r′) (631)

where the kernel Q decays on the distance of order ξ. ξ is the size of a Cooper pair.

Two limits: ξ < λL - London limit, ξ > λL - Pippard limit.
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E. Superconducting density

At T = 0 we obtained

~j = −e
2n

mc
~A (632)

Here n is the total electron density. Note that transition to pairs does not change the result.

Namely the substitution n→ n/2, m→ 2m, and e→ 2e leaves the result unchanged.

At T > 0 not all the electrons participate in the super current. One introduces the

superconducting density ns(T ) and the normal density nn(T ), such that ns + nn = n. Thus

~js = −e
2ns
mc

~A (633)

Calculations show that near the critical temperature, i.e., for Tc − T � Tc

ns
n
≈ 2

(
1− T

Tc

)
(634)

(arguments with moving liquid)

The new penetration depth is defined as

λL(T ) =

√
c2m

4πnse2
≈ λL(T = 0)√

2

(
1− T

Tc

)−1/2

(635)

F. Critical field

One applies external magnetic field H. It is known that the field is expelled from the

superconductor (Meissner effect). That is inside the superconductor B = 0. When the field

reaches the critical field Hc the superconductivity is destroyed and the field penetrates the

metal.

Naive (but correct) argument: The total (free) energy of a cylindrical superconductor

consists of the bulk free energy Fs and the energy of the induced currents screening the

external magnetic field. We have B = 0 = Bext +Binduced (recall that H = Bext). The energy

of the induced currents is given by B2
induced/(8π). Thus the total energy of a superconductor

reads Fs +H2/(8π). For H = Hc the free energy of a superconductor and of a normal metal

should be equal

Fs +
H2
c

8π
= Fn . (636)

The less naive thermodynamic argument involves the free enthalpy G = F −HB/(4π) (see the book by Abrikosov).
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At zero temperature (F = U − TS) we have

Fn − Fs =
ν0∆2

2
(637)

Thus we find

Hc(T = 0) = 2
√
πν0∆(T = 0) (638)

In particular also for Hc we have the isotope effect, Hc ∝M−1/2.

For T → Tc − 0 one obtains (no proof)

Hc(T ) = 1.735Hc(0)
(

1− T

Tc

)
(639)

G. Order parameter, phase

Thus far ∆ was real. We could however introduce a different BCS groundstate:

|BCS(φ)〉 =
∏
k

(uk + eiφvkc
†
k,↑c
†
−k,↓) |0〉 . (640)

Exercise: check that

|BCS(N)〉 =

2π∫
0

dφ

2π
|BCS(φ)〉 e−iNφ (641)

gives a state with a fixed number of electrons N .

We obtain for ∆

∆ =
g

V

∑
k

〈c−k,↓ck,↑ 〉 =
g

V

∑
k

ukvke
iφ = |∆|eiφ (642)

Usual gauge transformation:

~A→ ~A+ ~∇χ (643)

Ψ→ Ψe
ie
h̄c
χ (644)

We identify
φ

2
= − e

h̄c
χ (645)

Thus

~A→ ~A− h̄c

2e
~∇φ (646)

and

~js = −e
2ns
mc

(
~A− h̄c

2e
~∇φ
)

(647)
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H. Ginsburg-Landau Theory

Theory works for T ≈ Tc.

One introduces the order parameter

Ψ =

√
ns
2
eiφ (648)

1. Landau Theory

One postulates for the free energy∫
dV F =

∫
dV

{
Fn + a|Ψ|2 +

b

2
|Ψ|4

}
(649)

In order to describe the phase transition one postulates a = ατ , where

τ =
T − Tc
Tc

(650)

and α > 0, b > 0.

By varying we obtain |Ψ|2:

a+ b|Ψ|2 = 0 (651)

For τ < 0 this gives

|Ψ|2 = −ατ
b

=
α

b

Tc − T
Tc

(652)

For τ > 0 we have |Ψ|2 = 0. Phase transition.

We define

Ψ2
0 ≡ −

a

b
. (653)

2. Ginsburg-Landau Theory, equations

Theory for inhomogeneous situations, currents and magnetic fields. One postulates for

the free energy

∫
dV F =

∫
dV

Fn + a|Ψ|2 +
b

2
|Ψ|4 +

1

4m

∣∣∣∣(−ih̄~∇− 2e

c
~A
)

Ψ
∣∣∣∣2 +

~B2

8π

 (654)

Here, for a while, we consider the superconductor on its own. Thus ~B is the field induced

by the currents in the superconductor itself. Below we will include the external field.
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Here we have to vary with respect to Ψ regarding Ψ∗ as independent. This gives

1

4m

(
−ih̄~∇− 2e

h̄c
~A
)2

Ψ + aΨ + b|Ψ|2Ψ = 0 (655)

Varying with respect to ~A (using div[a · b] = b · rota− a · rotb) gives

∇× ~B =
4π

c
~j (656)

with

~j = −2ieh̄

4m

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− (2e)2

2mc
|Ψ|2 ~A (657)

For Ψ = Ψ0e
iφ(~r) we obtain again the London equation

~js = − 4e2

2mc
Ψ2

0

(
~A− h̄c

2e
~∇φ
)

= −e
2ns
mc

(
~A− h̄c

2e
~∇φ
)

(658)

Thus we obtain the London penetration depth

λL =

√
c2m

4πnse2
=

√
c2m

8πΨ2
0e

2
. (659)

3. Coherence length

Coherence length is obtained by considering small fluctuations of the amplitude of Ψ. So

we assume ~A = 0, and Ψ = Ψ0 + δΨ (both real), and Ψ2
0 = −a/b. Then we obtain

− h̄2

4m
∇2δΨ + δΨ(a+ 3bΨ2

0) = 0 . (660)

In the normal state Ψ0 = 0 and a > 0 we obtain solutions of the type e±x/ξ, where

ξ =
h̄√
4ma

(661)

In the superconducting state Ψ2
0 = −a/b, a < 0

− h̄2

4m
∇2δΨ + δΨ(a+ 3bΨ2

0) = − h̄2

4m
∇2δΨ− 2aδΨ = 0 . (662)

We still define the coherence length as in the normal case

ξ =
h̄√

4m|a|
. (663)

However the solutions look like e±
√

2x/ξ.
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4. External field

If a superconductor is placed in an external magnetic field ~H0 the proper free energy

reads ∫
dV FH =

∫
dV F − 1

4π
~H0

∫
dV ~B . (664)

Here ~B is the total magnetic field, ~B = ~H0 + ~Bi. Here ~Bi is the field induced by currents in

the superconductor. Thus

∫
dV FH =

∫
dV

Fn + a|Ψ|2 +
b

2
|Ψ|4 +

1

4m

∣∣∣∣(−ih̄~∇− 2e

c
~A
)

Ψ
∣∣∣∣2 +

~B2

8π
−

~H0 · ~B
4π

 .

(665)

Note, that this gives the same Ginsburg-Landau equations. Indeed B2/(8π)−BH0/(4π) =

B2
i /8π + const. and we vary, actually, the field Bi.

In the normal state we have B = H0 and FH = Fn−H2
0/(8π). Deep in the superconductor

B = 0 and FH = Fn+a|Ψ|2 + b
2
|Ψ|4 = Fn− a2

2b
= Fn− (ατ)2

2b
. Thus we obtain the critical field

Hc, i.e., the value of H0 above which the normal state has a lower free energy. We obtain

H2
c /(8π) = (ατ)2

2b
and

Hc =

√
4πa2

b
. (666)

5. Reduced Ginsburg-Landau equations

We define

Ψ′ = Ψ/Ψ0 , r′ = r/λL , B′ = B/(Hc

√
2) , A′ = A/(λLHc

√
2) (667)

We obtain the Ginsburg-Landau equations in the reduced form (omitting the primes)

(
−iκ−1~∇− ~A

)2
Ψ−Ψ + |Ψ|2Ψ = 0 , (668)

~∇× (~∇× ~A) = − i

2κ

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− |Ψ|2 ~A , (669)

where

κ =
λL

ξ
. (670)

Thus, everything depends on κ.
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The free energy in these units reads

∫
dV FH =

∫
dV Fn +

H2
c

4π

∫
dV

−|Ψ|2 +
1

2
|Ψ|4 +

∣∣∣∣∣∣
−i~∇

κ
− ~A

Ψ

∣∣∣∣∣∣
2

+ ~B2 − 2 ~H0 · ~B

 .

(671)

Integrating by part, disregarding the boundary, using the Ginsburg-Landau equations,

and adding an unimportant constant we obtain∫
dV FH =

∫
dV Fn +

H2
c

4π

∫
dV

{
−1

2
|Ψ|4 + ( ~B − ~H0)2

}
. (672)

I. Surface energy

Let us estimate the surface energy of an interface between superconducting and normal

phases. We assume H0 = Hc, i.e., both phases are possible. In the normal phase we have

the critical magnetic field B = Hc (B′ = 1/
√

2). In the superconducting phase B = 0 and

Ψ = Ψ0 (Ψ′ = 1). The order parameter varies on the scale ξ (κ−1). The magnetic field

varies on the scale λL (1).

We consider a quasi-one dimensional situation. All the quantities depend only on x. ~A

is along y ( ~A = A(x)~y) and, thus, ~B is along z. We can take Ψ to be real. Then

κ−2∇2Ψ + (1− A2)Ψ−Ψ3 = 0 , (673)

∇2A−Ψ2A = 0 . (674)

Consider 2 cases:

a) ξ � λL (κ� 1)(superconductor of the 1-st type). In this case there is a layer on the

interface of thickness ξ where the magnetic field vanishes and the order parameter vanishes,

i.e., the state is normal. We see that there is an additional cost of ∼ ξH
2
c

8π
per unit of

area. The logic: the work of expelling the magnetic field has been performed but no energy

reduction through the order parameter appearance. Thus the surface energy is positive in

this case and the system avoids interfaces.

b) ξ � λL (κ � 1)(superconductor of the 2-nd type). In this case there is a layer

of thickness λL where the magnetic field is present and also the order parameter has its

bulk value. The surface energy is then negative and equal ∼ −λLH
2
c

8π
. The logic: magnetic

field not expelled in the layer, thus no energy cost. The energy is reduced by having the

superconducting order parameter. Thus the system likes to have interfaces.
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The critical value of κ at which the surface energy vanishes is given by κc = 1/
√

2.

J. Higgs mechanismus

We consider again the GL free energy density (action):

F = a|Ψ|2 +
b

2
|Ψ|4 +

1

4m

∣∣∣∣(−ih̄~∇− 2e

c
~A
)

Ψ
∣∣∣∣2 +

~B2

8π

= a|Ψ|2 +
b

2
|Ψ|4 +

1

4m

[(
−ih̄~∇− 2e

c
~A
)

Ψ
] [(

ih̄~∇− 2e

c
~A
)

Ψ∗
]

+
(~∇× ~A)2

8π
. (675)

Consider small fluctuations around the real solution Ψ0 =
√
−a/b.

Ψ(~r) = Ψ0 + φ1(~r) + iφ2(~r) , (676)

where φ1 and φ2 are real. Considering also ~A(~r) to be small we expand the action to second

order in φ1, φ2 and ~A:

δF (2) =
1

4m

[(
2e

c

)2

Ψ2
0

(
~A
)2

+ h̄2
(
~∇φ1

)2
+ h̄2

(
~∇φ2

)2
− 2h̄

(
2e

c

)
Ψ0

(
~A~∇φ2

)]

− 2aφ2
1 +

(~∇× ~A)2

8π
+ higher orders . (677)

We still have the gauge freedom:

~A′ = ~A+ ~∇χ , Ψ′ = Ψ exp
[
2ie

h̄c
χ
]
. (678)

To keep ~A′ small we perform an infinitesimal gauge transformation, which then reduces to

Ψ′ ≈ Ψ(1 + iχ̃) = (Ψ0 + φ1 + iφ2)(1 + iχ̃), where χ̃ ≡ 2ie
h̄c
χ. In terms of the deviations we

obtain

φ′1 = φ1 − φ2χ̃ , φ′2 = φ2 + φ1χ̃+ Ψ0χ̃ . (679)

It is actually sufficient to keep only the term Ψ0χ̃. Thus, we can always find a gauge

transformation such that φ′2 = 0. Dropping the primes we obtain

δF (2) =
h̄2

4m

(
~∇φ1

)2
− 2aφ2

1

+
(~∇× ~A)2

8π
+

1

4m

(
2e

c

)2

Ψ2
0

(
~A
)2

+ higher orders . (680)

Thus we obtain two modes. The first mode, φ1, called also Higgs mode, has a characteristic

length, which coincides with the coherence length ξ. The second mode is described by field
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~A. The transversal components of ~A are characterized by the London penetration depth (cf.

Eq. (659)), i.e.,

λ−2
L =

8π

4m

(
2e

c

)2

Ψ2
0 =

4πe2ns
mc2

. (681)

This can also be seen as the photon mass. Our theory has no time-dependence, but is

otherwise complete with respect to the transversal components of the field ~A. This means,

in the relativistic dispersion relation E2 = µ2c4 + c2p2 we should take E = h̄ω = 0. Then

p2 = −µ2c2. Since p2 < 0, we obtain spatial decay, i.e., penetration depth. Identifying

p2 = −h̄2λ−2
L , we obtain the photon mass

(µc2)2 = h̄2 4πe2ns
m

= (h̄ωps)
2 . (682)

Here

ω2
ps =

4πe2ns
m

(683)

is the plasma frequency of the superconducting electronic liquid. At T = 0 it coincides with

the usual plasma frequency.

The variation of (680) with respect to the longitudinal component of ~A results simply in

~A‖ = 0. Thus, unlike in full Higgs case, no longitudinal photon appears at ω = 0. In order

to treat the longitudinal modes (plasmons) properly we have to introduce time-dependence

and the scalar potential. This is beyond the scope of this text.

K. Flux quantization

In the bulk of a superconductor, where ~js = 0, we obtain

~A− h̄c

2e
~∇φ = 0 (684)

∮
~Ad~l =

h̄c

2e

∮
~∇φd~l =

h̄c

2e
2πn =

hc

2e
n = nΦ0 (685)

This quantization is very important for, e.g., a ring geometry. If the ring is thick enough

(thicker than λL) the total magnetic flux threading the ring is quantized.
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L. Josephson effect

We consider now a tunnel junction between two superconductors with different phases

φL and φR. The Hamiltonian reads

H = HBCS,L +HBCS,R +HT , (686)

where the tunneling Hamiltinoan reads

HT =
∑

k1,k2,σ

T
[
R†k1,σ

Lk2,σ
+ L†k2,σ

Rk1,σ

]
. (687)

Here Rk,σ ≡ c
(R)
k,σ is the annihilation operator of an electron in the left superconductor. Two

important things: 1) microscopically the electrons and not the quasiparticles tunnel; 2)

tunneling conserves spin.

A gauge transformation Lk,σ → eiφL/2Lk,σ and Rk,σ → eiφR/2Rk,σ ”removes” the phases

from the respective BCS wave functions (making vk, uk, and ∆ real) and renders the tun-

neling Hamiltonian

HT =
∑

k1,k2,σ

T
[
R†k1,σ

Lk2,σ
e−iφ/2 + L†k2,σ

Rk1,σ
eiφ/2

]
, (688)

where φ ≡ φR − φL.

Josephson [1] used (688) and calculated the tunneling current. We do so here for a time-

independent phase difference φ. The current operator is given by time derivative of the

number of particles in the right lead NR =
∑
k,σ R

†
k,σRk,σ

I = −eṄR = −ie
h̄

[HT , NR] =
ie

h̄

∑
k1,k2,σ

T
[
R†k1,σ

Lk2,σ
e−iφ/2 − L†k2,σ

Rk1,σ
eiφ/2

]
. (689)

The first order time-dependent perturbation theory gives for the density matrix of the system

in the interaction representation

ρ(t) = Te
−i
∫ t
−∞ dt′HT (t′)

ρ0T̃ e
i
∫ t
−∞ dt′HT (t′) ≈ ρ0 − i

∫ t

−∞
dt′[HT (t′), ρ0] . (690)

For the expectation value of the current this gives

〈I(t)〉 = Tr{ρ(t)I(t)} = −i
∫ t

−∞
dt′Tr {[HT (t′), ρ0]I(t)} = −i

∫ t

−∞
dt′Tr {[I(t), HT (t′)] ρ0} .

(691)
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We use

〈BCS| c†k,↑(t1) c†−k,↓(t2) |BCS〉

= 〈BCS|
(
ukα

†
k,↑(t1) + vkα−k,↓(t1)

) (
ukα

†
−k,↓(t2)− vkαk,↑(t2)

)
|BCS〉

= vkuke
−iEk(t1−t2) , (692)

and

〈BCS| ck,↑(t1) c−k,↓(t2) |BCS〉

= 〈BCS|
(
ukαk,↑(t1) + vkα

†
−k,↓(t1)

) (
ukα−k,↓(t2)− vkα†k,↑(t2)

)
|BCS〉

= −vkuke−iEk(t1−t2) , (693)

After some algebra we obtain (from the anomalous correlators, the rest gives zero)

〈I(t)〉 = − 2eT 2e−iφ
∫ t

−∞
dt′

∑
k1,k2

vk1uk1vk2uk2

[
e−i(Ek1

+Ek2
)(t−t′) − ei(Ek1

+Ek2
)(t−t′)

]
+ 2eT 2eiφ

∫ t

−∞
dt′

∑
k1,k2

vk1uk1vk2uk2

[
e−i(Ek1

+Ek2
)(t−t′) − ei(Ek1

+Ek2
)(t−t′)

]

= 8eT 2 sin(φ)
∑
k1,k2

vk1uk1vk2uk2

Ek1 + Ek2

= 2eT 2 sin(φ)
∑
k1,k2

∆2

Ek1Ek2(Ek1 + Ek2)

= 2π2T 2ν2e∆h̄−1 sin(φ) = Ic sin(φ) , (694)

where the Josephson critical current is given by

Ic =
gT e∆

4h̄
=

π∆

2eRT

, (695)

where gT = 2 × 4π2T 2ν2 is the dimensionless conductance of the tunnel junction (factor 2

accounts for spin), while the tunnel resistance is given by RT = h
e2

1
gT

. This is the famous

Ambegaokar-Baratoff relation [2] (see also erratum [3]).

Thus we have obtained the first Josephson relation I = Ic sinφ. We have introduced the

variable φ as the difference of two phases φ = φR−φL. The gauge invariant definition reads

φ = φR − φL −
2e

h̄c

∫ R

L

~Ad~l . (696)

As a shortest way to the second Josephson relation we assume that an electric field exists

in the junction and that it is only due to the time-dependence of ~A. Then we obtain

φ̇ = −2e

h̄c

∫ R

L

[
∂

∂t
~A

]
d~l =

2e

h̄

∫ R

L

~Ed~l = −2e

h̄
V , (697)
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where V is the voltage. Here we all the time treated e as the charge of the electron, i.e.,

e < 0. Usually one uses e as a positive quantity. Then

φ̇ =
2eV

h̄
. (698)

An alternative way to derive this is to start with a difference of (time-dependent) chemical

potentials

H = HL +HR − eVL(t)
∑
k,σ

L†k,σLk,σ − eVR(t)
∑
k,σ

R†k,σRk,σ +HT , (699)

where VL/R are the applied electro-chemical potentials (in addition to the constant chemical

potential µ, which is included in HL and HR). A transformation with

U = e
e
h̄
N̂L

t∫
VL(t′)dt′ e

e
h̄
N̂R

t∫
VR(t′)dt′ (700)

In the new Hamiltonian

H̃ = iU̇U−1 + UHU−1 . (701)

the terms with VL and VR are cancelled and instead the electronic operators are replaced

by, e.g,

L→ ULU−1 = LeiφL/2 , (702)

where φL = const.− 2e
h̄

t∫
VL(t′)dt′ and, thus, φ̇ = φ̇R − φ̇L = −2e

h̄
V .

M. Macroscopic quantum phenomena

1. Resistively shunted Josephson junction (RSJ) circuit

Consider a circuit of parallelly connected Josephson junction and a shunt resistor R. A

Josephson junction is simultaneously a capacitor. An external current Iex is applied. The

Kirchhoff rules lead to the ecquation

Ic sinφ+
V

R
+ Q̇ = Iex . (703)

As Q = CV and V = h̄
2e
φ̇. Thus we obtain

Ic sinφ+
h̄

2eR
φ̇+

h̄C

2e
φ̈ = Iex . (704)
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Iex

C

R

Ic

FIG. 10: RSJ Circuit.

It is very convenient to measure the phase in units of magnetic flux, so that V = 1
c
Φ̇ (in SI

units V = Φ̇):

Φ =
ch̄

2e
φ =

Φ0

2π
φ , φ = 2π

Φ

Φ0

. (705)

Then the Kirchhoff equation reads

Ic sin
(

2π
Φ

Φ0

)
+

Φ̇

cR
+
CΦ̈

c
= Iex , (706)

or in SI units

Ic sin
(

2π
Φ

Φ0

)
+

Φ̇

R
+ CΦ̈ = Iex . (707)

There are two regimes. In case Iex < Ic there exists a stationary solution φ = arcsin(Iex/Ic).

All the current flows through the Josephson contact as a super-current. Indeed V ∝ φ̇ = 0.

At Iex > Ic at least part of the current must flow through the resistor. Thus a voltage

develops and the phase starts to ”run”.

2. Particle in a washboard potential

The equation of motion (707) can be considered as an equation of motion of a particle

with the coordinate x = Φ. We must identify the capacitance with the mass, m = C, the

inverse resistance with the friction coefficient γ = R−1. Then we have

mẍ = −γẋ− ∂U

∂x
, (708)

115



Φ

U(Φ)

FIG. 11: Washboard potential.

FIG. 12: Macroscopic Quantum Tunneling (MQT).

where for the potential we obtain

U(Φ) = −EJ cos
(

2π
Φ

Φ0

)
− IexΦ , (709)

where

EJ ≡
IcΦ0

2π
=
h̄Ic
2e

(710)

is called the Josephson energy. The potential energy U(Φ) has a form of a washboard and

is called a washboard potential. In Fig. 11 the case Iex < Ic is shown. In this case the

potential has minima and, thus, classically stationary solutions are possible.

When the external current is close to the critical value a situation shown in Fig. 12

emerges. If we allow ourselves to think of this situation quantum mechanically, then we would

conclude that only a few quantum levels should remain in the potential well. Moreover a

tunneling process out of the well should become possible. This tunneling process was named
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Macroscopic Quantum Tunneling because in the 80-s and the 90-s many researchers doubted

the fact one can apply quantum mechanics to the dynamics of the ”macroscopic” variable

Φ. It was also argued that a macroscopic variable is necessarily coupled to a dissipative

bath which would hinder the tunneling. Out these discussions the famous Caldeira-Leggett

model emerged [4, 5].

3. Quantization

We write down the Lagrangian that would give the equation of motion (708 or 707).

Clearly we cannot include the dissipative part in the Lagrange formalism. Thus we start

from the limit R→∞. The Lagrangian reads

L =
CΦ̇2

2
− U(Φ) =

CΦ̇2

2
+ EJ cos

(
2π

Φ

Φ0

)
+ IexΦ . (711)

We transform to the Hamiltonian formalism and introduce the canonical momentum

Q ≡ ∂L

∂Φ̇
= CΦ̇ . (712)

The Hamiltonian reads

H =
Q2

2C
+ U(Φ) =

Q2

2C
− EJ cos

(
2π

Φ

Φ0

)
− IexΦ . (713)

The canonical momentum corresponds to the charge on the capacitor (junction). The usual

commutation relations should be applied

[Φ, Q] = ih̄ . (714)

In the Hamilton formalism it is inconvenient to have an unbounded from below potential.

Thus we try to transform the term −IexΦ away. This can be achieved by the following

canonical transformation

R = exp
[
− i
h̄
Qex(t)Φ

]
, (715)

where Qex(t) ≡
t∫
Iex(t

′)dt′. Indeed the new Hamiltonian reads

H̃ = RHR−1 + ih̄ṘR−1 =
(Q−Qex(t))

2

2C
− EJ cos

(
2π

Φ

Φ0

)
. (716)
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The price we pay is that the new Hamiltonian is time-dependent. The Hamiltonian (716) is

very interesting. Let us investigate the operator

cos
(

2π
Φ

Φ0

)
= cos

(
2e

h̄
Φ
)

=
1

2
exp

[
i

h̄
2eΦ

]
+ h.c. (717)

We have

exp
[
i

h̄
2eΦ

]
|Q〉 = |Q+ 2e〉 , exp

[
− i
h̄

2eΦ
]
|Q〉 = |Q− 2e〉 . (718)

Thus in this Hamiltonian only the states differing by an integer number of Cooper pairs

get connected. The constant offset charge remains undetermined. This, however, can be

absorbed into the bias charge Qex. Thus, we can restrict ourselves to the Hilbert space

|Q = 2em〉.

4. Phase and Number of particles (Cooper pairs)

We consider again the states |BCS(φ)〉 and |BCS(N)〉 introduced above (see Eqs. 640

and 641):

|BCS(φ)〉 =
∏
k

(uk + eiφvkc
†
k,↑c
†
−k,↓) |0〉 . (719)

|BCS(N)〉 =

2π∫
0

dφ

2π
|BCS(φ)〉 e−iNφ (720)

It is easy to see that the operator A† = e−iφ increases the number of Cooper pairs by one

A† |BCS(N)〉 =

2π∫
0

dφ

2π
|BCS(φ)〉 e−i(N+1)φ = |BCS(N + 1)〉 . (721)

We have seen that the excitations above the BCS ground state have an energy gap ∆.

Thus, if T � ∆ no excitations are possible. The only degree of freedom left is the pair of

conjugate variables N, φ with commutation relations [N, e−iφ] = e−iφ. Indeed the ground

state energy is independent of φ. This degree of freedom is, of course, non-existent if the

number of particles is fixed. Thus a phase of an isolated piece of a superconductor is quantum

mechanically smeared between 0 and 2π and no dynamics of the degree of freedom N, φ is

possible. However in a bulk superconductor the phase can be space dependent φ(~r). One can

still add a constant phase to φ(~r) +φ0 without changing the state. More precisely the phase

φ0 is smeared if the total number of particles is fixed. However the difference of phases, i.e.,

the phase gradient can be well defined and corresponds to a super-current.
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5. Josephson energy dominated regime

In this regime EJ � EC , where EC = (2e)2

2C
is the Cooper pair charging energy. Let us first

neglect EC completely, i.e., put C =∞. Recall that C plays the role of the mass. Then the

Hamiltonian reads H = −EJ cos
(
2πΦ

Φ0

)
. On one hand it is clear that the relevant state are

those with a given phase, i.e., |Φ〉. On the other hand, in the discrete charge representation

the Hamiltonian reads

H = −EJ
2

∑
m

(|m+ 1〉 〈m|+ |m〉 〈m+ 1|) . (722)

The eigenstates of this tight-binding Hamiltonian are the Bloch waves |k〉 =
∑
m e

ikm |m〉

with the wave vector k belonging to the first Brillouin zone −π ≤ k ≤ π. The eigenenergy

reads Ek = −EJ cos(k). Thus we identify k = φ = 2πΦ
Φ0

.

6. Charging energy dominated regime

In this regime EJ � EC . The main term in the Hamiltonian is the charging energy term

HC =
(Q−Qex(t))

2

2C
=

(2em−Qex)
2

2C
. (723)

The eigenenergies corresponding to different values of m form parabolas as functions of

Qex (see Fig. 13). The minima of the parabolas are at Qex = 0, 2e, 4e, . . .. The Josephson

tunneling term serves now as a perturbation HJ = −EJ cos
(
2πΦ

Φ0

)
. It lifts the degeneracies,

e.g., at Qex = e, 3e, 5e, . . ..

If a small enough external current is applied, Qex = Iext the adiabatic theorem holds and

the system remains in the ground state. Yet, one can see that between the degeneracies

at Qex = e, 3e, 5e, . . . the capacitance is charged and discharged and oscillating voltage

V = ∂E0/∂Qex appears. Here E0(Qex) is the energy of the ground state. The Cooper pairs

tunnel only at the degeneracy points. In between the Coulomb blockade prevents the Cooper

pairs from tunneling because this would cost energy.

[1] B. D. Josephson, Physics Letters 1, 251 (1962).

[2] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963).

119



energies

Q=0 Q=2e Q=4e

eigen

Qexe 2e 3e0 4e

FIG. 13: Eigen levels in the coulomb blockade regime. Different parabolas correspond to different

values of Q = 2em. The red lines represent the eigenlevels with the Josephson energy taken into

account. The Josephson tunneling lifts the degeneracy between the charge states.

[3] V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 11, 104 (1963).

[4] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

[5] A. O. Caldeira and A. J. Leggett, Annals of Physics 149, 374 (1983).

120


