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1. Boltzmann equation in the presence of spin-orbit interaction: (100 Punkte)

In this exercise we practice solving the Boltzmann equation using the example of a
system with spin-orbit interaction. We construct a model collision integral and attempt
solving the resulting Boltzmann equation. As a result, we obtain the physics of the so-
called Edelstein effect. Note, that this is not a true theory of the spin-orbit interaction,
but rather an exercise: the collision integral we are using here is incorrect and as a result
and although we do capture the main feature of the Edelstein effect – the spontaneous
magnetization – the final expression for it that we obtain is wrong. It is however a good
exercise that allows one to practice solving the kinetic equation. (A true kinetic theory
of systems with spin-orbit interaction has not been worked out yet – it is an important
topic in current research).

Consider a system with spin-orbit interaction as described by the Hamiltonian

H =
p2

2m
+ Ω(p) · σ,

where σ = (σx, σy, σz) is the vector of Pauli matrices and Ω(p) is the fictitious “magnetic
field” that depends on momentum and thus describes the spin-orbit interaction.

The Boltzmann equation is usually derived within the semiclassical approach, where
we treat the quasiparticle momentum as a c-number (and not an operator). However,
the electron spin has to be treated quantum-mechanically. This can be achieved by
considering the one-particle density matrix which is a 2× 2 matrix in spin space. The
rest of the variables one can treat semiclassically, i.e. ρ→ ρσ1σ2(r,p, t).

The kinetic equation can now be derived as usual. We consider time variation of the den-
sity matrix and equate it to the collision integral. The quantum-mechanical treatment
of the spin variables amounts to using the well-known quantum-mechanical definition
where the time derivative of an operator is given by its commutator with the Hamilto-
nian. This way in a spatially homogeneous systems one arrives at the equation

∂ρ

∂t
+ i

[
Ω(p) · σ, ρ

]
− eE ∂ρ

∂p
= I[ρ].

Here [. . . , . . . ] stands for a commutator.

(a) Derive the above equation for a homogeneous system treating the spin variables
quantum-mechanically and the momentum semiclassically. Simplify the equation
for the steady state.



(b) Recall the well-known fact from quantum mechanics: any function of the Pauli
matrices is a linear function. Therefore, the 2× 2 density matrix can be written as

ρ =
f

2
1̂ + S · σ.

Here 1̂ denotes a unity matrix.

Substitute this expression into the equation for the density matrix and find coupled
equations for the charge and spin distribution fucntions f and S.

(c) Consider the simplest version of the spn-orbit coupling in two-dimensional systems,
the so-called Rashba spin-orbit coupling, which is described by

Ω = α(py,−px).

Subsititute the Rashba form of the spin-orbit coupling in the equations obtained
above.

Hint You are now dealing with a two-dimesnional system. The momentum is now
a 2D vector, but spin still has three components.

(d) Now we will make the simplest assumptions allowing us to solve the resulting kinetic
equations.

First, we assume that the external electric field is weak and the system is very
close to its equilibrium state. Then the density matrix (as well as the distribution
functions) can be written in the form

ρ = ρ(0) + δρ.

Assuming that the equilibrium state is described by the Fermi-Dirac distribution,
find the explicit form of ρ(0), as well as f (0) and S

(0)
j .

(e) Finally, we assume that the collision integral can be treated in the τ -approximation.
The resulting kinetic equations can be solved to the leading order in the applied
electric field similarly to the standard derivation of the Drude formula given in the
lecture.

Find the leading-order expression for the non-equilibrium corrections to the spin
distribution functions δSx and δSy.

(f) Use the obtained distribution functions to find the average spin polarization in the
system (the so-called Edelstein effect).


