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1. Boltzmann equation in the presence of spin-orbit interaction:

(a) Derive the kinetic equation for a system with SO interaction

Consider first a signle spin. It can be described by a 2×2 density matrix ρ satisfying
the equation of motion

dρ

dt
= i[ρ,H],

where he Hamiltonian H is also a 2× 2 matrix. The diagonal elements of ρ give the
probabilities to

nd the system in a state with sZ = ±1/2:

〈sz〉 = Trρsz = (ρ11 − ρ22)/2.

The off-diagonal elements of ρ take into account the possibility to find the spin in
a state which is a coherent superposition of the states with sz = ±1/2, e.g. a state
with a definite projection of sx.

Consider now the kinetic equations describing a particle with spin. Now, the density
matrix involves not only spin variables, but also phase space variables. Treating the
latter semicalssically, we find

dρ

dt
= i[ρ,H] + I[ρ].

As a result, the kinetic equation has the form

∂ρ

∂t
+ v

∂ρ

∂r
+ ṗ

∂ρ

∂p
= i[ρ,H] + I[ρ].

Finally, using the explicit form of the Hamoltonian

H =
p2

2m
+ Ω(p)σ,

we find
∂ρ

∂t
+ i[Ω(p)σ, ρ]− eE ∂ρ

∂p
= I[ρ].



(b) Spin and charge distribution functions

Here we use the explicit form for a density matrix where the phase space part is
treated semiclassically

ρ =
1

2
f(t, p) + S(t, p)σ,

where f(t, p) is the usual (charge) distribution function, S(t, p) is the spin distribu-
tion function, and the first term is proportional to the unit matrix (no texplicitly
written).

Substituting the above density matrix into the kinetic equation we find

1

2

∂f

∂t
+
∂S

∂t
σ + i[Ω(p)σ,Sσ]− 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ].

The commutator can be simplified using the properties of the Pauli matrices

[Ω(p)σ,Sσ] = Ωi(p)Sj[σi, σj] = 2iΩi(p)Sjεijkσk = 2i[Ω(p)× S]σ.

This way we find the matrix equation

1

2

∂f

∂t
+
∂S

∂t
σ − 2[Ω(p)× S]σ − 1

2
eEα

∂f

∂pα
− eEα

∂S

∂pα
σ = I[ρ].

The matrix equation can be reduced to a set of scalar equations by multiplying the
equation by the Pauli matrices and evaluating the trace. We find

∂f

∂t
− eEα

∂f

∂pα
= TrI[ρ],

∂Si
∂t
− 2[Ω(p)× S]i − eEα

∂Si
∂pα

=
1

2
TrσiI[ρ].

Finally, let us assume the simplest τ -approximation for the collision integral

I[ρ] = −δρ
τ

= −δf
2τ
− δSσ

τ
.

Substituting this into the above kinetic equations we find

∂f

∂t
− eEα

∂f

∂pα
= −δf

τ
,

∂Si
∂t
− 2[Ω(p)× S]i − eEα

∂Si
∂pα

= −δSi
τ
.

(c) Rashba spin-orbit coupling

For the case of the Rashba coupling,

Ω = α(py,−px),

the vector product in the kinetic equations has the form

Ω× S = α(−pxSz,−pySz, pxSx + pySy) = −αpSz + α(S⊥ · p)ez,



where S⊥ = (Sx, Sy) and ez is the unit vector in the z-direction.

The equations for the spin distribution function now have the form

∂Sz
∂t
− 2αS⊥ · p− eEα

∂Sz
∂pα

= −δSz
τ
,

∂S⊥
∂t

+ 2αpSz − eEα
∂S⊥
∂pα

= −δS⊥
τ

.

(d) Equilibrium distribution function

The Hamiltonian

H =
p2

2m
+ Ω(p)σ,

has the following eigenvalues

ε±(p) =
p2

2m
± αp.

Without writing down the eigenvectors, we may relate the Hamiltonian in the dia-
gonal form to the original basis using a unitary transformation

H = U+

[
p2

2m
+ αpσz

]
U,

with
U+αpσzU = Ω(p)σ.

The equilibrium occupation numbers of the eigenstates are given by the Fermi func-
tions nF [εσ(p)]. Hence the equilibrium density matrix in the basis of the eigenstates
is given by

ρ̃0 =
1

2

{
nF [ε+(p)] + nF [ε−(p)] + σz

(
nF [ε+(p)]− nF [ε−(p)]

)}
.

The density matrix in the original basis can be found using the same unitary rotation

ρ0 = U+ρ̃0U =
1

2

{
nF [ε+(p)] + nF [ε−(p)] +

(
nF [ε+(p)]− nF [ε−(p)]

)Ω(p)σ

αp

}
.

Reading off the expressions for the charge and spin distributions we find (with
ε = p2/(2m))

f0 = nF [ε+(p)] + nF [ε−(p)] −→
α→0

2nF (ε),

S⊥,0 =
(
nF [ε+(p)]− nF [ε−(p)]

)Ω(p)

αp
−→
α→0

n′F (ε)Ω(p),

Sz,0 = 0.



(e) Linear response solution

Consider the equations for the spin distribution function in the steady state. Intro-
ducing small deviations from equilibrium,

S⊥ = S⊥,0 + δS⊥, Sz = δSz,

we linearize the equations for the spin distribution function. For the purpose of
linearizing, it is important to understand that both δS and E are small quantities
(deviations from equilibrium). In particular, we disregard terms like Eα δSz as those
are of second order in small quantities. We find

2α���
�:0

S⊥,0p + 2αδS⊥p = δSz/τ,

2αpδSz − eEα
∂S⊥,0
∂pα

= −δS⊥/τ ,

where the first term vanishes, since S⊥,0 ∝ Ω(p) and Ω(p) ⊥ p. Clearly, in the
absence of the electric field the solution is zero, δS = 0, proving that we have the
correct equilibrium distribution. We can use the second equation to eliminate δS⊥
from the first; then, solving for δSz, we find,

δSz =
−2ατ 2e

1 + 4α2p2τ 2
E S⊥,0 ,

where we have used the general relation (product rule of differentiation) (∂pαS⊥,0) ·
p = ∂pα(S⊥,0p) − S⊥,0 · ∂pαp which reduces to (∂pαS⊥,0) · p = −(S⊥,0)α, due to
S⊥,0 ⊥ p. Inserting the result for δSz into the second equation, we find

δS⊥ = eτEα
∂S⊥,0
∂pα

+
4eα2τ 3

1 + 4α2τ 2p2
(E · S⊥,0)p.

(f) Average spin polarization

The average spin is given by

〈s〉 =

∫
d2p

(2π)2
Trρs =

∫
d2p

(2π)2
S.

Given that δSz is an odd function of the momentum components pα, we conclude
that

〈sz〉 = 0.

The planar polarization we calculate choosing the x-direction along the in-plane
electric field,

E = (E, 0, 0).

In this case, only the y-component of the magnetization is nonzero. For weak spin-
orbit coupling (α→ 0) we find

〈sy〉 = 4eEα3τ 3
∫

d2p

(2π)2
p2y

1 + 4α2τ 2p2
n′F (p2/2m).



At T = 0,

n′F (p2/2m) = − 1

vF
δ(p− pF ),

and the integral can be easily evaluated, e.g. in polar coordinates.

The final result is given by

〈sy〉 = − 1

π
eEm

α3τ 3p2F
1 + 4α2τ 2p2F

.


